Timed P Automata

Roberto Barbuti¹ Andrea Maggiolo Schettini¹ Paolo Milazzo¹ Luca Tesei²

1. Dipartimento di Informatica, Università di Pisa, Italy

2. Dipartimento di Matematica e Informatica, Università of Camerino, Italy

Iași – September, 2008

Introduction

We are interested in modeling ecological systems

Recently, a model based on P systems of a population of Vultures of the Catalan Pyrenees has been studied

We would like to build models that can describe periodical changes in the environmental conditions

- seasons
- periodical hunt/harvest

We shall consider timed P systems and allow evolution rules to be changed when conditions on the elapsing of time are satisfied

Outline of the talk

- Introduction
- 2 Background
 - P systems
 - timed P systems
 - timed automata
- Timed P automata
 - example
 - formal definition
- 4 An application
 - modeling saddleback reintroduction

P systems

A P system consists of a hierarchy of membranes, each of them containing

- a multiset of objects
- and a set of evolution rules

Evolution rules are applied with *maximal parallelism* to objects of the same membrane

The application of evolution rules of different membranes is synchronized by a global clock

Evolution rules can send objects into (immediately) outer and inner membranes

P systems

Outline of the talk

- Introduction
- 2 Background
 - P systems
 - timed P systems
 - timed automata
- Timed P automata
 - example
 - formal definition
- 4 An application
 - modeling saddleback reintroduction

Timed P systems

Defined by Cavaliere and Sburlan

Each evolution rule is enriched with a natural number representing the time (number of steps) needed by the rule to be enterely executed

When a rule with time n is applied

- consumed objects are immediately removed
- produced objects appear after n steps

Semantically, for each application of an evolution rule $u \xrightarrow{n} v$ in membrane i, a pending rule $\xrightarrow{n-1}_i v$ is created. At each step:

- every $\xrightarrow{k}_i v$ with k > 1 becomes $\xrightarrow{k-1}_i v$
- every $\xrightarrow{1}_i v$ is deleted and objects v are added to the content of membrane i

Example of timed P system

A timed P system computing the least common multiple of n_1 and n_2 .

Running the example

Let $n_1 = 4$ and $n_2 = 6...$

Timed P systems: definition

Definition A timed P system Π is a tuple

$$\langle V, \mu, w_1, \ldots, w_m, R_1, \ldots, R_m \rangle$$

where

- V is an alphabet whose elements are called objects.
- μ is a membrane structure consisting of a hierarchy of m membranes labelled by $1, 2, \ldots, m$. The skin membrane is labelled by 1.
- w_i (i = 1, 2, ..., m) is a string of V^* representing a multisets of objects enclosed in membrane i.
- R_i (i = 1, 2, ..., m) is a finite set of *timed evolution rules* associated with the membrane i. The rules are of the form $u \xrightarrow{n} v$, $n \in \mathbb{N}, u \in V^+$, and $v \in \{a_{here}, a_{out}, a_{in_i} \mid a \in V, 1 \leq j \leq m\}^*$.

Timed P systems: definition

Definition A multiset of pending rules \mathcal{U} is a multiset of elements of the form $\stackrel{k}{\longrightarrow}_i v$, with k>0

Definition A *configuration* is a pair (Π, \mathcal{U}) where Π is a timed P system and \mathcal{U} is a multiset of pending rules

A computation performed by a timed P system Π can be described as a sequence of steps between configurations

• the initial configuration is (Π,\varnothing)

A step of a timed P system

Definition A configuration (Π, \mathcal{U}) can perform a *timed P step* $\xrightarrow{1}$ to a configuration (Π', \mathcal{U}') if and only if:

- Π' is a timed P system resulting from an evolution step of Π using maximal parallelism, where:
 - ▶ the effects of the rules $u \xrightarrow{1} v$ are visible in Π' , i.e., the reactants have disappeared and the products of the rules are available
 - ▶ the effects of the rules $u \xrightarrow{n} v$ with n > 1 are half visible in Π' . More precisely, the reactants have disappeared, but the products are not yet available
 - ▶ for every element $\xrightarrow{1}_{i} v$ in \mathcal{U} , the objects v are added to membrane i;
- \bullet \mathcal{U}' is the multiset union of
 - ▶ the multiset of all elements $\xrightarrow{k-1}_i v$ derived from all elements $\xrightarrow{k}_i v$, k > 1, in \mathcal{U} ; and
 - ▶ the multiset of all elements $\xrightarrow{n-1}_i v$, n > 1, representing that an instance of a timed evolution rule $u \xrightarrow{n} v \in R_i$, for some i, has been fired in the evolution step of Π .

Outline of the talk

- Introduction
- 2 Background
 - P systems
 - timed P systems
 - timed automata
- Timed P automata
 - example
 - formal definition
- 4 An application
 - modeling saddleback reintroduction

Timed automata

We shall extend timed P systems with features from timed automata

A timed automaton is a finite state automaton extended with:

- clocks
- transitions enriched with conditions on the value of clocks and with clock reset actions
- state invariants

Outline of the talk

- Introduction
- 2 Background
 - P systems
 - timed P systems
 - timed automata
- Timed P automata
 - example
 - formal definition
- 4 An application
 - modeling saddleback reintroduction

Timed P automata

A timed P automaton is a timed automaton with a discrete time domain in which each location is associated with a timed P system

• all timed P systems must have the same membrane structure

A computation starts in the timed P system associated with the inital location of the automaton

• after each step, clocks are increased by one

When clocks reach values that satisfy the constraint of an outgoing transition, such a transition might be fired

- the computation in the current location is stopped
- objects are moved to the location reached by the transition (in the corresponding membranes)
- some objects might be added to/removed from the skin membrane

An example of timed P automaton

The Ancient Egyptian multiplication algorithm (2000 B.C.)

$d \leftarrow 0$		
while $(a \neq 0)$	a	b
if (a is even) $a \leftarrow a/2$	35 + 17 +	42 84
$b \leftarrow b * 2$	8	168
else	4	336
$d \leftarrow d + b$	2	672
$\mathbf{a} \leftarrow \lfloor \mathbf{a} / 2 \rfloor$	1 +	1344
$b \leftarrow b * 2$		
endif	d	1470
endwhile		

Example: 5×3 (step 0)

Clock x = 0, pending rules $\mathcal{U} = \emptyset$

Example: 5×3 (step 1)

Clock x = 1, pending rules $\mathcal{U} = \emptyset$

Example: 5×3 (step 2)

Clock x = 0, pending rules $\mathcal{U} = \emptyset$

Example: 5×3 (step 3)

Clock x = 1, pending rules $\mathcal{U} = \{ \xrightarrow{1} aa, \xrightarrow{1} aa \}$

Example: 5×3 (step 4)

Clock x = 1, pending rules $\mathcal{U} = \{ \xrightarrow{1} aa, \xrightarrow{1} aa \}$

Example: 5×3 (step 5)

Clock x = 2, pending rules $\mathcal{U} = \emptyset$

Example: 5×3 (step 6)

Clock x = 0, pending rules $\mathcal{U} = \emptyset$

Example: 5×3 (step 7)

Clock x = 1, pending rules $\mathcal{U} = \emptyset$

Example: 5×3 (step 8)

Clock x = 0, pending rules $\mathcal{U} = \emptyset$

Example: 5×3 (step 9)

Clock x = 1, pending rules $\mathcal{U} = \emptyset$

Example: 5×3 (step 10)

Clock x = 0, pending rules $\mathcal{U} = \emptyset$

Example: 5×3 (step 11)

Clock x = 1, pending rules $\mathcal{U} = \{ \xrightarrow{1} aa \}$

Example: 5×3 (step 12)

Clock x = 1, pending rules $\mathcal{U} = \{ \xrightarrow{1} aa \}$

Example: 5×3 (step 13)

Clock x = 2, pending rules $\mathcal{U} = \emptyset$

Example: 5×3 (step 14)

Clock x = 0, pending rules $\mathcal{U} = \emptyset$

Example: 5×3 (step 15)

Clock x = 1, pending rules $\mathcal{U} = \emptyset$

Example: 5×3 (step 16)

Clock x = 0, pending rules $\mathcal{U} = \emptyset$

Example: 5×3 (step 17)

Clock x = 1, pending rules $\mathcal{U} = \emptyset$

Example: 5×3 (step 18)

Example: 5×3 (step 19)

Example: 5×3 (step 20)

Example: 5×3 (step 21)

Example: 5×3 (step 22)

Example: 5×3 (step 23)

Example: 5×3 (step 24)

Example: 5 x 3 (step 25 - THE END)

Outline of the talk

- Introduction
- 2 Background
 - P systems
 - timed P systems
 - timed automata
- Timed P automata
 - example
 - formal definition
- 4 An application
 - modeling saddleback reintroduction

Timed P automata: definition

Definition A timed P automaton is a tuple

$$T = \langle Q, \Sigma, q_0, \mathcal{E}, \mathcal{X}, F, \mathcal{R}, Inv \rangle$$

where:

- Q is a finite set of locations
- ullet Σ is a finite alphabet of symbols
- q₀ is the initial location
- ullet is a finite set of edges
- \bullet \mathcal{X} is a finite set of clocks
- $F = \langle V, \mu \rangle$ is a *timed P frame*: it contains the alphabet and the membrane structure shared by all the timed P systems
- ${\cal R}$ is a function assigning to every $q \in Q$ a set of sets of timed evolution rules
- Inv is a function assigning to every $q \in Q$ an invariant

Timed P automata: definition

Each edge is a tuple $(q, \psi, u, \gamma, \sigma, v, q')$ where:

- q is the source location
- ullet ψ is the clock constraint
- *u* are the objects removed from the skin membrane
- \bullet γ is the clock reset set
- \bullet σ is a label (optional can be used to accept languages)
- v are the objects added to the skin membrane
- q' is the target location

A *state* of execution of a timed P automaton is a tuple $\langle q, \nu, \Pi, \mathcal{U} \rangle$, where:

- q is a location
- ullet ν is a clock valuation
- Π is the executing timed P systems
- ullet $\mathcal U$ is a multiset of pending rules

Timed P automata: semantics

The behaviour of a timed P automaton is described by the labelled transition system given by the following rules:

T1
$$\frac{\nu + 1 \models \mathit{Inv}(q) \quad (\Pi, \mathcal{U}) \xrightarrow{1} (\Pi', \mathcal{U}')}{\langle q, \nu, \Pi, \mathcal{U} \rangle \xrightarrow{1} \langle q, \nu + 1, \Pi', \mathcal{U}' \rangle}$$

T2
$$\begin{aligned}
\Pi &= \langle V, \mu, w_1, w_2, \dots, w_m, \mathcal{R}(q) \rangle \\
(q, \psi, u, \gamma, \sigma, v, q') &\in \mathcal{E}, \quad \nu \models \psi, \quad u \subseteq w_1 \quad w'_1 = (w_1 \setminus u) \cup v \\
\hline
\Pi' &= \langle V, \mu, w'_1, w_2, \dots, w_m, \mathcal{R}(q') \rangle \\
\hline
\langle q, \nu, \Pi, \mathcal{U} \rangle \xrightarrow{\sigma} \langle q', \nu \setminus \gamma, \Pi', \mathcal{U} \rangle
\end{aligned}$$

Timed P automata: results

A computation of a timed P automaton is valid (gives an output) only if

- the automaton reaches a location that is never left
- the timed P system associated with such a location halts
- the multiset of pending rules is empty

The output is the multiset of objects left in the skin membrane

Timed P automata are universal (they allow cooperative rules to be used)

- We have proved that one membrane, one bi-stable catalist and an alphabet with only one symbol (apart from the catalist) is enough to get universality
- It would be interesting to check whether universality holds with non-cooperative rules

Outline of the talk

- Introduction
- 2 Background
 - P systems
 - timed P systems
 - timed automata
- Timed P automata
 - example
 - formal definition
- 4 An application
 - modeling saddleback reintroduction

The saddleback

We have found a model for guiding the reintroduction of extirpated birds in New Zealand mainland.

• The model is derived from the observation of the population of Saddleback birds (*Philesturnus rufusater*) on Mokoia Island

Description of the model

The model we have found:

- is a stochastic, discrete-time female-only model (the female-only approach assumes that there are sufficient males for all females to be paired)
- females are partitioned in two classes (first-year and older) with different fecundity rates (#fledgings/season)
- an annual harvest of females is scheduled, with harvesting taking place at the start of breeding season.

A timed P automaton model

Conclusion

We have defined an extension of timed P system in which evolution rules may vary with time

timed P systems + timed automata = timed P automata

Our aim was to define a formalism to model ecological systems

Future work includes:

- the development of a (stochastic) simulator
- the application to some case study
- further investigation of the computational capabilities