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Abstract We present Spatial P systems, a variant of P systems which embodies the

concept of space and position inside a membrane. Objects in membranes are associated

with positions. Rules specify, in the usual way, the objects which are consumed and the

ones which are produced; in addition, they can specify the positions of the produced

objects. Objects belong to two different sets: the set of ordinary objects and the set

of mutually exclusive objects. Every position inside a membrane can accommodate an

arbitrary number of ordinary objects, but at most one mutually exclusive object.

We prove that Spatial P systems are universal even if only non-cooperating rules

are allowed. We also show how Spatial P systems can be used to model the evolution

of populations in presence of geographical separations.

Keywords Membrane computing · P systems · Spatial modeling · Universality

1 Introduction

P systems were introduced by Pǎun (2000) as distributed parallel computing devices

inspired by the structure and the functioning of a living cell. A P system consists of

a hierarchy of membranes, each of them containing a multiset of objects, representing

molecules, a set of evolution rules, representing chemical reactions, and possibly other

membranes. For each evolution rule there are two multisets of objects, describing the

reactants and the products of the chemical reaction. A rule in a membrane can be

applied only to objects in the same membrane. Some objects produced by the rule

remain in the same membrane, others are sent out of the membrane, others are sent

into the inner membranes, which are identified by their labels. Evolution rules can

be applied more than once to different objects, with maximal parallelism, namely it

R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, G. Pardini
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cannot happen that some evolution rule is not applied when the objects needed for its

triggering are available and not consumed by the application of any other rule.

Many variants and extensions of P systems exist that include features which in-

crease their expressiveness and which are based on different evolution strategies. A

basic extension is that of P systems with dissolution rules that allow a membrane

to disappear and release in the surrounding region all the objects it contains. P sys-

tems with priorities provides a priority relationship among the evolution rules of each

membrane and can influence the applicability of such rules. In P systems with pro-

moters and inhibitors the applicability of evolution rules depends on the presence of

at least one occurrence and on the absence of a specific object, respectively. We also

mention two variants of P systems dealing with objects crossing membranes. The first

extension provides symport/antiport rules, which allow simultaneous trans-membrane

transportation of objects either in the same direction (symport) or in opposite direc-

tions (antiport). The second extension provides Membrane Channels (PMC Systems),

in which the passage of objects through membranes is allowed only through specific

channels associated with membranes. Finally, we mention Metabolic P systems by

Manca et al (2004), a quantitative extension of P system form modeling metabolic

processes.

See Pǎun (2002), Bottoni et al (2002) and Barbuti et al (2009b, 2008) for the

definition of variants of P systems, and P Systems web page (2009) for a complete

bibliography.

In this paper we introduce Spatial P systems, an extension of P systems with a

concept of space. Membranes and objects are positioned in a two-dimensional discrete

space. Evolution rules are associated with membranes, and take into account the po-

sitions of objects. At any time during system evolution, in a position there may be

a number of ordinary objects, but only one object from the set of mutually exclusive

objects. We prove that Spatial P systems are universal, even when evolution rules are

restricted to non-cooperating ones. As an example of modeling, we present a model for

the evolution of “ring species”, where populations of a same species evolve indepen-

dently in presence of a geographic barrier.

The need of representation of space in Biology has brought to include spatial fea-

tures in formalisms for modeling biological systems (John et al, 2008; Barbuti et al,

2009a; Cardelli and Gardner, 2009; Bartocci et al, 2009). As regards P systems, we

mention the extension of P systems proposed by Besozzi et al (2008), used to describe

the behavior of “metapopulations”. Metapopulations are local populations living in

spatially separated areas (called “patches”), where populations can interact, and in-

dividuals can disperse from a patch to nearby patches. Models for metapopulations

aim at discovering how the fragmented habitat influences local and global population

behavior. In the proposed model, objects are used to model different species (predators

and preys), and patches are represented as elementary membranes in a flat membrane

structure. Patches form the nodes of an undirected weighted graph, with edges de-

scribing a neighborhood relation between patches, modeling spatial proximity. Costs

associated with edges model the effort of individuals for migrating from a patch to

another.

In computer science, the computational formalism of Cellular Automata (CA) (Neu-

mann, 1966) uses a representation of the space analogous to that of Spatial P systems.

CAs were developed as a computational tool inspired by biological behaviors, and have

been later used for modeling biological systems. A cellular automaton is composed of a

finite grid of cells, where each cell has an associated state taken from a finite set of dif-
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ferent states. Time is discrete, and at each step of the evolution all the cells change state

in accordance with a rule, which is characteristic of the particular cellular automaton

model. The rule is deterministic and “local”, in the sense that the new state of a cell

is determined only on the basis of the previous states of cell itself and of nearby cells.

In Spatial P system, in contrast, cells contain objects, and interactions occur between

objects. For this reason, each position in a Spatial P system can accommodate any

number of objects, thus possibly representing an infinite number of different “states”.

2 Spatial P Systems

In this section we recall the definition of standard P systems, and then we present its

extension with spatial features. We denote multisets over a finite alphabet as strings.

More precisely, let V ∗ be the set of all strings over an alphabet V , including the empty

one, denoted by λ. For a ∈ V and x in V ∗ we denote by |x|a the number of occurrences

of a in x. If V = {a1, . . . , an} (the ordering is important), then the Parikh mapping

of x is defined by ΨV (x) = (|x|a1 , . . . , |x|an), called Parikh vector. The definition is

extended to languages in the natural way. A string x represents the multiset over V

with the multiplicities of objects a1, . . . , an as given by ΨV (x).

2.1 P Systems

A P system consists of a hierarchy of membranes that do not intersect, with a dis-

tinguishable membrane, called the skin membrane, surrounding all of them. As usual,

we assume membranes to be labeled by natural numbers. Given a set of objects V , a

membrane m contains a multiset of objects in V ∗, a set of evolution rules, and possi-

bly other membranes, called child membranes (m is also called the parent of its child

membranes). Objects represent molecules swimming in a chemical solution, and evolu-

tion rules represent chemical reactions that may occur inside the membrane containing

them. For each evolution rule there is a multiset of objects representing the reactants,

and a multiset of objects representing the products of the chemical reaction. A rule

in a membrane m can be applied only to objects in m, meaning that its reactants are

contained in m, and not in its child membranes. The rule must contain target indica-

tions, specifying the membranes where the new objects produced by applying the rule

are sent. The new objects either remain in m, or can be sent out of m, or can be sent

into one of its child membranes, precisely identified by its label.

Formally, the products of a rule are denoted with a multiset of messages of the

forms: (i) vhere, meaning that the multiset of objects v produced by the rule remains

in the same membrane m; (ii) vout, meaning that the multiset of objects v produced by

the rule are sent out of m; (iii) vinl
, meaning that the multiset of objects v produced

by the rule are sent into the child membrane l.

Let TAR be the set of message targets {here, out} ∪ {ini | i ∈ N}. Given a set of

objects O we denote with Otar the corresponding set of messages O × TAR. Hence,

we denote with Vtar the set of all messages and we can define an evolution rule as

a rule u → v such that u ∈ V ∗ and v ∈ V ∗tar. The length of the left-hand side u of

an evolution rule is called the radius of such a rule. If a P system contains rules of

radius greater than one, then it is called a cooperating system. Otherwise, it is called

non-cooperating.
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Application of evolution rules is done with maximal parallelism, namely at each

evolution step a multiset of instances of evolution rules is chosen non–deterministically

such that no other rule can be applied to the system obtained by removing all the

objects necessary to apply all the chosen rules.

A P system has a tree–structure in which the skin membrane is the root and

the membranes containing no other membranes are the leaves. We assume membrane

labels to be unique. A membrane structure can be represented as a balanced sequence

of labeled brackets and, graphically, as a Venn diagram.

Definition 1 A P system is a tuple Π = (V, µ, w1, . . . , wn, R1, . . . , Rn), where:

– V is a finite alphabet whose elements are called objects;

– µ ⊂ N×N describes the tree-structure of membranes, where (i, j) ∈ µ denotes that

the membrane labeled by j is contained in the membrane labeled by i;

– wi, with 1 ≤ i ≤ n, are strings from V ∗ representing multisets over V associated

with membranes 1, 2, . . . , n of µ;

– Ri, with 1 ≤ i ≤ n, are finite sets of evolution rules associated with membranes

1, 2, . . . , n of µ.

A sequence of transitions between configurations of a given P system Π is called

a computation. A computation is successful if and only if it reaches a configuration in

which no rule is applicable. The result of a successful computation is the multiset of

objects sent out of the skin membrane during the computation. Unsuccessful computa-

tions (computations which never halt) yield no result. Given a P system Π whose set of

objects is V , let U ⊆ V be the set of objects that can be sent out of the skin membrane,

namely objects that appear in the right-end side of a rule in R1 with target out. The

result x ∈ U∗ of a computation of Π can be mapped into a vector of natural numbers

by the Parikh mapping ΨU (x). The set of all vectors of natural numbers computed

by Π is denoted Ps(Π). Following Pǎun (2002), let us denote by Pn(α) the class of

P Systems with at most n ≥ 1 membranes and using rules of type α, where α = coo

indicates that cooperating rules are allowed and α = ncoo that only non-cooperating

rules are used. When the number of membranes is not bounded we replace n with ∗.
Let PsPn(α) be the family of sets of vectors of natural numbers computed by the P

systems of class Pn(α).

2.2 Extension with space

We extend P systems by embedding membranes and objects into the two-dimensional

space with natural coordinates N2. Membranes have rectangular shape and, as for

normal P systems, can be nested. The spatial description of a membrane is given in

terms of the following parameters: (i) the position p ∈ N2 of its bottom-left corner with

respect to the parent membrane, (ii) the membrane extents along the two dimensions,

i.e. its width w and height h. Width and height cannot be null: w, h ∈ N+. There

is always a distinguished skin membrane, which contains all other membranes and

objects. We assume the skin membrane to be labeled with 1, and be positioned in

(0, 0) with respect to the global coordinate system. Nesting of membranes has to satisfy

some intuitive constraints: sibling membranes must not overlap, and membranes cannot

exceed the bounds of their parent membranes. Moreover, we do not allow membrane

edges to be adjacent, namely the Manhattan distance between any two edges must be
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Fig. 1: An example of Spatial
P System.
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Fig. 2: Example of adja-
cent edges (not allowed).
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Fig. 3: Possible outside po-
sitions for rule a→ aout.

at least 1. (The Manhattan distance between two positions (x1, y1), (x2, y2) ∈ Z2 is

|x1 − x2|+ |y1 − y2|.)
An example of Spatial P system is shown in Figure 1. Membrane 1, having width

8 and height 5, contains two membranes labeled 2 and 3. The spatial extension of

membrane 2 is described by its bottom-left corner in (1, 1), its width 3 and height 3.

For membrane 3, its position is (5, 3), and its dimensions are (2, 1). Three objects a

are contained in membrane 2, at positions (1, 1),(2, 1) and (2, 0). Membrane 3 contains

objects a and c in position (0, 0). All other positions, in all regions, are empty. Figure 2

shows a fragment of an invalid Spatial P system structure, in which the bottom edge

of membrane 2 is adjacent to the bottom edge of the parent membrane, and the top

edge of membrane 2 is adjacent to the bottom edge of membrane 3.

The structure of membranes can be seen as a partition of the space bounded by the

skin membrane, where a position belongs to a membrane if and only if it is contained

within its bounds and not contained in any other child membrane. The set of all

positions belonging to a membrane is called a region. For example, with respect to

figure 2, region of membrane 2 is the set reg(2) = {(x, y) | 1 ≤ x, y ≤ 3}, region

of membrane 3 is reg(3) = {(5, 3), (6, 3)}, and region of membrane 1 contains the

remaining positions: reg(1) = {(x, y) | 0 ≤ x ≤ 7, 0 ≤ y ≤ 4} \ reg(2) \ reg(3).

Each object in a Spatial P system model is associated with a position in the region

of a membrane. There are two kinds of objects, ordinary objects and mutually exclusive

(ME) objects, which are represented by two disjoint sets V and E, respectively. The

difference between them is that the positions of ME objects are constrained, since

two ME objects are not allowed to occupy the same position at the same time. No

constraints are imposed to ordinary objects.

A set of evolution rules is associated with each membrane. Evolution rules are either

of the form (i) u→ v or (ii) u1−u2 → v1−v2, where u1 and u2 are strings over objects,

and v1 and v2 are strings of messages (where each message is composed of a multiset of

objects, and a target indication). A rule of the form (i), u→ v, is meant to be applied

to each position forming the membrane region, provided that all the objects u appear

in the position. String v specifies the products of the rule and their resulting positions.

A rule of the form (ii), u1 − u2 → v1 − v2, describes a simultaneous application of two

rules, u1 → v1 and u2 → v2, to two adjacent positions inside the membrane region.

Two positions are adjacent if and only if their Manhattan distance is exactly 1.

Besides the abilities of sending an object either into an inner membrane or out of the

membrane, rules have to specify for the objects which remain in the same membrane,

their resulting position inside the membrane region. Messages are of the following

forms:
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– vδp, with δp ∈ Z2, meaning that the multisets of objects v are added to position

p+ δp relative to the position p in which the rule is applied;

– vout, meaning that the multisets of objects v are to be sent out of the membrane;

– vinl
, meaning that the multisets of objects v are to be sent into the child membrane

identified by l.

Note that there is not an explicit target here, used in conventional P systems for

messages of the form vhere. In Spatial P systems, target here means “in the current

position” (inside membrane region), and thus it has a narrower meaning than in con-

ventional P systems. It can be defined as an alias for the null position here = (0, 0).

We also use the following abbreviations for the relative positions δp denoting adjacent

positions: N = (0, 1), S = (0,−1), E = (1, 0), W = (−1, 0).

For example, the rule A → (b)(2,0) (c)out (d)in2 can be applied to an object A,

which results in an object b in position p+ (2, 0) relative to the current position p; an

object c being sent out of the membrane; and an object d being sent into the inner

membrane labeled 2.

Formally, let TAR denote the set of message targets Z2∪{out}∪{ini | i ∈ N}. Given

a set of objects O we denote with Otar the corresponding set of messages O × TAR.

Hence, in evolution rules (i) u → v and (ii) u1 − u2 → v1 − v2, we have u, u1, u2 ∈
(V ∪ E)∗ and v, v1, v2 ∈ ((V ∪ E)tar)

∗. For Spatial P Systems, cooperating rules are

both rules of type (i) with radius greater than one, and rules of type (ii).

Definition 2 A Spatial P system is a tuple (V,E, µ, σ,W (1), . . . ,W (n), R1, . . . , Rn)

where:

– V and E are disjoint alphabets: elements of V are called ordinary objects, while

elements of E are called mutually exclusive objects (ME objects);

– µ ⊂ N×N describes the tree-structure of membranes, where (i, j) ∈ µ denotes that

the membrane labeled by j is contained in the membrane labeled by i;

– σ : {1, . . . , n} → N × N × N+ × N+ describes spatial position and dimensions of

membranes; formally σ(i) = (xi, yi, wi, hi) gives the position (xi, yi) of bottom

left corner of membrane i, its width wi and its height hi (for the skin membrane,

labeled 1, σ(1) = (0, 0, w1, h1) for some w1, h1);

Function σ must satisfy the following constraints:

– ∀(k, i) ∈ µ. (0 < xi < wk − wi) ∧ (0 < yi < hk − hi);
– ∀(k, i), (k, j) ∈ µ.
¬(xj ≤ xi ≤ xj + wj) ∧ ¬(xj ≤ xi + wi ≤ xj + wj) ∧
¬(yj ≤ yi ≤ yj + hj) ∧ ¬(yj ≤ yi + hi ≤ yj + hj);

– W (i) = {w(i)
x,y} with 1 ≤ i ≤ n are sets of strings w

(i)
x,y ∈ (V ∪E)∗, with 0 ≤ x < wi,

0 ≤ y < hi, where each string w
(i)
x,y represents a multiset over V ∪E associated with

position (x, y) inside membrane i ∈ {1, 2, . . . , n} of µ, where (x, y) corresponds to

a position in the region of i;

– Ri, with 1 ≤ i ≤ n, are finite sets of evolution rules associated with membranes

1, 2, . . . , n of µ.

Given a position p = (x, y) in membrane i, an evolution rule u→ v is p-enabled iff:

– if the rule specifies any out target, then p is adjacent to an edge of membrane

i; formally, given the membrane width wi and height hi, the rule is enabled iff

x ∈ {0, wi − 1} or y ∈ {0, hi − 1};
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– if the rule specifies a target inj , then j is a child membrane of i, and p is adjacent

to it; formally, given σj = (xj , yj , wj , hj), the rule is enabled iff x ∈ {xj − 1, xj +

wj} ∧ yj ≤ y < yj + hj or y ∈ {yj − 1, yj + hj} ∧ xj ≤ x < xj + wj ;

– for any target position δp, the resulting position p′ = p + δp with respect to the

current position p is contained in membrane region (i.e. p′ is inside membrane

bounds and does not overlap with an inner membrane).

A multiset of evolution rules of the form u → v is applicable to a position p inside a

region of the system iff: each evolution rule is p-enabled, and all reactant objects (with

their multiplicities) are present in p.

In each step of the evolution of a Spatial P system, some evolution rules are chosen

and applied to the system state, by removing all reactant objects and adding all the

products. In particular, in each step, for every membrane i, the following multisets of

evolution rules are chosen non-deterministically:

– for every position p in membrane region, a multiset M
(p)
1 of evolution rules of the

form u→ v is chosen;

– for every pair of adjacent positions p, q in membrane region, a multiset M
(p,q)
2 of

evolution rules of the form u1 − u2 → v1 − v2 is chosen.

The chosen multisets of rules must satisfy some constraints. First of all, they must be

applicable on the whole, namely for each position x in membrane region, the multiset

of rules M
(x)
1 ∪{u1 → v1 | ∃q. u1−u2 → v1−v2 ∈M

(x,q)
2 }∪{u2 → v2 | ∃q. u1−u2 →

v1− v2 ∈M
(q,x)
2 } must be applicable. Moreover, they are required to be valid, namely

two ME objects are forbidden to end up occupying the same position p′ at the end

of the step. However, note that, during the step, a ME object can disappear from

a position and another one can take its place. Finally, as with standard P systems,

the chosen multisets of rules must be maximal. Maximality means that, considering

the system obtained by removing the multiset of reactant objects from all the chosen

evolution rules, no other rule can be applied to that system while still preserving the

validity.

For a message vinj
, the objects are placed in the nearest position p′ in the region

of j, with respect to the current position. For a message vout, the objects are placed

in one of the nearest positions outside the membrane. In case the output position

for a vout message is not unique, as is the case when the rule is applied to a vertex

position, then the output position is chosen non-deterministically along the horizontal

and vertical direction. Figure 3 shows a fragment of Spatial P system, with three objects

a in different positions inside a membrane. Arrows indicate the resulting position of

the products, after the application of a rule a → aout to the two objects a adjacent

to membrane edges. The objects sent out of the skin membrane disappear from the

system.

The definitions of computation and successful computation from standard P sys-

tems also apply to Spatial P systems. Therefore, the result of a successful computation

is represented by the multiset of objects sent out of the skin membrane during the

evolution, which are described by a Parikh vector. The set of all vectors computed

by a Spatial P system Π is denoted Ps(Π). Let us denote by SPn(α, β) the class of

Spatial P Systems with at most n ≥ 1 membranes and using rules of type α, where

α ∈ {coo, ncoo} as above, and β ∈ {me, nme}. We indicate with me that ME objects

can be used, and with nme that their use is not allowed. Analogously to what done

for P systems, when the number of membranes is not bounded we replace n with ∗.
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Let PsSPn(α, β) be the family of sets of vectors of natural numbers computed by the

Spatial P systems of class SPn(α, β).

3 Universality of Spatial P Systems

In this section we first prove that Spatial P systems are not universal when only non-

cooperating rules are used and ME objects are not allowed. Then we prove that if ME

objects can be used then universality is reached.

Theorem 1 PsSP∗(ncoo, nme) ⊆ PsP∗(ncoo).

Proof We show how to translate a Spatial P system with only non-cooperating rules

and no ME objects (V, ∅, µ, σ,W (1), . . . ,W (n), R1, . . . , Rn) into an equivalent classical

P system (V ′, µ, w1, . . . , wn, R
′
1, . . . , R

′
n) with only non-cooperating rules.

The idea is to use the spatial information to translate each evolution rule into a

set of rules which take into account the position of objects (that becomes part of the

object name as a superscript) and the spatial membrane structure.

More formally, we discard the spatial description σ, but maintain the membrane

structure µ. The objects of the translated P system are V ′ = V ∪{ax,y | a ∈ V, (x, y) ∈
{0, . . . , h1 − 1} × {0, . . . , w1 − 1}}. Every initial object ax,y ∈ W (i) is mapped into

the object ax,y ∈ wi. Given an evolution rule a→ v1 · · · vk ∈ Ri, it is mapped into at

most hi ·wi rules by the partial function Trule(a→ v1 · · · vk, i, x, y, µ, σ), applied to all

positions (x, y) ∈ reg(i). Trule is defined as follows:

Trule(a→ v1 · · · vk, i, x, y, µ, σ) =


ax,y → v′1 · · · v′k if cond(v1 · · · vk, i, x, y, µ, σ)

⊥ otherwise;

where v′j = Ttar(vj , i, x, y, µ, σ) for every j = 1, . . . , k, and cond(v1 · · · vk, i, x, y, µ, σ) ≡
∀j ∈ {1, . . . , k}. Ttar(vj , i, x, y, µ, σ) 6= error.

The function Ttar translates an object vj into a new object v′j whose superscripts

and target are derived from the position (x, y) and the spatial information. It returns

an error when the evolution rule a → v1 · · · vk is not (x, y)-enabled because of the

target of vj . For instance, Ttar(v(x′,y′), i, x, y, µ, σ) = vx+x
′,y+y′

here provided that position

(x+ x′, y + y′) ∈ reg(i), otherwise the translation results in an error. The other cases

of Ttar are similar.

By definition of Trule, a rule a → v1 · · · vk is translated for a position (x, y) if and

only if the rule is (x, y)-enabled, otherwise the rule is not translated for that position.

Finally, the rules sending objects out of the skin membrane must drop their super-

script, making the output exactly equal to that of the original Spatial P System. ut

Since P systems with only non-cooperating rules are not universal (Pǎun, 2002),

Theorem 1 says that also Spatial P systems with only non-cooperating rules and no

ME objects are not universal. In the following we show that we can reach universality

by allowing ME objects.

In the proof of this result we show that any matrix grammar with appearance

checking can be simulated by a Spatial P system with non-cooperating rules. As a

consequence, before giving the result and its proof, we recall from Pǎun (2002) the

definition of such variant of matrix grammars and some related notions.
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Matrix grammars with appearance checking A (context-free) matrix grammar

with appearance checking is a tuple G = (N,T, S,M,F ), where N and T are disjoint

alphabets of non–terminals and terminals, respectively, S ∈ N is the axiom, M is

a finite set of matrices, namely sequences of the form (A1 → x1, . . . , An → xn) of

context–free rules over N ∪ T with n ≥ 1, and F is a set of occurrences of rules in the

matrices of M . For a string w, a matrix m : (r1, . . . , rn) can be executed by applying

its rules to w sequentially in the order in which they appear in m. Rules of a matrix

occurring in F can be skipped during the execution of the matrix if they cannot be

applied, namely if the symbol in their left–hand side is not present in the string.

Formally, given w, z ∈ (N ∪ T )∗, we write w =⇒ z if there is a matrix (A1 →
x1, . . . , An → xn) in M and the strings wi ∈ (N ∪ T )∗ with 1 ≤ i ≤ n + 1 such that

w = w1, z = wn+1 and, for all 1 ≤ i ≤ n, either (1) wi = w′iAiw
′′
i and wi+1 = w′ixiw

′′
i ,

for some w′i, w
′′
i ∈ (N ∪ T )∗, or (2) wi = wi+1, Ai does not appear in wi and the rule

Ai → xi appears in F . Thus, in case (2) a matrix can be applied even if some of its

rules are not applicable, provided that these rules are listed in F . We remark that F

consists of occurrences of rules in M , that is, if the same rule appears several times in

the matrices, it is possible that only some of these occurrences are contained in F .

The language generated by a matrix grammar G is L(G) = {w ∈ T ∗ | S =⇒∗ w},
where =⇒∗ w is the reflexive and transitive closure of =⇒. It is known (see Pǎun

(2002) for details) that matrix grammars with appearance checking are universal.

Let |x| denote the length of the string x. A matrix grammar with appearance

checking G = (N,T, S,M,F ) is said to be in binary normal form if N = N1 ∪ N2 ∪
{S,#}, with these sets mutually disjoint, and the matrices in M are of the forms:

1. (S → XA), with X ∈ N1, A ∈ N2;

2. (X → Y,A→ x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2;

3. (X → Y,A→ #), with X,Y ∈ N1, A ∈ N2;

4. (X → λ,A→ x), with X ∈ N1, A ∈ N2, x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1 and F consists exactly of all rules A→ #

appearing in matrices of type 3. We remark that # is a trap symbol, namely once

introduced it cannot be removed, and a matrix of type 4 is used only once, in the last

step of a derivation.

For each matrix grammar (with or without appearance checking) there exists an

equivalent matrix grammar in binary normal form. A matrix grammar with appearance

checking in binary normal form is always given as G = (N,T, S,M,F ), with N =

N1∪N2∪{S,#} and with n+1 matrices in M , injectively labeled with m0,m1, . . . ,mn.

The matrix m0 : (S → XinitAinit ) is the initial one, with Xinit a given symbol from

N1 and Ainit a given symbol from N2; the next k matrices are without appearance

checking rules, mi : (X → α,A→ x), with 1 ≤ i ≤ k, where X ∈ N1, α ∈ N1∪{λ}, A ∈
N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2 (if α = λ, then x ∈ T ∗); the last n − k matrices have

rules to be applied in the appearance checking mode, mi : (X → Y,A → #), with

k + 1 ≤ i ≤ n,X, Y ∈ N1, and A ∈ N2.

We remark that in matrix grammars in binary normal form we can assume that all

symbols X ∈ N1 and A ∈ N2 appear as the left-hand side of a rule from a matrix: oth-

erwise, the derivation is blocked after introducing such symbols, hence we can remove

these symbols and the matrices involving them.

The following theorem shows that Spatial P systems with ME objects and using

only non–cooperating rules are universal. We denote by PsRE the family of Parikh

images of all recursively enumerable languages.
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Xinit

Ainit

e1

phome

pA p1 p2

� � �

� � �

pn pc

p#

pc1

pc2

Fig. 4: Initial step of the simulation.

e3 → e2

e2 → e1

e1 → e0

e0 → λ

#→ #

Fig. 5: Rules for ei ob-
jects and trap symbol #.

Theorem 2 PsSP1(ncoo,me) = PsRE.

Proof It is enough to show that for a grammar G in binary normal form there is a

Spatial P system ΠG with non-cooperating evolution rules and ME objects such that

Ps(ΠG) = ΨT (L(G)). We build ΠG as a system with only a root membrane, whose

geometry is depicted in Figure 4. The non-mutually exclusive objects of ΠG are the

symbols of G plus some control objects: V = N ∪ T ∪ {c1, c′1, c2, c′2, c#, c′#,#}. All

objects corresponding to grammar symbols will reside in position phome. The other

positions can be seen as control positions to simulate the application of the matrices of

the grammar. The ME objects E = {e0, e1, e2, e3} do not move, and they expire after

the given time, i.e. ei is canceled after i time steps, according to rules in Figure 5. The

other rules for the membrane are defined below.

The execution consists of a repetition of cycles of four time steps. Each cycle selects

non-deterministically and then applies one of the matrices m1, . . . ,mn. If during the

cycle something goes wrong, i.e. either the application of the selected matrix is not

possible or a matrix (X → Y,A → #) of type 3 is selected when a symbol A is

present, then the trap symbol # is introduced yielding a non-terminating system,

which corresponds to aborting the computation.

Let us define how matrices are mapped into rules. A matrix mi : (X → Y,A→ x),

1 ≤ i ≤ k, i.e. without appearance checking, is mapped into two rules:

(1) X → (Y )here (e3)p1 · · · (e3)pi−1 (e3)pi+1 · · · (e3)pn (c1)pc (e2)pc1

(2) A→ (x)here (e3)pA (e2)pi (c2)pc (e1)pc2

Note that, for readability, we omit the subscript home and use the message pj to denote

the vector δp from position phome to position pj . Similarly for the other positions. Rule

(1) is used to select the matrix to be applied: since it puts a ME object in all positions

pj , with j 6= i, only one can be applied among the n available. Note that the occupied

positions will be free exactly after 3 time steps (the object e3 is used) respecting the

duration of the cycle. A control object c1 is placed in position pc and position pc1 is

occupied for two time steps (object e2). Moreover, there is a rule c1 → c′1 to let object

c1 pass from step 1 to step 2. Rule (2) cannot be applied at step 1 of the cycle because

position pA is not initially free (it contains e1) and the rule is trying to put an ME

object there. Thus, the rule can be applied only at the second step of the cycle. It

transforms the non-terminal A and puts an ME object e2 in position pi, the only one

still free after the first step. Note that other rules without appearance checking cannot

be applied at the second step because the positions in which they try to put the ME

object is occupied. Note also that object e3 is put in pA, thus freeing the position

only at the second step of the next cycle. A control object c2 is put in position pc and

position pc2 is occupied for one time step.
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A matrix mi : (X → Y,A → #), k + 1 ≤ i ≤ n, i.e. with appearance checking, is

also mapped into two rules:

(1′) X → (Y )here (e3)p1 · · · (e3)pi−1 (e3)pi+1 · · · (e3)pn (c#)p#

(2′) A→ # (e3)pA (e2)pi

The differences in rule (1′) w.r.t. rule (1) are that control object c1 is not needed

and that an object c# is put in the control position p#. For this object we add rules

c# → c′# and c′# → (e2)pA , i.e., we assure the correct continuation of the cycle if the

trap symbol is not generated at the second step of the cycle. By rule (2′), if a symbol

A is present in phome at the second step of the cycle, after matrix i was selected, the

trap symbol is generated and the computation aborted, as it would happen for the

grammar. Otherwise, if there are no A symbols the cycle goes towards its end doing

nothing and the computation will continue in the next cycle.

In the third step of the cycle we perform a double check, using both control objects

c′1 and c2, that all positions pi, 1 ≤ i ≤ n, are occupied. Otherwise, either one matrix

was selected, but the second part was not applied due to a missing object A, or no

symbol of N1 was left (i.e. the state symbol was canceled), but some non-terminal

symbol in N2 remains. In both cases the computation has to be aborted. The rules are:

c′1 → # (e0)p1 , . . . , c′1 → # (e0)pn and c2 → # (e0)p1 , . . . , c2 → # (e0)pn .

In the fourth step of the cycle we simply cancel control objects in order to make

the next cycle start in a consistent state. Rules are c′1 → (e0)pc1 and c2 → (e0)pc2 .

Note that, since positions pc1 and pc2 are occupied in step 3, these rules can not be

applied, i.e. the control objects are not canceled in step 3.

Finally, for each terminal in T there is a rule sending it out of the membrane. Since

all terminals are produced in position phome, the rule can be always applied. ut

4 An example of application

In this section we show a simple application of our model to a classical example: the

evolution of “ring species” based on small changes between geographically contiguous

populations (Irwin et al, 2001). A ring species is a species which expanded along two

pathways around a geographic barrier, with the forms which gradually diverge along

the pathways. The intermediate contiguous forms can interbreed but, when the termi-

nal forms meet on the other side of the barrier, they have accumulated so many changes

that they behave like different species. This process results in a complete ring of pop-

ulations with a single species boundary. An example of a ring species is the Greenish

warbler, Phylloscopus trochiloides. The Greenish warbler is a small insectivorous bird

that breeds in forests over a range spanning much of the Palaearctic. The species con-

sists of six subspecies, five of which form a ring around the Tibetan Plateau. Two of

the subspecies coexisted without interbreeding in the Yenisey River valley of central

Siberia, with gradual variation through the chain of populations to the south.

In the following we show a simple model of a species which expands around a

barrier. The colonization of a new space can be associated with a small change in the

genotype of the moving population. Such small changes do not prevent the possibility

for two contiguous populations to interbreed.

Each population is represented by its genotype: a string of three loci each of them

having, as possible values (alleles), either 0 or 1. Two populations can interbreed if

their genotypes differ in one position at most.
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Fig. 6: A possible evolution of the system.
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(a) First step.
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(c) Final population

Fig. 7: Another possible evolution of the system, with initial state as Figure 6a.

(1) xyz → xyz (2) xyz → λ (3) xyz2 → xyz3

(4) xyz − xyz → xyz2 − xyz (5) xyz − xyz → xyz2 − xyz

(6) xyz − xyz → xyz2 − xyz (7) xyz − xyz → xyz2 − xyz
(8) xyz → xyzd ed (9) xyz → xyzd ed

(10) xyz → xyzd ed (11) xyz → xyzd ed

Fig. 8: Evolution rules for the model of ring species.

Figure 6a shows the initial situation. The environment is represented by a mem-

brane of size 3× 3, and the barrier is represented by an inner membrane of size 1× 1.

The initial population is located in position (1, 2), and it is composed of three indi-

viduals with 010 genotype (0103). The ME object e states that a position is already

colonized and it cannot be reached by a different population. The evolution rules are

shown in Figure 8, where x, y, z ∈ {0, 1}, an overlined symbol x represents the negation

of x (as if 0, 1 represent the logical values false and true), and d denotes a direction

d ∈ {N,S,E,W}.
Rules of type 1 simply state that individuals can survive, while rules of type 2 say

that individuals can die. Type 3 rules describe the reproduction of two individuals in

the same position, while rules of type 4–7 describe the reproduction of individuals of

two contiguous populations. The contiguous populations, in order to have offspring can

have either the same genotype or two genotypes differing in only one locus. Because

we assume that all individuals in a population have the same genotype, an offspring is

placed in the population of the parent from which it inherits its genotype.
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Rules of type 8 describe the expansion of a population (actually of an individual)

in a contiguous position which is not already colonized (the expansion is possible only

if the ME object e can be placed in the target position). Rules of type 9–11 describe

expansions associated with small changes in the genotype.

The system can evolve in many directions. Figure 6 shows a possible evolution of

the system, starting from the initial state depicted in Figure 6a. Suppose that, in the

first step, rule 11 is applied to an object in position (1, 2), producing object 011 in (0, 2),

while rule 1 is applied to the remaining two objects 010. The resulting state is depicted

in Figure 6b. The system can evolve to a state in which all the positions are colonized,

such at the one shown in Figure 6c. In this case, it is easy to see that the expansion

followed two pathways around the barrier. Each population can interbreed with the

contiguous ones apart from the populations in positions (0, 0) and (1, 0). The two

populations have accumulated so many changes that their genotypes are incompatible.

Figure 7 shows another possible evolution of the system, for the same starting

state as before (Figure 6a). Figure 7a shows a different possible state reached after the

first step, corresponding to the application of rule 9 producing 110 in (0, 2), rule 10

producing 000 in (2, 2), and rule 1 deleting one object 010 from position (1, 2). After

another step, the system reaches the state shown in Figure 7b. In this case, by rule 8,

species 000 colonizes position (2, 1); by rule 5, another object 110 is created in (0, 2);

while the other 010 in (1, 2) is kept unmodified by the application of rule 1. Figure 7c

shows a reachable state in which, as the previous example, all position are colonized,

and populations 110 in (0, 2), and 101 in (0, 1), cannot interbreed since their genotypes

are too different.

5 Conclusions

We have presented Spatial P systems, an extension of P systems which provides an

explicit representation of space inside membranes. The considered space is the discrete

two-dimensional space N2. Evolution rules are associated with membranes, while ob-

jects are associated with positions inside membranes. Evolution rules are extended to

allow objects to be moved to different positions. Objects belonging to the special kind

of mutually exclusive objects are subjected to the constraint that no two objects of this

kind can occupy the same position at the same time.

We have proved that Spatial P systems are universal even if only non-cooperating

rules are allowed, and that universality is achieved due to the presence of mutually

exclusive objects. We have also given an example of application of Spatial P systems

for modeling the evolution of “ring species”.

As future work, we plan to continue the study of Spatial P systems as a modeling

tool for describing population dynamics in ecosystems. Moreover, in order to improve

the usefulness of models, we plan to develop various extensions of the calculus. For

example, a probabilistic or stochastic version would be able to describe more faithfully

the behavior of systems than the non-deterministic semantics, and also to pave the way

for quantitative simulations (see, for example, Cardona et al (2009)). Another possible

extension of Spatial P systems would be to three-dimensional space.
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