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Introduction

We will see how to define ordinary differential equations (ODEs) in order
to model the dynamics of systems whose state changes continuously.

focus on population models (birth/death of individuals)

See also:

Notes on a Short Course and Introduction to Dynamical Systems in
Biomathematics by Urszula Foryś
Available on the course web page

Chapter 2 of A Guide to Numerical Modelling in Systems Biology by
Peter Deuflhard and Susanna Roblitz
Freely accessible if you are within the UniPi subnet
Link available on the course web page

Mathematical and Computer Modelling of Nonlinear Biosystems by
Urszula Foryś
Available on the course web page
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Linear birth model, again

Let N(t) denote the density of some population at time t.

We want to construct a mathematical model able to predict the density of
the same population at time t + ∆t, that is N(t + ∆t).

Assume that:

all individuals are the same (no dinstinction by gender, age, ...)

there is enough food and space for every individual

each individual has λ children every σ time units

there is no death in the interval [t, t + ∆t)

children do not start reproducing in the interval [t, t + ∆t)
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Linear birth model, again

We have seen that the model can be based on the following equation:

N(t + ∆t) = N(t) + λ
∆t

σ
N(t)

from which we derived the discretized model corresponding to the
following recurrence equation (with step ∆t):

Nt+1 = rdNt

where rd = λ∆t
σ .

We have seen that discretization can lead to inaccuracies

Let’s consider ∆t → 0
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Linear birth model, continuous version

The equation

N(t + ∆t) = N(t) + λ
∆t

σ
N(t)

can be rewritten as

N(t + ∆t)− N(t)

∆t
=
λ

σ
N(t)

so that the left hand side turns out to be a difference quotient.

Now, let’s consider the limit for ∆t → 0

lim
∆t→0

N(t + ∆t)− N(t)

∆t
= lim

∆t→0
rcN(t)

with rc = λ
σ .
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Linear birth model, continuous version

lim
∆t→0

N(t + ∆t)− N(t)

∆t
= lim

∆t→0
rcN(t)

The term on the left turns out to be the derivative of N(t)

denoted Ṅ(t), or dN
dt

The term on the right does not depend on ∆t. So, we obtain:

Ṅ(t) = rcN(t)

This is a so called Ordinary Differential Equation (ODE)

relates the function N with its derivative Ṅ

time is continuous: t can take any value in R
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Linear birth model, continuous version

Ṅ(t) = rcN(t)

Finding a solution of the differential equation corresponds to finding a
closed-form definition of N(t) satisfying the equation

a definition that depends only on t and some constants

For the linear growth model a solution can be found analytically.

Let’s rewrite the equation as follows: Ṅ(t)
N(t) = rc

Since Ṅ(t)
N(t) is the derivative (w.r.t. t) of lnN(t) and rc is the derivative of

rct + c for any constant c , we obtain

lnN(t) = rct + c

that gives:
N(t) = Cerc t

with e the Euler number and C = ec (typically C = N(0)).
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Linear birth model, continuous version

N(t) = Cerc t

The solution of the ODE tells us that the population shows an exponential
growth over time

rc = 2

C = N(0) = 1
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Linear birth model, continuous version

This behaviour is qualitatively the same as that of the discretized model

the population exhibits an exponential growth

What changes is the role of the growth rate:

discrete model:
Nt+1 = rdNt

general term:
Nt = rd

tN0

The population grows if rd > 1
rd = 1 + λ∆t

σ

hence: λ
σ > 0

continuous model:
Ṅ(t) = rcN(t)

solution:
N(t) = Cerc t

The population grows if rc > 0
rc = λ

σ

hence: λ
σ > 0
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“Radioactive” decay

This example describes spontaneous decomposition (or decay,
degradation) of substances

it is called “radioactive” since this is has been considered initially for
substances for which radioactivity can be measured

The idea is each molecule decays at a constant rate. So, the whole mass
decreases with a rate which is proportional to the mass itself.

This is described by the following ODE:

Ṅ(t) = −dcN(t)

whose solution is
N(t) = N(0)e−dc t

Paolo Milazzo (Università di Pisa) CMCS - Continuous Dynamical Systems A.Y. 2019/2020 10 / 74



“Radioactive” decay

Ṅ(t) = −dcN(t)

The negative exponent causes N(t) to tend to zero

dc = 2

C = N(0) = 10
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Logistic equation, continuous version

A continuous version of the logistic equation can be defined as follows:

Ṅ(t) = rcN(t)

(
1− N(t)

K

)
where rc is the continuous growth rate and K is the carrying capacity of
the environment

A solution of this ODE is

N(t) =
K

1 +
(

K
N(0) − 1

)
e−rc t

The solution tells us that N(t) tends to K , since e−rc t tends to 0

the population converges to the carrying capacity of the environment
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Logistic equation, continuous version

Ṅ(t) = rcN(t)

(
1− N(t)

K

)
The population converges to the carrying capacity of the environment

rc = 2

N(0) = 10

K = 30
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Systems of ODEs
We considered examples of systems described by a single variable N(t)

When more than one variable has to be cosidered, we have to construct a
system of ODEs

Let’s consider a population of males and females, with fights among males

F (t) models females and M(t) models males
assume a small part of males die because of fights among them
(death rate sc)

We obtain the following system of ODEsḞ (t) = rcF (t)
(

1− F (t)+M(t)
K

)
Ṁ(t) = rcF (t)

(
1− F (t)+M(t)

K

)
− scM(t)

where

rdF (t) is used for both genders since both are generated by females
F (t) + M(t) describes the whole population size (to be related with
the carrying capacity K )
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Systems of ODEs

Dynamics of the systems of ODEs
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Recurrence Equations vs ODEs

Why the dynamics is so different from that of the recurrence relations we
have seen in the previous lesson?

{
Ft+1 = rdFt

(
1− Ft+Mt

K

)
Mt+1 = rdFt

(
1− Ft+Mt

K

)
− sdMt

Ḟ (t) = rcF (t)
(

1− F (t)+M(t)
K

)
Ṁ(t) = rcF (t)

(
1− F (t)+M(t)

K

)
− scM(t)
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Recurrence Equations vs ODEs

Recurrence relations describe how to compute the next state

ODEs describe derivatives: (the limit of) the difference between the
current and the next state

Steady states are computed differently:{
Ft = rdFt

(
1− Ft+Mt

K

)
Mt = rdFt

(
1− Ft+Mt

K

)
− sdMt

⇓
Mt = Ft − sdMt

⇓
Ft = (1 + sd)Mt

0 = rcF (t)
(

1− F (t)+M(t)
K

)
0 = rcF (t)

(
1− F (t)+M(t)

K

)
− scM(t)

⇓
0 = 0− scM(t)

⇓
M(t) = 0
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Numerical solution of ODEs
Unfortunately, computing the solution of an ODE is not always
possibile/simple

Very often, ODEs are studies by using numerical solvers (or numerical
simulators)

Numerical solvers do not compute the general function obtained by
“integrating” the ODE

They usually solve the initial value problem (or Cauchy problem)

Definition: Initial value problem

Given an ODE Ṅ(t) = f (N(t)) and an initial value N0 such that
N(0) = N0, compute a function F (t) that is a solution of the ODE and
such that F (0) = N0

Actually, what we are usually interested in, are the values of F (t) for t ≥ 0

hence, we want to perform a numerical simulation starting from t = 0
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The Euler method

The Euler method is the simplest numerical simulation method

It is based on the idea of discretizing the dynamics of differential equations
by time steps of constant length τ .

At each step, the solution of the differential equation is approximated by
its derivative computed at the beginning of the time interval of length τ

Given an ODE
Ṅ(t) = f (N(t))

this corresponds to approximating its solution with the following
recurrence relation (with N0 = N(0))

Nk+1 = Nk + τ f (Nk)

where Nk approximates N(kτ)
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The Euler method

Example of execution of the Euler method:
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The Euler method: errors

Each step of the Euler method give rise to an error

Local discretization error (or local truncation error) |N(τ)− N1|
it is in the order O(τ2)

Errors accumulate: after k steps, namely at time t = kτ , we have

Global discretization error (or global truncation error) |N(kτ)− Nk |
it is in the order O(kτ2) = O(τ), since kτ = t is constant
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Other “explicit” methods

A linear (O(τ)) global discretization error often imply that a very small
discretization step τ has to be used

the computation becomes very slow (many steps)

Other methods have a global discretization error of a higher order (e.g.
O(τp) for some p) which is better as long as τ → 0 (hence, it is smaller
than one)

A few examples of such methods:

Runge-Kutta methods: p = 2 in their original formulation, but can be
higher

Multistep methods (e.g. Adams methods): extrapolate the value of
the next step from the values of the previous k steps. p ≈ k
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Other “explicit” methods

State-of-art methods can also:

self-determine the step size τ based on thresholds on local and global
discretization errors

dynamically adjust the step size τ during their execution (e.g.
Adaptive Runge-Kutta)
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Instability and stiff systems
In some cases, explicit methods may become unstable, unless a very small
step size τ is used.

Example:
Ṅ(t) = −15N(t)

with N(0) = 1

Euler method with τ = 0.25 and τ = 0.125
compared with the exact solution
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Instability and stiff systems

This kind of problematic systems are called stiff systems

There is no precise definition of stiffness

Intuitively, the system contains some very fast term which causes very
small step sizes to be used with explicit methods

Sometimes, the combination of fast terms with slow terms in a
system of ODEs make explicit methods unstable although the shape
of the solution is smooth
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Implicit Euler method

Implicit methods are often better suited for stiff systems.

Implicit variant of the Euler method:

At each step, the solution of the differential equation is approximated by
its derivative computed at the end of the time interval of length τ

Given an ODE
Ṅ(t) = f (N(t))

this corresponds to approximating its solution with the following equation
(with N0 = N(0))

Nk+1 = Nk + τ f (Nk+1)

where Nk approximates N(kτ)
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Implicit Euler method

Nk+1 = Nk + τ f (Nk+1)

In this case the value of Nk+1 is not explicitly expressed in terms of Nk ,
but it is implicitly espressed by means of an equation which could be
difficult to solve

Hence, the computation of the single step requires more effort in implicit
methods

But, often the local discretization error is smaller

greater values of τ can be used

with stiff systems it is often convenient to pay the extra time for the
computation of each step
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Other “implicit” methods

A few examples of implicit methods:

Implicit Runge-Kutta methods

Multistep methods (e.g. BDF methods)

Implementations of implicit methods often require the modeler to provide
the Jacobian matrix (partial derivatives) of the funciton f

Also in these cases there are variants that can self-determine and
dynamically adjust the step size τ according to threshold on the local and
global discretizaton errors.

There exist methods that are able to automatically switch from explicit to
implicit modes (and vice-versa)

LSODE: switches between Adams and BDF

CVODE: switches between Adams and BDF
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Implementations

ODE solvers are available inside the main environments for numerical and
mathematical computing (e.g. MatLab, Octave, Mathematica) and as
libraries for the main programming languages (e.g. C, C++, Python)

Some implementations:

ode45, ode113, ode15s, ... in MatLab
see https://www.mathworks.com/help/matlab/

ordinary-differential-equations.html

lsode in Octave

Sundials CVODE in C

odeint in C++

scipy.integrate.odeint and scipy.integrate.ode (interface to
multiple solvers) in Python
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Using the Octave solver

Let’s see, for example, the Octave implementation of this system of ODEs
Ȧ(t) = 320s(A(t)− A(t)B(t) + B(t)− qA(t)2)

Ḃ(t) = 320(C (t)− B(t)− A(t)B(t))/s

Ċ (t) = 320w(A(t)− C (t))

with s = 77.27, q = 8.375 · 10−6, w = 0.161.

This is (a variant of) a well-known example of stiff system (the
Oregonator)

Paolo Milazzo (Università di Pisa) CMCS - Continuous Dynamical Systems A.Y. 2019/2020 30 / 74



Using the Octave solver
% workaround for scripts starting with a function definition
1;

%%% Function computing derivatives
function dX = dX(X,t)

% model parameters
s = 77.27;
q = 0.000008375;
w = 0.161;

% variables used for the sake of readability
A = X(1);
B = X(2);
C = X(3);

% ODEs
dA = 320 * s * (A - A*B + B - q*A*A);
dB = 320 * (C-B-A*B)/s;
dC = 320 * w * (A-C);

dX(1) = dA;
dX(2) = dB;
dX(3) = dC;

endfunction

%(continues ...)
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Using the Octave solver

%%% setting the simulation time and the number of points
t=linspace (0 ,2 ,1000);

%%% (or the time distance between two consecutive points)
%t=0:0.001:2;

%%% initial state
X0 = [1 1 2];

%%% These can be used to set global and local error tolerance
%lsode_options (" absolute tolerance",1e-5);
%lsode_options (" relative tolerance",1e-5);

%%% These can be used to force non -stiff or stiff integration
%lsode_options (" integration method","non -stiff ");
%lsode_options (" integration method","stiff ");

%%% Call the solver
X = lsode ("dX",X0 ,t);

%(continues ...)
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Using the Octave solver

%%% Plot results
plot(t,X," linewidth", 2);
xlabel ("time", "fontsize", 14);
ylabel (" value", "fontsize", 14);
legend ("A","B","C");

%%% This would print the plot to a file
%print(’graph.png ’,’-dpng ’);

%%% Wait for the user to look at the graph
pause ();
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Using the Octave solver

Result:
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Using the Octave solver

Comments:

The system is stiff (because of the “fast” peaks)
I try to force the solver to work in non-stiff mode

In the case of stiff systems, the solver uses the Jacobian matrix
(partial derivatives) to approximate the system behaviour at each step

An approximate Jacobian matrix is computed automatically...

... but a function computing it precisely can be provided to the solver
I this increases both accuracy and performance

Let’s modify the previous implementation by passing the Jacobian matrix
to the solver
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Using the Octave solver
%%% Model parameters (global variables to be used in both the derivative
%%% and the jacobian functions)
global s = 77.27;
global q = 0.000008375;
global w = 0.161;

%%% Function computing derivatives
function dX = dX(X,t)

global s q w; % use the global variables

% variables used for the sake of readability
A = X(1);
B = X(2);
C = X(3);

% ODEs
dA = 320 * s * (A - A*B + B - q*A*A);
dB = 320 * (C-B-A*B)/s;
dC = 320 * w * (A-C);

dX(1) = dA;
dX(2) = dB;
dX(3) = dC;

endfunction

%(continues ...)
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Using the Octave solver
%%% Function computing the Jacobian matrix
function J = jac(X,t)

global s q w; % use the global variables

% variables used for the sake of readability
A = X(1);
B = X(2);
C = X(3);

% partial derivatives
dAdA = 320 * s * (1 - B - 2*q*A);
dBdA = 320 * B / s;
dCdA = 320 * w;
dAdB = 320 * s * (-A + 1);
dBdB = 320 * (-1 -A) / s;
dCdB = 0;
dAdC = 0;
dBdC = 320/s;
dCdC = 320 * w * (-1);

J(1,1) = dAdA; J(2,1) = dBdA; J(3,1) = dCdA;
J(1,2) = dAdB; J(2,2) = dBdB; J(3,2) = dCdB;
J(1,3) = dAdC; J(2,3) = dBdC; J(3,3) = dCdC;

endfunction

%(continues ...)
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Using the Octave solver

%%% setting the simulation time and the number of points
t=linspace (0 ,2 ,1000);

%%% (or the time distance between two consecutive points)
%t=0:0.001:2;

%%% initial state
X0 = [1 1 2];

%%% These can be used to set global and local error tolerance
%lsode_options (" absolute tolerance",1e-5);
%lsode_options (" relative tolerance",1e-5);

%%% These can be used to force non -stiff or stiff integration
%lsode_options (" integration method","non -stiff ");
%lsode_options (" integration method","stiff ");

%%% Pass both the functions to the solver
X = lsode ({@dX , @jac} ,X0,t);

%(continues ...)
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Using the Octave solver
%%% Plot results
plot(t,X," linewidth", 2);
xlabel ("time", "fontsize", 14);
ylabel (" value", "fontsize", 14);
legend ("A","B","C");

%%% This would print the plot to a file
%print(’graph.png ’,’-dpng ’);

%%% Wait for the user to look at the graph
pause ();

Same result as before:
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RELEVANT EXAMPLES OF ODE MODELS

Paolo Milazzo (Università di Pisa) CMCS - Continuous Dynamical Systems A.Y. 2019/2020 40 / 74



Notation

It is no longer necessary to mention t in ODEs...

In the ODEs that follow
we will omit any explicit reference

to the time variable t

We will write:

X for X (t)

Ẋ for Ẋ (t)

X0 for X (0)

Paolo Milazzo (Università di Pisa) CMCS - Continuous Dynamical Systems A.Y. 2019/2020 41 / 74



The Lotka-Volterra model of prey-predator interaction

Independently proposed by Lotka in 1925 and Volterra in 1926

By Lotka as a description of an hypothetical biochemical oscillator

By Volterra as a description of two interacting populations

Volterra introduced this model to explain a strange phenomenon observed
in the Adriatic sea after the First World War

Ecologists (and fisherman) observed an increase in the population of
some species of fish

They expected the war to cause all populations to decrease...

Volterra’s intuition was that prey and predator species have different (but
related) dynamics.

preys proliferate in the absence of predators
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The Lotka-Volterra model of prey-predator interaction

Let us consider the following variables:

V describes the size (or density) of the population of preys

P describes the size (or density) of the population of predators

Basic observations on the inner dynamics of preys and predators (i.e. the
dinamics of each population in isolation):

In the absence of predators, preys can grow without any limitation.

In the absence of preys, predators die.

From these observations, we obtain this preliminary system of ODEs:{
V̇ = rV exponential growth

Ṗ = −sP exponential decay

where r is the growth rate of preys and s the death rate of predators.
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The Lotka-Volterra model of prey-predator interaction

If both species are present in the enviroment, we observe hunting of
predators on preys.

Assuming that meeting between individuals of both species is random, the
number of meetings per time unit is proportional to both V and P

namely it is proportional to the product VP

Not all predator-prey meetings result in a hunting...

let a be the portion of meetings resulting in a hunting

Now, the more the predators eat, the more they can survive and reproduce

let b denote the number of offsprings produced for each hunting
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The Lotka-Volterra model of prey-predator interaction

We obtain the following system of ODEs (the Lotka-Volterra model):{
V̇ = rV − aVP

Ṗ = −sP + abVP

that is

preys decrease by a hunting rate aVP

predators increase by a hunting and reproduction rate abVP

Predation is a direct form of interaction

it is not mediated by the environment
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The Lotka-Volterra model: coefficients

Let’s play with the model!

We consider the following coefficients:

Birth of preys: r = 10

Death of predators: s = 10

Hunting of predators on preys: a = 0.01

Reproduction of predators: b = 1

We obtain: {
V̇ = 10V − 0.01VP

Ṗ = −10P + 0.01VP

Before using a numerical solver... is there any steady state?
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The Lotka-Volterra model: steady states

A steady state is a combination of values for the variables that remains
unchanged over time

In a steady state, all differential equations are equal to zero

So, we can find steady states of the Lotka-Volterra model by solving the
following system of equations:{

0 = 10V − 0.01VP

0 = −10P + 0.01VP

It has two solutions:

V = 0 and P = 0 (empty population)

V = 1000 and P = 1000
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The Lotka-Volterra model: numerical solution

Let’s use a numerical solver with the following initial conditions:

V0 = 1000

P0 = 1000

Both populations are actually stable
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The Lotka-Volterra model: numerical solution

Let’s use a numerical solver with the following initial conditions:

V0 = 900

P0 = 900

Oscillations around 1000 arise: first preys, then predators
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The Lotka-Volterra model: numerical solution

Let’s use a numerical solver with the following initial conditions:

V0 = 800

P0 = 1000

Same dynamics: oscillations around 1000
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The Lotka-Volterra model: numerical solution

Back to the initial question:

What happens if we significantly reduce the size of both preys and
predators?

World war effect
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The Lotka-Volterra model: numerical solution

Let’s use a numerical solver with the following initial conditions:

V0 = 200

P0 = 200

Strong oscillations. At time 0.3 we have ∼ 3500 preys (much more than
1000) and only ∼ 500 predators.
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The SIR epidemic models and the effects of vaccination

Epidemic phenomena (spread of infectuous diseases) are often studied by
means of a SIR model

SIR stands for:

Susceptible: individual that can be infected

Infected: individual that has been infected and that can infect
susceptible individuals

Recovered (or Resistant): individual who passed the infection phase
and cannot infect other individuals any more

First formulation of a SIR model was proposed by Kermack and
McKendrick in 1927
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The SIR epidemic models and the effects of vaccination

The dynamics of epidemic phenomena is described by means of ODEs

One equation for each type of individual: variables S ,I ,R describe the
ratios of each class of individual in the population

Assumptions of the (initial) model:

the size of the population is constant in time (and normalized to 1),
so it always hold S + I + R = 1

only the transmission of infection is described: no reproduction,
death, migration, etc...

disease is transmitted by personal contacts beween individuals of I
and S classes (horizontal transmission)

contacts between individuals are random, i.e. the number of
infections is proportional to both I and S

after infection. individuals recover and become resistant to that
disease
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The SIR epidemic models and the effects of vaccination

Therefore, the model is described by the system of equations:
Ṡ = −βSI
İ = βSI − γI
Ṙ = γI

where:

β is the infection coefficient, describing probability of infection after
the contact of a healthy individual with an infected one

γ is the recovery coefficient, describing the rate of recovery of each
infected individual (in other words, 1/γ is the time one individual
requires for recovering)
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The SIR epidemic models: role of parameters


Ṡ = −βSI
İ = βSI − γI
Ṙ = γI

Note that:

R is the ratio of the population which got the disease in the past

R is almost useless, it does not appear in the other equations and
could be replaced by 1− S − I

S can only decrease

if β < γ (i.e. β/γ < 1), I can only decrease (since S ≤ 1)

if β > γ (i.e. β/γ > 1), the behavior of I depends on S . It initially
increases if S > γ/β.
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The SIR epidemic models: numerical solution

First case: β/γ > 1

S0 = 0.99

I0 = 0.01

R0 = 0

β = 3

γ = 1

Spread of infection. 95% of the population gets the disease.
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The SIR epidemic models: numerical solution

First case: β/γ < 1

S0 = 0.99

I0 = 0.01

R0 = 0

β = 1

γ = 3

The infection doesn’t diffuse. ∼ 1% of the population gets the disease.
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The SIR epidemic models: influenza

Let’s try to find parameters to describe the spread of influenza:

Flu usually takes more or less one week (say, 8 days)

γ = 1/8 = 0.125

A person with flu usually infects more or less 1/5 of the persons he/she
meets

β = 1/5 = 0.2

Flu epidemies usually cover winter (say, 120 days)
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The SIR epidemic models: influenza

S0 = 0.99

I0 = 0.01

R0 = 0

β = 0.2

γ = 0.125

∼ 65% of the population gets the disease, with a peak of infections at the
end of the second month.
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The SIR epidemic models and vaccination

The SIR model can be used to study the effects of vaccination

Vaccinations may require years to show their effect

births and deaths cannot be ignored if we consider a long time span

Let’s extend the SIR model with birth and deaths
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The SIR epidemic models: births and deaths

Assumptions:

for the sake of simplicity we would like the population size still to be
constant over time (not too wrong: the size of the population of a
country does not change significantly over 10-20 years...)

No vertical transmission of the disease (from parents to children)

Newborns are susceptible

Constant population size can be obtained by using the same coefficient µ
for both birth and death

This works since the population size is normalized to 1

Let N = S + I + R, we have that Ṅ = µ− µN has N = 1 as steady
state
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The SIR epidemic models: births and deaths
This is the extended model:

Ṡ = µ− βSI − µS
İ = βSI − γI − µI
Ṙ = γI − µR

As in the previous case, the dynamics of the model is governed by the
ratio between the positive and negative coefficients in the equation of I

if β < (µ+ γ) (i.e. β/(µ+ γ) < 1), I can only decrease (since S ≤ 1)

if β > (µ+ γ) (i.e. β/(µ+ γ) > 1), the behavior of I depends on S .
It increases if S > (µ+ γ)/β.

In the previous case S could only decrease, but this is no longer true, since
we have births

births could maintain S above (µ+ γ)/β, which sustains infections
(endemic state)
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The SIR epidemic models: births and deaths

First case: β/(µ+ γ) < 1

S0 = 0.99

I0 = 0.01

R0 = 0

β = 3

γ = 2

µ = 2

The infection doesn’t diffuse. In the end, 100% of the population is
susceptible (since recovered individuals die)
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The SIR epidemic models: births and deaths

Second case: β/(µ+ γ) > 1

S0 = 0.99

I0 = 0.01

R0 = 0

β = 6

γ = 2

µ = 2

Endemic state! The population reaches a steady state in which ∼ 17% of
the population is infected.
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The SIR epidemic models: vaccination

Let’s further extend the model with vaccinations.

Assumption:

vaccination is done on a fraction p of the newborns

this corresponds to assuming that a fraction p of newborns are
already in the recovered state R

This results in the following model:
Ṡ = (1− p)µ− βSI − µS
İ = βSI − γI − µI
Ṙ = pµ+ γI − µR

Let’s perform some simulations by varying p.
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The SIR epidemic models: births and deaths

First case: p small

S0 = 0.99

I0 = 0.01

R0 = 0

β = 6

γ = 2

µ = 2

p = 0.1

Still endemic state!
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The SIR epidemic models: births and deaths

First case: p medium

S0 = 0.99

I0 = 0.01

R0 = 0

β = 6

γ = 2

µ = 2

p = 0.25

Endemic state, but with less infected.
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The SIR epidemic models: births and deaths

First case: higher p

S0 = 0.99

I0 = 0.01

R0 = 0

β = 6

γ = 2

µ = 2

p = 0.5

Healthy population! The disease has been eradicated.
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The SIR epidemic models: vaccination threshold

So, which ratio of the newborns should be vaccinated in order to obtain
disease eradication?

pc : threshold value of vaccination

The value of pc can be computed analytically (see lecture notes) or simply
by performing numerical simulations varying p.

result:

pc = 1− µ+ γ

β

In the previous example pc = 1− (2 + 2)/6 = 1/3
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The SIR epidemic models: application to measles

Let’s consider measles (“morbillo”)

For measles the following parameter values were estimated:

µ = 0.02 β = 1800 γ = 100

which give the critical ratio of vaccine

pc = 1− 0.02 + 100

1800
' 0.95

meaning that 95% of the newborns should be vaccinated in order to
eradicate the disease
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Lessons learnt

Summing up:

ODEs can be used to describe dynamical systems whose state
updates continuously

I continuous dynamical systems

Solving ODEs analytically is often difficult/impossibile
I numerical solution of initial value problems helps
I numerical solvers approximate ODEs by discretizing them (recurrence

equations)
I stiffness causes problems: implicit methods perform better in these

cases

ODEs are used extensively
I Lotka-Volterra and SIR models are well-established examples
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Limitations of continuous dynamical models

Continuous dynamical models based on ODEs describe THE behavior of
the system, starting from an initial state

often system may exhibit different behaviors starting from the same
initial state

this happens when some events happening within the system are
somehow random

in order to properly model these system, probabilisties have to be
included in the model (probabilistic/stochastic model)

ODEs are not very modeler-friendly

When the number of equations is high and each equation has many
terms, understanding the model and manipulating it may become
difficult

more intutitive notations should be found
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Exercises

Define a variant of the Lotka-Volterra model with 3 kinds of
individual: predator, prey and vegetation. Predators eat preys, preys
eat vegetation, and vegetation (in the absence of preys) grows
exponentially

I compute the steady states
I try to perform numerical simulation by varying coefficient values and

initial quantities of predators, preys and vegetation

Extend the “influenza” model with vaccination
I the vaccination rate could be constant in time or (better) could be

described by a logistic function with K corresponding to the number of
individuals who choose to vaccinate (typically within few weeks)

A lot of variants of the SIR model exist
I look at the Wikipedia page “Compartmental models in epidemiology”
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