The Calculus of Looping Sequences

Paolo Milazzo

Dipartimento di Informatica, Università di Pisa, Italy

Bertinoro - September, 2008

Our aim...

At the beginning of our work our aim was to try to apply formal methods to models of biological systems

We were looking for a formalism

- based on term rewriting
- with a simple semantics
- very general

As a consequence, we defined the Calculus of Looping Sequences (CLS)...

Outline of the talk

- Introduction
- 2 The Calculus of Looping Sequences (CLS)
 - Definition of CLS
 - The *lac* operon in CLS
- Bisimulations in CLS
 - A labeled semantics for CLS
 - Bisimulations in CLS
 - Bisimulations applied to the CLS model of the lac operon
- 4 Stochastic CLS
- Ongoing work
 - Spatial CLS
 - Translation of Stochastic CLS into Maude
- 6 References

The Calculus of Looping Sequences (CLS)

We assume an alphabet \mathcal{E} . **Terms** T and **Sequences** S of CLS are given by the following grammar:

$$T ::= S \mid (S)^{L} \rfloor T \mid T \mid T$$

$$S ::= \epsilon \mid a \mid S \cdot S$$

where a is a generic element of \mathcal{E} , and ϵ is the empty sequence.

The operators are:

 $S \cdot S$: Sequencing

 $(S)^{L}$: Looping (S is closed and it can rotate)

 $T_1 \mid T_2$: Containment $(T_1 \text{ contains } T_2)$

T|T: Parallel composition (juxtaposition)

Actually, looping and containment form a single binary operator $\left(\mathcal{S}\right)^{L} \ \ \mathcal{T}$.

Examples of Terms

(i)
$$(a \cdot b \cdot c)^L \rfloor \epsilon$$

(ii)
$$(a \cdot b \cdot c)^L \rfloor (d \cdot e)^L \rfloor \epsilon$$

(iii)
$$(a \cdot b \cdot c)^{L} \rfloor (f \cdot g \mid (d \cdot e)^{L} \rfloor \epsilon)$$

Structural Congruence

The **Structural Congruence** relations \equiv_S and \equiv_T are the least congruence relations on sequences and on terms, respectively, satisfying the following rules:

$$S_{1} \cdot (S_{2} \cdot S_{3}) \equiv_{S} (S_{1} \cdot S_{2}) \cdot S_{3} \qquad S \cdot \epsilon \equiv_{S} \epsilon \cdot S \equiv_{S} S$$

$$T_{1} \mid T_{2} \equiv_{T} T_{2} \mid T_{1} \qquad T_{1} \mid (T_{2} \mid T_{3}) \equiv_{T} (T_{1} \mid T_{2}) \mid T_{3}$$

$$T \mid \epsilon \equiv_{T} T \quad (S_{1} \cdot S_{2})^{L} \mid T \equiv_{T} (S_{2} \cdot S_{1})^{L} \mid T$$

We write \equiv for $\equiv_{\mathcal{T}}$.

CLS Patterns

Let us consider variables of three kinds:

- term variables (X, Y, Z, \ldots)
- sequence variables $(\widetilde{x}, \widetilde{y}, \widetilde{z}, ...)$
- element variables (x, y, z, ...)

Patterns P and **Sequence Patterns** SP of CLS extend CLS terms and sequences with variables:

$$P ::= SP \mid (SP)^{L} \rfloor P \mid P \mid P \mid X$$

$$SP ::= \epsilon \mid a \mid SP \cdot SP \mid x \mid \widetilde{x}$$

where a is a generic element of \mathcal{E} , ϵ is the empty sequence, and x, \widetilde{x} and X are generic element, sequence and term variables

The structural congruence relation \equiv extends trivially to patterns

Rewrite Rules

A **Rewrite Rule** is a pair (P, P'), denoted $P \mapsto P'$, where:

- \bullet P, P' are patterns
- ullet variables in P' are a subset of those in P

A rule $P \mapsto P'$ can be applied to all terms that are instantiations of P.

Example: $a \cdot x \cdot a \mapsto b \cdot x \cdot b$

- can be applied to $a \cdot c \cdot a$ (producing $b \cdot c \cdot b$)
- cannot be applied to $a \cdot c \cdot c \cdot a$

Example:
$$(a \cdot \widetilde{x})^L \rfloor (b \mid X) \mapsto (c \cdot \widetilde{x})^L \rfloor X$$

- can be applied to $(a \cdot a \cdot a)^L \rfloor (b \mid b \mid (a)^L \rfloor b)$
- the result is either $(c \cdot a \cdot a)^L \rfloor (b \mid (a)^L \rfloor b)$ or $(a \cdot a \cdot a)^L \rfloor (b \mid b \mid (c)^L \rfloor \epsilon)$

Formal Semantics

 $P\sigma$ denotes the term obtained by replacing any variable in T with the corresponding term, sequence or element.

 Σ is the set of all possible instantiations σ

Given a set of rewrite rules \mathcal{R} , evolution of terms is described by the transition system given by the least relation \to satisfying

$$\frac{P \mapsto P' \in \mathcal{R} \qquad P\sigma \not\equiv \epsilon \qquad \sigma \in \Sigma}{P\sigma \to P'\sigma}$$

$$\frac{T \to T'}{T \mid T'' \to T' \mid T''} \qquad \frac{T \to T'}{\left(S\right)^L \mid T \to \left(S\right)^L \mid T'}$$

and closed under structural congruence \equiv .

CLS modeling examples: the *lac* operon (1)

CLS modeling examples: the *lac* operon (2)

Ecoli ::=
$$(m)^L | (lacl \cdot lacP \cdot lacO \cdot lacZ \cdot lacY \cdot lacA | polym)$$

Rules for DNA transcription/translation:

$$lacl \cdot \widetilde{x} \mapsto lacl' \cdot \widetilde{x} \mid repr$$
 (R1)

$$polym \mid \widetilde{x} \cdot lacP \cdot \widetilde{y} \mapsto \widetilde{x} \cdot PP \cdot \widetilde{y}$$
 (R2)

$$\widetilde{x} \cdot PP \cdot lacO \cdot \widetilde{y} \mapsto \widetilde{x} \cdot lacP \cdot PO \cdot \widetilde{y}$$
 (R3)

$$\widetilde{x} \cdot PO \cdot lacZ \cdot \widetilde{y} \mapsto \widetilde{x} \cdot lacO \cdot PZ \cdot \widetilde{y}$$
 (R4)

$$\widetilde{x} \cdot PZ \cdot lacY \cdot \widetilde{y} \mapsto \widetilde{x} \cdot lacZ \cdot PY \cdot \widetilde{y} \mid betagal$$
 (R5)

$$\widetilde{x} \cdot PY \cdot lacA \mapsto \widetilde{x} \cdot lacY \cdot PA \mid perm$$
 (R6)

$$\widetilde{x} \cdot PA \mapsto \widetilde{x} \cdot lacA \mid transac \mid polym$$
 (R7)

CLS modeling examples: the *lac* operon (3)

Ecoli ::=
$$(m)^L \setminus (lacl \cdot lacP \cdot lacO \cdot lacZ \cdot lacY \cdot lacA \mid polym)$$

Rules to describe the binding of the lac Repressor to gene o, and what happens when lactose is present in the environment of the bacterium:

$$repr \mid \widetilde{x} \cdot lacO \cdot \widetilde{y} \mapsto \widetilde{x} \cdot RO \cdot \widetilde{y}$$
 (R8)

$$LACT \mid (m \cdot \widetilde{x})^{L} \rfloor X \mapsto (m \cdot \widetilde{x})^{L} \rfloor (X \mid LACT)$$
 (R9)

$$\widetilde{x} \cdot RO \cdot \widetilde{y} \mid LACT \mapsto \widetilde{x} \cdot lacO \cdot \widetilde{y} \mid RLACT$$
 (R10)

$$(\widetilde{x})^{L} \rfloor (perm \mid X) \mapsto (perm \cdot \widetilde{x})^{L} \rfloor X$$
 (R11)

$$LACT \mid (perm \cdot \widetilde{x})^{L} \rfloor X \mapsto (perm \cdot \widetilde{x})^{L} \rfloor (LACT \mid X)$$
 (R12)

$$betagal \mid LACT \mapsto betagal \mid GLU \mid GAL$$
 (R13)

CLS modeling examples: the *lac* operon (4)

Ecoli ::=
$$(m)^L | (lacl \cdot lacP \cdot lacO \cdot lacZ \cdot lacY \cdot lacA | polym)$$

Example:

 $Ecoli|LACT|LACT\\ \rightarrow^* (m)^L \ \ | \ (lacI' \cdot lacP \cdot lacO \cdot lacZ \cdot lacY \cdot lacA \ \ | \ polym \ \ | \ repr)|LACT|LACT\\ \rightarrow^* (m)^L \ \ | \ (lacI' \cdot lacP \cdot RO \cdot lacZ \cdot lacY \cdot lacA \ \ | \ polym)|LACT|LACT\\ \rightarrow^* (m)^L \ \ | \ (lacI' \cdot lacP \cdot lacO \cdot lacZ \cdot lacY \cdot lacA|polym|RLACT)|LACT\\ \rightarrow^* (perm \cdot m)^L \ \ | \ (lacI'-A|betagaI|transac|polym|RLACT)|LACT\\ \rightarrow^* (perm \cdot m)^L \ \ | \ (lacI'-A|betagaI|transac|polym|RLACT|GLU|GAL)$

Outline of the talk

- Introduction
- 2 The Calculus of Looping Sequences (CLS)
 - Definition of CLS
 - The lac operon in CLS
- Bisimulations in CLS
 - A labeled semantics for CLS
 - Bisimulations in CLS
 - Bisimulations applied to the CLS model of the lac operon
- Stochastic CLS
- Ongoing work
 - Spatial CLS
 - Translation of Stochastic CLS into Maude
- 6 References

Bisimulations

Bisimilarity is widely accepted as the finest extensional behavioral equivalence one may impose on systems.

- Two systems are bisimilar if they can perform step by step the same interactions with the environment.
- Properties of a system can be verified by assessing the bisimilarity with a system known to enjoy them.

Bisimilarities need semantics based on labeled transition relations capturing the potential interactions with the environment.

- In process calculi, transitions are usually labeled with actions.
- In CLS labels are contexts in which rules can be applied.

Labeled semantics

The idea: There is a (labeled) transition between terms T and T' if there exists a context C such that a rewrite rule can be applied to C[T] with T' as result.

- C is used as transition label
- C must not provide the whole left hand side of the applied rewrite rule

An example: Let $\mathcal{R} = \{ a \mid b \mapsto c , (d)^L \mid c \mapsto (d)^L \mid e \}$

Labeled semantics

Contexts C are given by the following grammar:

$$\mathcal{C} ::= \Box \quad | \quad \mathcal{C} \mid \mathcal{T} \quad | \quad \mathcal{T} \mid \mathcal{C} \quad | \quad (S)^{L} \mid \mathcal{C}$$

where $T \in \mathcal{T}$ and $S \in \mathcal{S}$. Context \square is called the *empty context*.

Given a set of rewrite rules $\mathcal{R} \subseteq \Re$, the **labeled semantics** of CLS is the labeled transition system given by the following inference rules:

$$\begin{array}{c} \text{(rule_appl)} \ \frac{P \mapsto P' \in \mathcal{R} \quad C[T''] \equiv P\sigma \quad T'' \not\equiv \epsilon \quad \sigma \in \Sigma \quad C \in \mathcal{C}}{T'' \stackrel{C}{\longrightarrow} P'\sigma} \\ \text{(cont)} \ \frac{T \stackrel{\square}{\longrightarrow} T'}{\left(S\right)^L \mid T \stackrel{\square}{\longrightarrow} \left(S\right)^L \mid T'} \quad \text{(par)} \ \frac{T \stackrel{C}{\longrightarrow} T' \quad C \in \mathcal{C}_P}{T \mid T'' \stackrel{C}{\longrightarrow} T' \mid T''} \\ \end{array}$$

where C_P are contexts that do not include $(S)^L \mid C$ and the dual version of the *(par)* rule is omitted.

Bisimulations in CLS (1)

A binary relation R on terms is a **strong bisimulation** if, given T_1 , T_2 such that T_1RT_2 , the two following conditions hold:

- $\bullet \ \ T_1 \xrightarrow{\mathcal{C}} T_1' \implies \exists T_2' \text{ s.t. } \ T_2 \xrightarrow{\mathcal{C}} T_2' \text{and } \ T_1'RT_2'$
- $\bullet \ \ T_2 \xrightarrow{\mathcal{C}} T_2' \implies \exists \, T_1' \text{ s.t. } \ T_1 \xrightarrow{\mathcal{C}} T_1' \text{ and } \ T_2'RT_1'.$

The strong bisimilarity \sim is the largest of such relations.

A binary relation R on terms is a **weak bisimulation** if, given T_1 , T_2 such that T_1RT_2 , the two following conditions hold:

- $\bullet \ \ T_1 \xrightarrow{\mathcal{C}} T_1' \implies \exists T_2' \text{ s.t. } \ T_2 \xrightarrow{\mathcal{C}} T_2' \text{and } \ T_1'RT_2'$
- $T_2 \xrightarrow{C} T_2' \implies \exists T_1' \text{ s.t. } T_1 \xrightarrow{C} T_1' \text{ and } T_2'RT_1'.$

The *weak bisimilarity* \approx is the largest of such relations.

Theorem: Strong and weak bisimilarities are congruences.

Bisimulations in CLS (2)

Consider the following set of rewrite rules:

$$\mathcal{R} = \{ \quad a \mid b \mapsto c \quad , \quad d \mid b \mapsto e \quad , \quad e \mapsto e \quad , \quad c \mapsto e \quad , \quad f \mapsto a \quad \}$$

We have that $a \sim d$, because

$$a \xrightarrow{\square \mid b} c \xrightarrow{\square} e \xrightarrow{\square} e \xrightarrow{\square} \dots$$
$$d \xrightarrow{\square \mid b} e \xrightarrow{\square} e \xrightarrow{\square} \dots$$

and $f \approx d$, because

$$f \xrightarrow{\square} a \xrightarrow{\square \mid b} c \xrightarrow{\square} e \xrightarrow{\square} e \xrightarrow{\square} \dots$$

On the other hand, $f \not\sim e$ and $f \not\approx e$.

$$e \xrightarrow{\square} e \xrightarrow{\square} e \xrightarrow{\square} \dots$$

Bisimulations in CLS (3)

Let us consider systems (T, \mathcal{R}) ...

A binary relation R is a **strong bisimulation on systems** if, given (T_1, \mathcal{R}_1) and (T_2, \mathcal{R}_2) such that $(T_1, \mathcal{R}_1)R(T_2, \mathcal{R}_2)$:

- $\mathcal{R}_1: T_1 \xrightarrow{\mathcal{C}} T_1' \implies \exists T_2' \text{ s.t. } \mathcal{R}_2: T_2 \xrightarrow{\mathcal{C}} T_2' \text{ and } (T_1', \mathcal{R}_1) R(T_2', \mathcal{R}_2)$
- $\mathcal{R}_2: T_2 \xrightarrow{\mathcal{C}} T_2' \implies \exists T_1' \text{ s.t. } \mathcal{R}_1: T_1 \xrightarrow{\mathcal{C}} T_1' \text{ and } (\mathcal{R}_2, T_2') \mathcal{R}(\mathcal{R}_1, T_1').$

The strong bisimilarity on systems \sim is the largest of such relations.

A binary relation R is a **weak bisimulation on systems** if, given (T_1, \mathcal{R}_1) and (T_2, \mathcal{R}_2) such that $(T_1, \mathcal{R}_1)R(T_2, \mathcal{R}_2)$:

- $\mathcal{R}_1: T_1 \xrightarrow{\mathcal{C}} T_1' \implies \exists T_2' \text{ s.t. } \mathcal{R}_2: T_2 \xrightarrow{\mathcal{C}} T_2' \text{ and } (T_1', \mathcal{R}_1) R(T_2', \mathcal{R}_2)$
- $\mathcal{R}_2: T_2 \xrightarrow{\mathcal{C}} T_2' \implies \exists T_1' \text{ s.t. } \mathcal{R}_1: T_1 \xrightarrow{\mathcal{C}} T_1' \text{ and } (T_2', \mathcal{R}_2) R(T_1', \mathcal{R}_1)$

The weak bisimilarity on systems \approx is the largest of such relations.

Strong and weak bisimilarities on systems are NOT congruences.

Bisimulations in CLS (4)

Consider the following sets of rewrite rules

$$\mathcal{R}_1 = \{ a \mid b \mapsto c \} \qquad \mathcal{R}_2 = \{ a \mid d \mapsto c \;, \; b \mid e \mapsto c \}$$

We have that $\langle a, \mathcal{R}_1 \rangle \approx \langle e, \mathcal{R}_2 \rangle$ because

$$\mathcal{R}_1: a \xrightarrow{\Box | b} c \qquad \mathcal{R}_2: e \xrightarrow{\Box | b} c$$

and $\langle b, \mathcal{R}_1 \rangle \approx \langle d, \mathcal{R}_2 \rangle$, because

$$\mathcal{R}_1: b \xrightarrow{\square \mid a} c \qquad \mathcal{R}_2: d \xrightarrow{\square \mid a} c$$

but $\langle a \mid b, \mathcal{R}_1 \rangle \not\approx \langle e \mid d, \mathcal{R}_2 \rangle$, because

$$\mathcal{R}_1: a \mid b \xrightarrow{\square} c \qquad \mathcal{R}_2: e \mid d \not\Longrightarrow$$

Applying bisimulations to the *lac* operon (1)

By using the weak bisimilarity on systems we can prove that from the state in which the repressor is bound to the DNA we can reach a state in which the enzymes are synthesized only if lactose appears in the environment.

We replace rule

$$\widetilde{x} \cdot RO \cdot \widetilde{y} \mid LACT \mapsto \widetilde{x} \cdot lacO \cdot \widetilde{y} \mid RLACT$$
 (R10)

with

$$(\widetilde{w})^{L} \rfloor (\widetilde{x} \cdot RO \cdot \widetilde{y} \mid LACT \mid X) \mid START \mapsto$$

$$(\widetilde{w})^{L} \rfloor (\widetilde{x} \cdot lacO \cdot \widetilde{y} \mid RLACT \mid X) \qquad (R10bis)$$

Applying bisimulations to the *lac* operon (2)

The obtained model is weakly bisimilar to (T_1, \mathcal{R}) where \mathcal{R} is

$$T_1 \mid LACT \mapsto T_2$$
 (R1') $T_2 \mid START \mapsto T_3$ (R3')
 $T_2 \mid LACT \mapsto T_2$ (R2') $T_3 \mid LACT \mapsto T_3$ (R4')

that is a system satisfying the wanted property.

Outline of the talk

- Introduction
- The Calculus of Looping Sequences (CLS)
 - Definition of CLS
 - The lac operon in CLS
- Bisimulations in CLS
 - A labeled semantics for CLS
 - Bisimulations in CLS
 - Bisimulations applied to the CLS model of the lac operon
- 4 Stochastic CLS
- Ongoing work
 - Spatial CLS
 - Translation of Stochastic CLS into Maude
- 6 References

Background: Gillespie's simulation algorithm

- represents a chemical solution as a multiset of molecules
- each chemical reaction is associated with a kinetic constant
- ullet computes the reaction rate a_μ by multiplying the kinetic constant by the number of possible combinations of reactants

Example: chemical solution with X_1 molecules S_1 and X_2 molecules S_2

reaction
$$R_1: S_1+S_2 \rightarrow 2S_1$$
 rate $a_1={X_1 \choose 1}{X_2 \choose 1}k_1=X_1X_2k_1$

reaction
$$R_2: 2S_1 \to S_1 + S_2$$
 rate $a_2 = {X_1 \choose 2} k_2 = \frac{X_1(X_1 - 1)}{2} k_2$

Given a set of reactions $\{R_1, \dots R_M\}$ and a current time t

- The time $t + \tau$ at which the next reaction will occur is randomly chosen with τ exponentially distributed with parameter $\sum_{\nu=1}^{M} a_{\nu}$;
- The reaction R_{μ} that has to occur at time $t+\tau$ is randomly chosen with probability $\frac{a_{\mu}}{\sum_{i=1}^{M}a_{i}}$.

At each step t is incremented by au and the chemical solution is updated,

Stochastic CLS (1)

Stochastic CLS incorporates Gillespie's stochastic framework into the semantics of CLS

• Rewrite rules are enriched with kinetic constants

What is a reactant in Stochastic CLS?

ullet A reactant combination is an occurrence (up to \equiv) of a left hand side of a rewrite rule

Example: The application rate of $a \mid b \stackrel{k}{\mapsto} c$ to $a \mid a \mid b \mid b$ is 6k

Example: The application rate of $(a \cdot \widetilde{x})^L \rfloor (b \mid X) \stackrel{k}{\mapsto} (c \cdot \widetilde{x})^L \rfloor X$ to $(a \cdot a \cdot a)^L \rfloor (b \mid b) \mid (a \cdot a)^L \rfloor b$ is

- 6k, with $(c \cdot a \cdot a)^L \rfloor b \mid (a \cdot a)^L \rfloor b$ as result
- + 2k, with $(a \cdot a \cdot a)^L \rfloor (b \mid b) \mid (c \cdot a)^L \rfloor \epsilon$ as result
- $\bullet = 8k$

Stochastic CLS (2)

Given a finite set of stochastic rewrite rules \mathcal{R} , the semantics of Stochastic CLS is the least transition relation $\xrightarrow{R,T,r,b}$ closed wrt \equiv and satisfying by the following inference rules:

$$\frac{R: P_L \stackrel{k}{\mapsto} P_R \in \mathcal{R} \quad \sigma \in \Sigma}{P_L \sigma \stackrel{R,P_L\sigma,k \cdot comb(P_L,\sigma),1}{\mapsto} P_R \sigma} \qquad \frac{T_1 \stackrel{R,T,r,b}{\longrightarrow} T_2}{T_1 \mid T_3 \stackrel{R,T,r,b \cdot binom(T,T_1,T_3)}{\mapsto} T_2 \mid T_3}$$

$$\frac{T_1 \stackrel{R,T,r,b}{\longrightarrow} T_2}{(T_1)^L \mid T_3 \stackrel{R,(T_1)^L \mid T_3,r \cdot b,1}{\mapsto} (T_2)^L \mid T_3} \qquad \frac{T_1 \stackrel{R,T,r,b}{\longrightarrow} T_2}{(T_3)^L \mid T_1 \stackrel{R,(T_3)^L \mid T_1,r \cdot b,1}{\mapsto} (T_3)^L \mid T_2}$$

The transition system obtained can be easily transformed into a Continuous Time Markov Chain

A Stochastic CLS model of the *lac* operon (1)

A Stochastic CLS model of the *lac* operon (2)

Transcription of DNA, binding of lac Repressor to gene o, and interaction between lactose and lac Repressor:

$$lacl \cdot \widetilde{x} \stackrel{0.02}{\mapsto} lacl \cdot \widetilde{x} \mid Irna$$
 (S1)

$$Irna \stackrel{0.1}{\mapsto} Irna \mid repr$$
 (S2)

$$polym \mid \widetilde{x} \cdot lacP \cdot \widetilde{y} \stackrel{0.1}{\mapsto} \widetilde{x} \cdot PP \cdot \widetilde{y}$$
 (S3)

$$\widetilde{x} \cdot PP \cdot \widetilde{y} \stackrel{0.01}{\mapsto} polym \mid \widetilde{x} \cdot lacP \cdot \widetilde{y}$$
 (S4)

$$\widetilde{x} \cdot PP \cdot lacO \cdot \widetilde{y} \stackrel{20.0}{\mapsto} polym \mid Rna \mid \widetilde{x} \cdot lacP \cdot lacO \cdot \widetilde{y}$$
 (S5)

$$Rna \stackrel{0.1}{\mapsto} Rna \mid betagal \mid perm \mid transac$$
 (S6)

$$repr \mid \widetilde{x} \cdot lacO \cdot \widetilde{y} \stackrel{1.0}{\mapsto} \widetilde{x} \cdot RO \cdot \widetilde{y}$$
 (S7)

$$\widetilde{x} \cdot RO \cdot \widetilde{y} \stackrel{0.01}{\mapsto} repr \mid \widetilde{x} \cdot lacO \cdot \widetilde{y}$$
 (S8)

$$repr \mid LACT \stackrel{0.005}{\mapsto} RLACT \tag{S9}$$

$$RLACT \stackrel{0.1}{\mapsto} repr \mid LACT$$
 (S10)

A Stochastic CLS model of the *lac* operon (3)

The behaviour of the three enzymes for lactose degradation:

$$(\widetilde{x})^{L} \rfloor (perm \mid X) \stackrel{0.1}{\mapsto} (perm \cdot \widetilde{x})^{L} \rfloor X$$
 (S11)

$$\textit{LACT} \mid \left(\textit{perm} \cdot \widetilde{\textit{x}}\right)^{\textit{L}} \mid \textit{X} \stackrel{0.001}{\mapsto} \left(\textit{perm} \cdot \widetilde{\textit{x}}\right)^{\textit{L}} \mid \left(\textit{LACT} \mid \textit{X}\right) \tag{S12}$$

$$betagal \mid LACT \stackrel{0.001}{\mapsto} betagal \mid GLU \mid GAL$$
 (S13)

Degradation of all the proteins and mRNA involved in the process:

Simulation results (1)

Production of enzymes in the absence of lactose $(m)^L \mid (lacl - A \mid 30 \times polym \mid 100 \times repr)$

Simulation results (2)

Production of enzymes in the presence of lactose $100 \times LACT \mid (m)^L \mid (lacl - A \mid 30 \times polym \mid 100 \times repr)$

Simulation results (3)

Degradation of lactose into glucose $100 \times \textit{LACT} \mid \left(\textit{m}\right)^{\textit{L}} \rfloor \left(\textit{lacl} - \textit{A} \mid 30 \times \textit{polym} \mid 100 \times \textit{repr}\right)$

Outline of the talk

- Introduction
- The Calculus of Looping Sequences (CLS)
 - Definition of CLS
 - The *lac* operon in CLS
- Bisimulations in CLS
 - A labeled semantics for CLS
 - Bisimulations in CLS
 - Bisimulations applied to the CLS model of the lac operon
- 4 Stochastic CLS
- Ongoing work
 - Spatial CLS
 - Translation of Stochastic CLS into Maude
- 6 References

Spatial CLS

The spatial organization of elements may affect system dynamics

- reaction-diffusion system
- molecular crowding

We developed Spatial CLS by extending the Calculus of Looping Sequeces

Elements of Spatial CLS are spheres in a continuous space

- the containment hierarchy is reflected in the spheres
- elements can move autonomously
- interactions can depend on the spatial information of elements (position, radius, ecc.)
- rewrite rules are endowed with rates

Example of Spatial CLS term

$$T = (a)_{[(1,2),m_1],0.5} \mid ((b \cdot c \cdot d)_{\cdot,0.5})_{[(4,3),m_2],2}^{L} \mid (a)_{[(-1,0),m_3],0.5}$$

Rewrite rules

$$R : [f_c] P_L \stackrel{k}{\mapsto} P_R$$

k : reaction rate

 f_c : application constraints

 takes into account the spatial information of involved elements (eg. position, radius, ecc.)

Example

$$[\ \textit{dist}(p,q) \leq 5 \] \quad \ (a)_{[p,f_1],r_1} \mid (b)_{[q,f_2],r_2} \ \stackrel{0.8}{\mapsto} \ (c)_{[\frac{p+q}{2},m],r_3}$$

Resolving space conflicts

Elements push each other

- the pushing effect is modeled with a system of differential equations
- the rearranged state corresponds to its equilibrium state

Modeling cell proliferation

Initial state of the system:

$$T = \left(b\right)_{.,50}^{L} \rfloor \left(m\right)_{[(0,0),m_{1}],10}^{L} \rfloor \left(n\right)^{L} \rfloor \left(cr \cdot g_{1} \cdot g_{2} \cdot g_{3} \mid cr \cdot g_{4} \cdot g_{5}\right)$$

- $(b)_{.50}^{L}$: the available space
- $(m)_{[(0,0),m_1],10}^L$: the membrane of the cell
- $(n)^L$: the nucleus
- $cr \cdot ...$: the chromosomes

Rewrite rules modeling the behavior

$$R_{1}: [r = 7] \quad (m)_{[p,f],r}^{L} \rfloor X \overset{0.33}{\mapsto} (m)_{[p,f],10}^{L} \rfloor X$$

$$R_{2}: [r = 10] \quad (m)_{[p,f],r}^{L} \rfloor X \overset{0.25}{\mapsto} (m)_{[p,f],14}^{L} \rfloor X$$

$$R_{3}: [r = 14] \quad (m)_{[p,f],r}^{L} \rfloor \left((n)^{L} \rfloor X \right) \overset{0.5}{\mapsto} (m)_{[p,f],r}^{L} \rfloor \left((n_{\text{dup}})^{L} \rfloor X \right)$$

$$R_{4}: (n_{\text{dup}})^{L} \rfloor (cr \cdot \tilde{x} \mid X) \overset{0.125}{\mapsto} (n_{\text{dup}})^{L} \rfloor (2cr \cdot \tilde{x} \mid X)$$

$$R_{5}: (n_{\text{dup}})^{L} \rfloor (2cr \cdot \tilde{x} \mid 2cr \cdot \tilde{y}) \overset{0.17}{\mapsto} (n)^{L} \rfloor (cr \cdot \tilde{x} \mid cr \cdot \tilde{y})$$

$$R_{6}: (m)_{[(x,y),f],r}^{L} \rfloor \left((n)^{L} \rfloor X \mid (n)^{L} \rfloor Y \right) \overset{1}{\mapsto} (m)_{[(x-5,y),f],7}^{L} \rfloor (n)^{L} \rfloor X \mid (m)_{[(x+5,y),f],7}^{L} \rfloor (n)^{L} \rfloor Y$$

t = 141h

Outline of the talk

- Introduction
- The Calculus of Looping Sequences (CLS)
 - Definition of CLS
 - The *lac* operon in CLS
- Bisimulations in CLS
 - A labeled semantics for CLS
 - Bisimulations in CLS
 - Bisimulations applied to the CLS model of the lac operon
- 4 Stochastic CLS
- Ongoing work
 - Spatial CLS
 - Translation of Stochastic CLS into Maude
- 6 References

A model checker for Stochastic CLS

As candidate model checkers we have considered:

- PRISM
- Murphi
- PMaude

All of them are probabilistic/stochastic model checkers

PMaude is the most suitable

 It uses a language based on rewrite rules (rewrite logic) that eases the translation of Stochastic CLS rules

Unfortunately, the model checking module of PMaude seems not to be available

a possible alternative: Real-Time Maude

Real-Time Maude

Maude is a specification language equipped with efficient analysis tools, which supports three modelling paradigms:

- algebraic style (via equations)
- rewrite logic (via rewrite rules)
- object oriented (via classes and messages)

Real-Time Maude extends Maude with a notion of time

rewrite rule applications might consume (a fixed amount of) time

Real-Time Maude has two kinds of rules

- istantaneous rules:
 - $crl [l] : t \Rightarrow t' if cond$
- tick rules:

```
\operatorname{crl} [l] : t \Rightarrow t' \text{ in time } \tau \text{ if } \operatorname{cond}
```

Translation of Stochastic CLS into Real-Time Maude

Real-Time Maude is not stochastic

- we will include Gillespie's simulation algorithm (slightly changed) in the translation of Stochastic CLS models
- it will be used to generate single executions of the model
- Real-Time Maude analysis tools will be applied to the simulation results

This is statistical model checking

- we loose exhaustivity (properties are checked on a number of runs)
- huge systems could be handled

Translation of Stochastic CLS into Real-Time Maude

$$T ::= S \mid (S)^{L} \rfloor T \mid T \mid T$$

$$S ::= \epsilon \mid a \mid S \cdot S$$

```
(omod CLS is
  pr NAT
  sorts Elem Seq Term Loop
  subsorts Elem < Seq < Term
  op empty : -> Seq [ctor]
  op _._ : Seq Seq -> Seq
        [assoc gather (E e) id: empty ctor]
  op '[_']LContains'[_'] : Seq Term -> Term
        [prec 41 gather (& &) ctor]
  op _|_ : Term Term -> Term
        [assoc comm prec 45 gather (E e) id: empty ctor]
endom)
```

Translation of Stochastic CLS into Real-Time Maude

Lotka reactions as Stochastic CLS rules

Analysis example: statistical model checking

Initialisation of 100 stochastic simulations

```
rl [ initialise1 ] :
  < step : 0 >
=>
  < seed : random(1), step : 1 >
rl [ initialise100 ] :
  < step : 0 >
=>
  < seed : random(100), step : 1 >
```

Analysis example: statistical model checking

Verification of properties espressed as LTL formulas. Some state formulas: $vanished(T) \ indicates \ that \ term \ T \ has \ vanished \ from \ the \ system,$ $IsLessThan(T,T') \ indicates \ that \ the \ occurences \ of \ term \ T \ are \ less \ than$

Starting with $4 \times S_1$ and $4 \times S_2$ we prove

the occurences of T'.

- that S_2 will eventually disappear (i.e. \Diamond vanished(S_2))
- that the amount of S_2 will eventually become less than the amount of S_1 (i.e. \diamondsuit IsLessThan (S_2,S_1))

```
(mc INIT(\{S1\}4 \mid \{S2\}4) |=t <> vanished(S2) in time<=1 .)

Result Bool : true

(mc INIT(\{S1\}4 \mid \{S2\}4) |=t <> IsLessThan(S2,S1) in time<=1 .)
```

Result Bool : true

References

- P. Milazzo, Formal Modeling in Systems Biology. A Theoretical Computer Science Approach, VDM Verlag Dr. Muller, Saarbruecken, 2008.
- P. Milazzo. Qualitative and Quantitative Formal Modeling of Biological Systems, PhD Thesis, Università di Pisa, 2007.
- R. Barbuti, A. Maggiolo-Schettini, P. Milazzo and A. Troina. A Calculus of Looping Sequences for Modelling Microbiological Systems. Fundamenta Informaticae 72, 21-35, 2006.
- R. Barbuti, A. Maggiolo-Schettini and P. Milazzo. Extending the Calculus of Looping Sequences to Model Protein Interaction at the Domain Level. Symp. on Bioinf. Research and Applic. (ISBRA'07), LNBI 4463, 638-649, Springer, 2007.
- R. Barbuti, A. Maggiolo-Schettini, P. Milazzo and A. Troina. The Calculus of Looping Sequences for Modeling Biological Membranes. Invited paper at the 8th Work. on Membrane Computing (WMC8), LNCS 4860, 54-76, Springer, 2007.
- R. Barbuti, A. Maggiolo-Schettini, P. Milazzo and A. Troina. Bisimulations in Calculi Modelling Membranes. Formal Aspects of Computing 20, 351-377, 2008.
- T.A. Basuki, A. Cerone, P. Milazzo. Translating Stochastic CLS into Maude.
 Work. on Membr. Computing and Biol. Inspired Calculi (MeCBIC'08), 2008.
- R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, P. Tiberi and A. Troina. *Stochastic CLS for the Modeling and Simulation of Biological Systems*. Transaction on Computational Systems Biology, in press.