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Our aim...

At the beginning of our work our aim was to try to apply formal methods
to models of biological systems

We were looking for a formalism
@ based on term rewriting
@ with a simple semantics

@ very general

As a consequence, we defined the Calculus of Looping Sequences (CLS)...
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The Calculus of Looping Sequences (CLS)

We assume an alphabet £. Terms T and Sequences S of CLS are given
by the following grammar:

T =S | ST | 1|7
S =€ ‘ a | S-S
where a is a generic element of £, and € is the empty sequence.

The operators are:
5.5 : Sequencing

(S)L : Looping (S is closed and it can rotate)
T1 | T» : Containment ( Ty contains T3)
T|T : Parallel composition (juxtaposition)

Actually, looping and containment form a single binary operator (S)LJ T.
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Examples of Terms

(2) (2]
: IO P8
0) (i) e (iif) e

(<) (<) G

(i) (a-b-c)LJe
(i) (a-b-c)'](d-e)" Je
i)y (a-b-c) | (F-g|(d-e) e
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Structural Congruence

The Structural Congruence relations

congruence relations on sequences and
the following rules:

=g and =7 are the least
on terms, respectively, satisfying

S$51:(5:53)=5(51-5)S3 S e=5¢-5=5S

Ti|To=rTo|Ti Ti|(T2| T3)=7(T1| T2) | T3
Tle=r T (5-5)" ) T=r(S%-S)")T

We write = for =7.
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CLS Patterns

Let us consider variables of three kinds:
@ term variables (X,Y,Z,...)
@ sequence variables (x,y,z,...)

@ element variables (x,y, z,...)

Patterns P and Sequence Patterns SP of CLS extend CLS terms and
sequences with variables:

P u=5SP | (PP | PIP | X
SP::ze‘alSP-SP|X|}

where a is a generic element of £, ¢ is the empty sequence, and x,x and X
are generic element, sequence and term variables

The structural congruence relation = extends trivially to patterns
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Rewrite Rules

A Rewrite Rule is a pair (P, P’), denoted P — P’, where:
@ P, P’ are patterns

@ variables in P’ are a subset of those in P

A rule P — P’ can be applied to all terms that are instantiations of P.

Example: a-x-a— b-x-b
@ can be applied to a- ¢ - a (producing b - c - b)
@ cannot be appliedtoa-c-c-a

Example: (a-%)" ] (b X) — (c-x)" ] X
@ can be applied to (a~a'a)LJ (b]b]| (a)LJ b)
o the result is either (c-a- a)LJ (b (a)LJ b) or

(a-a-a)" | (b b](c)" e
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Formal Semantics

Po denotes the term obtained by replacing any variable in T with the
corresponding term, sequence or element.

> is the set of all possible instantiations o

Given a set of rewrite rules R, evolution of terms is described by the
transition system given by the least relation — satisfying

P— P eR Po # ¢ ceEX
Po — P'o

T—T T—T
T =TT (557 (5] T

and closed under structural congruence =.
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CLS modeling examples: the /ac operon (1)

I l . p\ 0\ z . y . a |
| | | |
mRNA —
| | | |
lac Repressor beta-gal. permease transacet.
| 1 | p [} z | y | a

TR | | !

TRANSCRIPTION
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CLS modeling examples: the /ac operon (2)
Ecoli ::= (m)L | (lacl - lacP - lacO - lacZ - lacY - lacA | polym)

Rules for DNA transcription/translation:

lacl - X + lacl” - X | repr (R1)
polym | x-lacP-y +— x-PP-y (R2)
X-PP-lacO-y +— x-lacP- PO -y (R3)
x-PO-lacZ-y —Xx-lacO-PZ-y (R4)
X-PZ-lacY -y — Xx-lacZ-PY -y | betagal (R5)
Xx-PY -lacA — X -lacY - PA| perm (R6)
(R7)

X -PA +— X lacA| transac | polym
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CLS modeling examples: the /ac operon (3)
Ecoli ::= (m)L | (lacl - lacP - 1acO - lacZ - lacY - lacA | polym)

Rules to describe the binding of the lac Repressor to gene o, and what
happens when lactose is present in the environment of the bacterium:

repr | x-lacO-y — x-RO -y (R8)
LACT | (m-%)" | X = (m-%)" | (X | LACT) (R9)
X-RO-y | LACT % -lacO -y | RLACT (R10)

(x ) (perm | X) — (permi?)LJ X (R11)
LACT | (perm - %) | X — (perm-%)" | (LACT | X)  (R12)
betagal | LACT +— betagal | GLU | GAL (R13)
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CLS modeling examples: the lac operon (4)

Ecoli ::= (m)L | (lacl - lacP - 1acO - lacZ - lacY - lacA | polym)

Example:

Ecoli| LACT|LACT

) (lacl” - lacP - lacO - lacZ - lacY - lacA | polym | repr)|LACT|LACT

ok

) (lacl’ - lacP - RO - lacZ - lacY - lacA | polym)|LACT|LACT

*

=" (m
(m
— (m) (lacl” - lacP - lacO - lacZ - lacY - lacA|polym|RLACT)|LACT
(
(

_)*

perm - m) | (lacl’—A|betagal|transac|polym|RLACT)|LACT

¥

perm - m) | (lacl’—A|betagal|transac|polym|RLACT |GLU|GAL)
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Outline of the talk
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Bisimulations

Bisimilarity is widely accepted as the finest extensional behavioral
equivalence one may impose on systems.

@ Two systems are bisimilar if they can perform step by step the same
interactions with the environment.

@ Properties of a system can be verified by assessing the bisimilarity
with a system known to enjoy them.

Bisimilarities need semantics based on labeled transition relations
capturing the potential interactions with the environment.

@ In process calculi, transitions are usually labeled with actions.

@ In CLS labels are contexts in which rules can be applied.
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Labeled semantics

The idea: There is a (labeled) transition between terms T and T’ if there

exists a context C such that a rewrite rule can be applied to C[T] with T’
as result.

@ C is used as transition label

@ C must not provide the whole left hand side of the applied rewrite rule

An example: Let R={ a|b — c |, (d)LJCH(d)LJe }

a
O] b
L
0 (d)F]0 .
alb > > (d)"]e
V
b
Bertinoro — September, 2008
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Labeled semantics
Contexts C are given by the following grammar:
c:=0 | ¢|T | Tlc | (5")c

where T € 7 and S € §. Context O is called the empty context.

Given a set of rewrite rules R C R, the labeled semantics of CLS is the
labeled transition system given by the following inference rules:

PP eR C[T"|=Po T'#e¢ ocx CeC
(rule_appl)

TS Plo
o -, c -
T—T T—=T CeCp
(cont) - 5 - (par) c
S) JT= (5 | T T|T"=T|T"

where Cp are contexts that do not include (S)L | C and the dual version
of the (par) rule is omitted.
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Bisimulations in CLS (1)

A binary relation R on terms is a strong bisimulation if, given T1, T>
such that T1RT>, the two following conditions hold:

o Ty S T/ = 3T, st. T, S Tiand T/RT}

o T, 5 T = AT st. Ty S T and TLRTY.

The strong bisimilarity ~ is the largest of such relations.

A binary relation R on terms is a weak bisimulation if, given Ty, T»
such that T1RT>, the two following conditions hold:

o T & 7! — 3T, st. T, == Thand T{RT}
o T, & T} = 3T st. Ty == T/ and TLRTY.

The weak bisimilarity = is the largest of such relations.

Theorem: Strong and weak bisimilarities are congruences.
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Bisimulations in CLS (2)

Consider the following set of rewrite rules:
R={ a|b—c , d|b—e , e—e , c—e , f—a }
We have that a ~ d, because

Oyb O O

a
a——C—€—€— ...

Ob O O
d— e —e—...

and f ~ d, because

O b O O O
f - a—c—e—e—...

On the other hand, f 4 e and f % e.

O g |

e—e—€e— ...
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Bisimulations in CLS (3)

Let us consider systems (T, R)...

A binary relation R is a strong bisimulation on systems if, given
(Tl,Rl) and (T2,R2) such that (Tl,Rl)R( TQ,Rz):

o Ry :T1 S T/ = 3T)st. Ra: To S T, and (TL,R1)R(TL, R2)
o Ry:Tr S T = 3T]st. Ry: T1 S T/ and (R, TH)R(R1, TY).

The strong bisimilarity on systems ~ is the largest of such relations.

A binary relation R is a weak bisimulation on systems if, given
(Tl,Rl) and (T2,R2) such that (Tl,Rl)R(TQ,Rz):

o Ri:T1 S T/ = 3T)st. Ry: Ta == T} and (T/,R1)R(T} Ra2)
o Ry To S T) = 3T/ st. Ry: T1 == T/ and (T4, R2)R(T!, Ry)

The weak bisimilarity on systems == is the largest of such relations.

Strong and weak bisimilarities on systems are NOT congruences.
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Bisimulations in CLS (4)
Consider the following sets of rewrite rules

Ri={a| b~ c} Ro={ald—c, ble— c}
We have that (a, R1) ~ (e, R2) because

Olb Ob
Rl:a—‘>c Rg:e—|>c

and (b, R1) =~ (d, R3), because

Rl b % C R2 o d % C
but (a| b,R1) % (e | d,R2), because

RitalbDc  Rpield
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Applying bisimulations to the /ac operon (1)

By using the weak bisimilarity on systems we can prove that from the state
in which the repressor is bound to the DNA we can reach a state in which
the enzymes are synthesized only if lactose appears in the environment.

We replace rule
X-RO-y | LACT — x-lacO-y | RLACT (R10)
with

(W)" | (x- RO -y | LACT | X) | START —
(W)" | (X-1acO -y | RLACT | X)  (R10bis)
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Applying bisimulations to the /ac operon (2)

The obtained model is weakly bisimilar to (71, R) where R is

Ty | LACT — T» (R T, | START — T3 (R3)
T, | LACT — T» (R2) T3 | LACT — T3 (R4

that is a system satisfying the wanted property.

O| LACT O| LACT
O| LACT (75 | STARTO
T1 — T2 > TS
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Background: Gillespie's simulation algorithm

@ represents a chemical solution as a multiset of molecules

@ each chemical reaction is associated with a kinetic constant

@ computes the reaction rate a,, by multiplying the kinetic constant by
the number of possible combinations of reactants

Example: chemical solution with X; molecules S; and X, molecules S»

reaction R; : 51 + S, — 25; rate a; = ()il) ()52) ki = X1 Xok
reaction R : 251 — 51+ S5 rate a, = (>§1)k2 = sz
Given a set of reactions {Ry,... Ry} and a current time t

@ The time t 4+ 7 at which the next reaction will occur is randomly
chosen with 7 exponentially distributed with parameter Zyzl ay;
@ The reaction R, that has to occur at time t + 7 is randomly chosen

. e ap
with probability S o

At each step t is incremented by 7 and the chemical solution is updated.
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Stochastic CLS (1)

Stochastic CLS incorporates Gillespie's stochastic framework into the
semantics of CLS

@ Rewrite rules are enriched with kinetic constants

What is a reactant in Stochastic CLS?

@ A reactant combination is an occurrence (up to =) of a left hand side
of a rewrite rule

Example: The application rate of a | b X ctoa |alal|b|bis 6k

Example: The application rate of (a-?)LJ (b| X) LS (c-})LJ X to
(a-a-a)LJ (b b) | (a-a)LJ bis

e 6k, with (c‘a-a)LJ b| (a-a)LJ b as result

e + 2k, with (a-a-a)LJ (b]|b) | (c-a)LJ € as result

o = 8k
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Stochastic CLS (2)

Given a finite set of stochastic rewrite rules R, the semantics of Stochastic

: . . RT,rb L
CLS is the least transition relation ——2 closed wrt = and satisfying by
the following inference rules:

P R,T,r,b
R:PL— PrReR oc€eX T —=T
R,P o,k-comb(P;,0),1 R,T,r,b-binom(T,Ty,T3)
P[_O' PRO' T1 | T3 T2 | T3
R, T,r,b R, T,r,b
T —— T T —— T

(TL)L | T R(T)" ] Tsirb1, (T2)L | T (Ts)L | T R(T) ] Tuorb1, (Ts)L | T

The transition system obtained can be easily transformed into a
Continuous Time Markov Chain

Paolo Milazzo (Universita di Pisa) The Calculus of Looping Sequences Bertinoro — September, 2008 27 / 50



A Stochastic CLS model of the /ac operon (1)

a)

Paolo Milazzo (Universita di Pisa)

L
© O O

beta-gal. permease transacet.

| [ |

TRANSCRIPTION
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A Stochastic CLS model of the /ac operon (2)

Transcription of DNA, binding of lac Repressor to gene o, and interaction
between lactose and lac Repressor:

0.0

N

lacl - x = lacl - x | Irna (S1)

Irna 23 Imna | repr (S2)

polym | X-lacP -y 23 %-PP.y (S3)
x-PP.y s polym | x - lacP -y (S4)
X-PP-lacO -y 20 polym | Rna | x - lacP - lacO -y (S5)
Rna 23 Rna | betagal | perm | transac (S6)
repr | % -1acO -y 3% - RO -y (S7)
%-RO-y %% repr|x-lacO -y (S8)

repr | LACT %%° RLACT (S9)
RLACT 3 repr | LACT (510)
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A Stochastic CLS model of the /ac operon (3)

The behaviour of the three enzymes for lactose degradation:

(?)LJ (perm | X) i (perm - Q)L | X (S11)
LACT | (perm-3)" | X %% (perm-%)" | (LACT|X) (512)
betagal | LACT %% petagal | GLU | GAL (S13)

Degradation of all the proteins and mRNA involved in the process:

perm %' ¢ (S14) betagal "% ¢ (S15)
transac 3 € (S16) repr 022 ¢ (S17)

Ima % ¢ (518) Rna 2 ¢ (S19)
RLACT °%%* LACT  (S20)
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Simulation results (1)

50 T T T T T T T
betagal
perm
perm on membrane -
40 .
%]
<
[}
E 30F -
<
[}
S
g 20f
£
>
z
10 f
0 L
0 500 1000 1500 2000 2500 3000 3500

Time (sec)
Production of enzymes in the absence of lactose
(m)L | (lacl — A | 30 x polym | 100 x repr)
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Simulation results (2)

50 T T T T

betagal
perm
perm on membrane -

Number of elements

ol . ; [ 0 -
o '-'J#ﬁ R LM A i
0 500 1000 1500 2000 2500 3000 3500
Time (sec)

Production of enzymes in the presence of lactose
100 x LACT | (m)LJ (lacl — A | 30 x polym | 100 x repr)
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Simulation results (3)

120 T T T T T T T
LACT (env.) ——
LACT (inside)
GLU
100

80

60

Number of elements

40

20

0 200 400 600 800 1000 1200 1400 1600 1800
Time (sec)

Degradation of lactose into glucose
100 x LACT | (m)LJ (lacl — A | 30 x polym | 100 x repr)
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Spatial CLS

The spatial organization of elements may affect system dynamics
@ reaction-diffusion system

@ molecular crowding

We developed Spatial CLS by extending the Calculus of Looping Sequeces

Elements of Spatial CLS are spheres in a continuous space
@ the containment hierarchy is reflected in the spheres
@ elements can move autonomously

@ interactions can depend on the spatial information of elements
(position, radius, ecc.)

@ rewrite rules are endowed with rates
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Example of Spatial CLS term

L
T=(a) [(1,2),m],0.5 | ((b-c d).,oA5)[(4,3),m2],2 J (a) [(~1,0),ms],0.5
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Rewrite rules

R: [f] P Pg

k : reaction rate
fo : application constraints

@ takes into account the spatial information of involved elements
(eg. position, radius, ecc.)

Example

0.8

[dist(p,a) <51 () pyn | (Pigarn = (€)ieta mp

Paolo Milazzo (Universita di Pisa) The Calculus of Looping Sequences Bertinoro — September, 2008 37 / 50



Resolving space conflicts

(& (&5

Elements push each other
@ the pushing effect is modeled with a system of differential equations

@ the rearranged state corresponds to its equilibrium state
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Modeling cell proliferation

Initial state of the system:

T= (b)~L,5oJ ('")[L(o,o),ml],loJ ()" (crgi-ggs|crgses)

: the available space

b) o
L

(
@ ° (m) [(0,0),m],10 : the membrane of the cell
(

L
n)" : the nucleus

@ cr-...: the chromosomes
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Rewrite rules modeling the behavior

L 0.33
Ri:[r=7] (m)[p,f],rJ X = (m)[p,f],IOJ X

Re:[r=10] (m)[Lp,f],rJ X0 (m)[Lp,f],14J X

Re:ilr=14] (mpq, ) (05 1X) 2 (m)p 0, 1 ()" ) X)
Ry : (nawp)" | (cr % | X)°%E° (naup)" | (2er -5 | X)

Rs : (ndup)LJ (2cr - x| 2cr-y) QL7
(n)LJ (cr-x|cr-y) | ( )LJ (cr-x|cr-y)

Ro: (M) ) (M5 1XT ()" ) Y)

L L L L
(m)[(X—5,Y)7f]:7J (n) J X | (m) [(X-|-5,y),f],7J (n) J Y
e e R Y



Simulation
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Simulation
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Simulation
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Simulation
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Simulation
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Simulation
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Simulation
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A model checker for Stochastic CLS

As candidate model checkers we have considered:
e PRISM
@ Murphi
@ PMaude

All of them are probabilistic/stochastic model checkers

PMaude is the most suitable

@ It uses a language based on rewrite rules (rewrite logic) that eases the
translation of Stochastic CLS rules

Unfortunately, the model checking module of PMaude seems not to be
available

@ a possible alternative: Real-Time Maude
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Real-Time Maude

Maude is a specification language equipped with efficient analysis tools,
which supports three modelling paradigms:

@ algebraic style (via equations)
e rewrite logic (via rewrite rules)

@ object oriented (via classes and messages)

Real-Time Maude extends Maude with a notion of time

@ rewrite rule applications might consume (a fixed amount of) time

Real-Time Maude has two kinds of rules
@ istantaneous rules:
crl [1] : t => t’ if cond
@ tick rules:
crl [1] : t => t’ in time 7 if cond
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Translation of Stochastic CLS into Real-Time Maude

Real-Time Maude is not stochastic

e we will include Gillespie's simulation algorithm (slightly changed) in
the translation of Stochastic CLS models

@ it will be used to generate single executions of the model

@ Real-Time Maude analysis tools will be applied to the simulation
results

This is statistical model checking

@ we loose exhaustivity (properties are checked on a number of runs)
@ huge systems could be handled

Paolo Milazzo (Universita di Pisa) The Calculus of Looping Sequences Bertinoro — September, 2008 45 / 50



Translation of Stochastic CLS into Real-Time Maude

T =S | T | T|IT
= € ‘ a | S-S

wn
|

(omod CLS is
pr NAT
sorts Elem Seq Term Loop
subsorts Elem < Seq < Term

op empty : -> Seq [ctor]
op -.- : Seq Seq —> Seq
[assoc gather (E e) id: empty ctor]
op ‘[-‘]LContains‘[_‘] : Seq Term -> Term
[prec 41 gather (& &) ctor]
op |- : Term Term -> Term

[assoc comm prec 45 gather (E e) id: empty ctor]
endom)
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Translation of Stochastic CLS into Real-Time Maude

Lotka reactions as Stochastic CLS rules

$$2s51s 5% 508 5 8

rl [ S1]

<0 : CLSTerm | term : (T | S1), mu : 1, step : 4 >
=>

<0 : CLSTerm | term : (T | S1 | S1), step : 5 >
rl [ S2 ]

<0 : CLSTerm | term : (T | S1 | S2), mu : 2, step : 4 >
=>

<0 : CLSTerm | term : (T | S2 | S2), step : 5 >
rl [ 83 1]

<0 : CLSTerm | term : (T | S2), mu : 3, step : 4 >
=>

<0 : CLSTerm | term : T, step : 5 >
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Analysis example: statistical model checking

Initialisation of 100 stochastic simulations

rl [ initialisel ]
< step : 0>
=>
< seed : random(1l), step : 1 >

rl [ initialisel00 ]
< step : 0>
=>
< seed : random(100), step : 1 >

Paolo Milazzo (Universita di Pisa) The Calculus of Looping Sequences Bertinoro — September, 2008 48 / 50



Analysis example: statistical model checking

Verification of properties espressed as LTL formulas. Some state formulas:
vanished(T) indicates that term T has vanished from the system,

IsLessThan(T,T") indicates that the occurences of term T are less than
the occurences of T'.

Starting with 4 x 51 and 4 x S, we prove
o that Sy will eventually disappear (i.e. Ovanished(S,))
@ that the amount of S, will eventually become less than the amount of
Sy (i.e. OlsLessThan(S5,,51))

(mc INIT({S1}4 | {S2}4) |=t <> vanished(S2) in time<=1 .)

Result Bool : true

(mc INIT({S1} 4 | {S2} 4) |=t <> IsLessThan(S2,S1) in time<=1 .)

Result Bool : true
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