
Discrete Dynamical Systems
Computational Models for Complex Systems

Paolo Milazzo

Dipartimento di Informatica, Università di Pisa
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Introduction

We will see how to define recurrence relations (or difference equations) in
order to model the dynamics of systems whose state changes at discrete
time intervals.

focus on population models (birth/death of individuals)

We will see that even the simplest form of interaction between individuals
can lead to the emergence of complex behaviors in the population

chaos!

See also:
Notes on a Short Course and Introduction to Dynamical Systems in
Biomathematics by Urszula Foryś
Available on the course web page
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Linear birth model

Let N(t) denote the density of some population at time t.

We want to construct a mathematical model able to predict the density of
the same population at time t + ∆t, that is N(t + ∆t).

Assume that:

all individuals are the same (no dinstinction by gender, age, ...)

there is enough food and space for every individual

each individual has λ children every σ time units

there is no death in the interval [t, t + ∆t)

children do not start reproducing in the interval [t, t + ∆t)
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Linear birth model

Examples of populations satisfying the assumptions:

Bacteria duplication Female fish in a big lake

In the bacteria example, in order to assume no children duplication in the
[t, t + ∆t) interval, ∆t has to be smaller or equal to 20 minutes.
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Linear birth model

Then, the number of individuals a time t + ∆t corresponds to the number
of individuals a time t, plus the number of newborns in time ∆t

N(t + ∆t) = N(t) + λ
∆t

σ
N(t)

where ∆t
σ describes the number of birth moments for every individual in

the interval [t, t + ∆t)

The equation can be rewritten as follows:

N(t + ∆t) =

(
1 + λ

∆t

σ

)
N(t)
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Example: bacteria duplication

In the case of bacteria:

duplication happens every 20 minutes, then σ = 1/3 (in hours)

the number of children is 1, then λ = 1

Assume that at time t = 0 there is only 1 bacterium, after 20 minutes
(1/3 hours) we have 2 bacteria:

N(0 + 1/3) =

(
1 + 1

1/3

1/3

)
1 = 2
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Example: female fish population

In the case of fish:

reproduction happens every 2 months, then σ = 2 (in months)

the average number of (viable) female offsprings is 4, then λ = 4

Assume that at time t = 0 there is only 1 female fish, after 6 months we
have 13 female fish (the mother + 12 offsprings):

N(0 + 6) =

(
1 + 4

6

2

)
1 = 13
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Recurrence relation of the simple birth process

From equation

N(t + ∆t) = N(t) + λ
∆t

σ
N(t)

we can derive a discrete model as follows

We choose a time step (discretization step) that we consider appropriate
to describe an update of the population, and we use it as ∆t

after ∆t time units, newborns are considered as adults (i.e. can
reproduce)

Using the notation of sequence theory, Nt = N(t), we obtain:

Nt+1 = rdNt

with rd = 1 + λ∆t
σ representing the (constant) birth rate.
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Example: bacteria duplication

In the case of bacteria:

a reasonable time step is 1/3 hours (since duplications happen with
such a frequency)

the birth rate turns out to be rd = 1 + λ∆t
σ = 1 + 1 1/3

1/3 = 2

indeed, the number of bacteria doubles every 20 minutes!

Hence, the recurrence relation is:

Nt+1 = 2Nt
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Example: bacteria duplication

Here the dynamics of the bacteria population, by assuming N0 = 1:

N0 1

N1 2

N2 4

N3 8

N4 16

N5 32

N6 64

N7 128

N8 256
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Example: female fish population

In the case of fish:

a reasonable time step is 1 year (since offsprings reach sexual
maturation in one year)

the birth rate turns out to be rd = 1 + λ∆t
σ = 1 + 4 12

2 = 25

Hence, the recurrence relation is:

Nt+1 = 25Nt
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Example: female fish population

Here the dynamics of the female fish population, by assuming N0 = 1:

N0 1

N1 25

N2 625

N3 15625
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General term (solution) of the simple birth process

Knowing the recurrence relation, we are sometimes able to calculate the
so-called general term of the system (solution of the recurrence relation).

It is a non-recursive definition of Nt

Let’s start by calculating the first terms N1, N2, N3...

N1 =rdN0

N2 =rdN1 = r2
dN0

N3 =rdN2 = r3
dN0

N4 = . . .

It seems that Nt = r tdN0...

This formula should be proved by using mathematical induction.

We prove the formula (i) for t = 0 and (ii) for t = k + 1 by assuming
it is valid for t = k .
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General term (solution) of the simple birth process

Proof of Nt = r tdN0:

Base case. We check the formula for t = 0.
Checking: For t = 0 we obtain N0 = r0

dN0 that is true

Induction case.
We assume the formula to be correct for t = k and prove it for t = k + 1
Induction hypothesis: Nk = rkdN0

Thesis: Nk+1 = rk+1
d N0

Proof: From the recurrence relation we have Nk+1 = rdNk . By using the
induction hypothesis we obtain Nk+1 = rdNk = rd(rkdN0) = rk+1

d N0, which
proves the thesis.

Paolo Milazzo (Università di Pisa) CMCS - Discrete Dynamical Systems A.Y. 2019/2020 14 / 42



General term (solution) of the simple birth process

The general term Nt = r tdN0 tells us that the simple birth process gives
rise to an exponential growth of the population over time.

Bacteria Female fish

Paolo Milazzo (Università di Pisa) CMCS - Discrete Dynamical Systems A.Y. 2019/2020 15 / 42



Phase portrait

An alternative way for visualizing the trend of a recurrence relation is
through its phase portrait:

plot of the recurrence relation on the (Nt ,Nt+1) plane

by starting from the point (N0,N0) on the bisector, the other points
can be obtained by “bouncing” on the curve of the recurrence relation

in red the recurrence equation
Nt+1 = 2Nt

in black the bisector
Nt+1 = Nt

Paolo Milazzo (Università di Pisa) CMCS - Discrete Dynamical Systems A.Y. 2019/2020 16 / 42



Linear birth/death model

It is quite simple to extend the recurrence relation of the linear birth model
in order to consider also deaths.

Assume that, on average, a constant fraction sd of the adults die in every
time step δt. The recurrence relation becomes:

Nt+1 = rdNt − sdNt

Note that 0 ≤ sd ≤ 1, since the number of individuals which die cannot be
greater than the number of individuals in the population.
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Linear birth/death model

The recurrence relation can be rewritten as follows:

Nt+1 = (rd − sd)Nt

Let, αd = (rd − sd) be the net growth rate, we obtain:

Nt+1 = αdNt

which is a recurrence relation similar to that of the linear growth model,
but with a rate αd that is a value in [0,+∞).
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Linear birth/death model

Let’s see what happens by varying αd (assume N0 = 10):

First case: αd > 1

for example:
rd = 2
sd = 0.5
αd = 1.5

N0 10

N1 15

N2 22.5

N3 33.75

N4 50.625

N5 75.937

N6 113.906

Every ∆t time units, each parent generates one offspring (rd = 2) and half
of the parents die (sd = 0.5).
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Linear birth/death model

Let’s see what happens by varying αd (assume N0 = 10):

Second case: αd = 1

for example:
rd = 2
sd = 1
αd = 1

N0 10

N1 10

N2 10

N3 10

N4 10

N5 10

N6 10

Every ∆t time units, each parent generates one offspring (rd = 2) and all
of the parents die (sd = 1).
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Linear birth/death model

Let’s see what happens by varying αd (assume N0 = 10):

Third case: αd < 1

for example:
rd = 1.5
sd = 0.9
αd = 0.6

N0 10

N1 6

N2 3.6

N3 2.16

N4 1.296

N5 0.778

N6 0.467

Every ∆t time units, each parent generates (on average) 0.5 offsprings
(rd = 1.5) and 90% of the parents die (sd = 0.9).
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Modeling migration

The birth/death model can be easily extended to take migration into
account.

In the easiest case we assume that the number of migrating individuals is
positive (incoming migration) and constant in time. Then we obtain:

Nt+1 = αdNt + β

with β ≥ 0 describing the constant migration rate: number of individuals
entering the population every ∆t time units.

The general term of this recurrence relation, for t > 0, is:

Nt = αt
dN0 +

t−1∑
i=0

αi
dβ

(can be proved by induction)

Paolo Milazzo (Università di Pisa) CMCS - Discrete Dynamical Systems A.Y. 2019/2020 22 / 42



Modeling migration

Let’s see what happens by varying αd , N0 and β:

First case: αd > 1 (α = 2)

N0 = 5, 20, 50 β = 10 N0 = 20 β = 5, 10, 20

The dynamics is dominated by the birth process (exponential growth)
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Modeling migration

Let’s see what happens by varying αd , N0 and β:

First case: αd = 1

N0 = 5, 20, 50 β = 10 N0 = 20 β = 5, 10, 20

The dynamics is dominated by the migration process (linear growth).
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Modeling migration

Let’s see what happens by varying αd , N0 and β:

First case: αd < 1 (α = 0.5)

N0 = 5, 20, 50 β = 10 N0 = 20 β = 5, 10, 20

The population reaches a dynamic equilibrium: a stable state in which
opposite phenomena compensate each other (migration compensates
deaths) – independent from N0.

Paolo Milazzo (Università di Pisa) CMCS - Discrete Dynamical Systems A.Y. 2019/2020 25 / 42



Modeling migration
Let’s compute the equilibrium value of Nt in the case of dynamic
equilibrium:

At equilibrium we have Nt+1 = Nt . By substituting Nt+1 with Nt in the
recurrence equation we obtain

Nt = αdNt + β

from which we can compute

Nt =
β

1− αd

Indeed, with αd = 0.5 and β = 10, the population reaches

Nt =
10

1− 0.5
= 20

independently from the value of N0 (see previous graphs).
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Interactions and non linear models

The models we have seen so far are linear

Nt+1 = f (Nt) describes a straight line in the (Nt+1,Nt)-plane

Linear models describe systems in which individuals essentially do not
interact

the behavior of each individual does not depend on how many other
individuals are present

An example of non-linear model is the famous logistic equation

it describes birth/death processes in which individuals compete for
environmental resources such as food, place, etc.

Competition for resources is a form of interaction

mediated by the environment
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Lake fish example revisited

Let us recall the female fish example:

Assume that the resources of the lake are limited

it offers enough food and space for a population of K female fish

K is the carrying capacity the environment
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Logistic equation

The logistic equation is defined as follows:

Nt+1 = rdNt

(
1− Nt

K

)

The idea is that the birth rate rdNt is modulated by the ratio of
occupancy of the enviroment Nt

K

when Nt is close to zero, we have a simple birth process with rate rd
(exponential growth)

when Nt increases, the growth tends to stop

Common alternative formulation: Xt+1 = rdXt(1− Xt)

obtained by dividing both terms by K , then by performing the
following variable substitution: Xs = Ns/K

Paolo Milazzo (Università di Pisa) CMCS - Discrete Dynamical Systems A.Y. 2019/2020 29 / 42



Logistic equation
Let’s see what happens with rd = 2, by varying K and N0:

N0 = 10 K = 50, 100, 200 N0 = 10, 30, 60 K = 100

The population reaches a dynamic equilibrium representing the situation in
which environment resources are fully exploited (saturation)

Equilibrium is when Nt+1 = Nt , that is Nt = rdNt

(
1− Nt

K

)
, that is

Nt = K
(

1− 1
rd

)
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Logistic equation and periodic dynamics

It is interesting to see what happens if we increase rd in the logistic
equation.

rd = 2.8 N0 = 10 K = 50

Dynamic equilibrium (after a few oscillations)
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Logistic equation and periodic dynamics

It is interesting to see what happens if we increase rd in the logistic
equation.

rd = 3.1 N0 = 10 K = 50

Sustained oscillations
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Logistic equation and periodic dynamics

It is interesting to see what happens if we increase rd in the logistic
equation.

rd = 3.5 N0 = 10 K = 50

Sustained oscillations with period 4!
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Logistic equation and periodic dynamics

It is interesting to see what happens if we increase rd in the logistic
equation.

rd = 3.8 N0 = 10 K = 50

Sustained oscillations with very high period!
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Logistic equation and periodic dynamics
It is interesting to see what happens if we increase rd in the logistic
equation.

rd = 4 N0 = 10 K = 50

Sustained oscillations with infinite period!

Chaotic (apparently random) dynamics
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Logistic equation and periodic dynamics
This diagram (Feigenbaum’s tree) describes the attractors of the logistic
equation by varying rd .

The number of attractors (and the oscillation period) doubles with an
increasing rate

The distance between consecutive bifurcation points decreases
geometrically: disti/disti+1 ' 4.7 (Feigenbaum’s constant)
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Systems of recurrence relations
So far we considered examples of systems described by a single variable Nt

When more than one variable has to be cosidered, we have to construct a
system of recurrence equations

Let’s consider also males in the fish example

Ft models females and Mt models males

assume a small part of males die because of fights among them
(death rate sd)

We obtain the following system of recurrence equations{
Ft+1 = rdFt

(
1− Ft+Mt

K

)
Mt+1 = rdFt

(
1− Ft+Mt

K

)
− sdMt

where

rdFt is used for both genders since both are generated by females

Ft + Mt describes the whole population size (to be related with the
carrying capacity K )
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Systems of recurrence relations

{
Ft+1 = rdFt

(
1− Ft+Mt

K

)
Mt+1 = rdFt

(
1− Ft+Mt

K

)
− sdMt

This is the dynamics of the system (with Nt = Ft + Mt) is:

rd = 2
K = 100
sd = 0.1
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Implementing recurrence relations

The implementation of (systems of) recurrence relations is quite trivial

It can be done with a spreadsheet or with few lines of code in any
programming language

Suggestion: in the choice of the language, take plotting facilities into
account...

N[0] = 10;

for (int t=0; t<99; t++)

N[t+1] = r*N[t]*(1-N[t]/K);
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Lessons learnt

Summing up:

Recurrence relations can be used to describe dynamical systems
whose state updates at discrete time intervals

I discrete dynamical systems

Recurrent relations are often quite easy to calculate
I they can often be implemented by using a spreadsheet...

Interactions among components of the modeled system lead to
non-linear relations

Even the simplest non-linear relations may lead to chaotic behaviors

Chaos is a complex population behavior which emerges from the
interaction between individuals
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Limitations of discrete dynamical models

Discretization of the system dynamics may introduce inaccuracies

recurrence equations assume that nothing happens during the ∆t
time between Nt and Nt+1

this assumption is ok in some cases (e.g. the bacteria example)

it is an approximation in other cases (e.g. the fish example)

for example, usually, births and deaths can happen at any time

smaller ∆t usually correspond to more accurate approximations

in order to increase accuracy, we should let ∆t tend to 0...
continuous model!
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Exercise
Consider a population of adults and children. Assume that:

the population evolves by discrete steps corresponding to 1 year

α is the net growth rate of adults

every year each adult generates β children

children become adults after 3 years (this can be used to estimate the
rate γ of transformation of children into adults)

children do not die

Define a system of recurrence equations to model this adults/children
population.

Think about reasonable parameters:

in which cases the population exhibits exponential growth, dynamic
equilibrium and extinction?

is dynamic equilibrium independent from the initial values of the
variables?
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