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Abstract. A formal model for diagnostics of biological systems modelled as P systems is presented.
We assume the presence of some biologically motivated changes (frequently pathological) in the
systems behavior and investigate when these changes could be diagnosed by an external observer by
exploiting some techniques originally developed for reasoning on system security.

1. Introduction

In the last few years people have become aware that biological processes can be described by using means
originally developed by to model systems of interacting components. This permits simulation of system
behaviour and verification of properties. P systems were introduced by Pǎun [10] as distributed parallel
computing devices inspired by the structure and the functioning of a living cell. Given its biological
inspirations, P systems can be suitably used for describingbiological processes.

In this paper we show how semantics based techniques can be used to diagnose pathological be-
haviours of biological systems described by P systems. We consider the variant of P systems withpro-
motersandinhibitors [4], we assume the semantics of P systems given in [1] and we formalize a notion
of diagnosable system property. To do so we exploit techniques originally developed for reasoning on
systems security. Many of these techniques are based on a concept ofnon-interference[9, 17, 18], in
which systems are considered to be secure if from observations of their public activities no information
about private activities can be deduced. This approach has found many reformulations. We exploit here
one of its more general reformulations known asopacity[5].

We motivate the use of diagnosis with an example of signal transduction pathway modulating cell
proliferation, namely the signalling pathway induced by the Epidermal Growth Factor Receptor (EGFR).
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2. P Systems and the P Algebra

We recall the definition of P systems [10, 12] and of the P Algebra [1, 2]. The class of P systems we
consider includes rule promoters and inhibitors [4].

2.1. P Systems with Promoters and Inhibitors

A P system consists of ahierarchy of membranes, each of them containing a multiset ofobjects, rep-
resenting molecules, a set ofevolution rules, representing chemical reactions, and possibly other mem-
branes. Each evolution rule consists of two multisets of objects, describing the reactants and the products
of the chemical reaction. A rule in a membrane can be applied only to objects in the same membrane.
Some objects produced by the rule remain in the same membrane, others are sentout of the membrane,
others are sentinto the inner membranes (assumed to exist) which are identified by their labels. In the
original definition of P systems, rules are applied withmaximal parallelism, namely it cannot happen
that a rule is not applied when the objects needed for its triggering are available. However, other forms
of parallelism have been considered with different aims (see e.g. [3, 7, 8]). Here, we assume that at each
step at least one evolution rule in the whole system is applied, and also that more than one rule and sev-
eral occurrences of the same rule can be applied at the same step (to different objects). In other words,
we assume that at each step a multiset of evolution rule instances is non-deterministically chosen and
applied in each membrane, such that in the whole system at least one rule is applied. This is a general
form of parallelism that is better suited than the maximal one to describe events in biological systems.

In P systems with promoters and inhibitors an evolution rulein a membrane may have somepromot-
ersand someinhibitors. Promoters are objects that are required to be present and inhibitors are objects
that are required to be absent in the membranem in order to enable the application of the rule. Promoters
will be denoted simply as objects, namelya, b, c, . . ., while inhibitors will be denoted as objects preceded
by a negation symbol, namely¬a,¬b,¬c, . . .. We denote withDV the set of all possible promoters and
inhibitors symbols that can be obtained from an alphabetV , namelyDV = V ∪ ¬V . Given a set of
promoter and inhibitor symbolsD, we denote withD+ andD− the sets of objects containing all the
objects occurring inD as promoters and all the objects occurring inD as inhibitors, respectively. We
remark thatD+ andD− are sets of objects, hence elements onD− will not be preceded by¬. Moreover,
with ¬D we denote the set obtained by transforming each promoter inD into an inhibitor and viceversa.
As an example, ifD = {a,¬b,¬c, d} we haveD+ = {a, d}, D− = {b, c} and¬D = {¬a, b, c,¬d}.

We assume that all evolution rules have the following form, whereu, vh, vo, v1, . . . , vn are multisets
of objects,{l1, . . . , ln} is a set of membrane labels inIN, andD is a set of promoters and inhibitors:

u→ (vh, here)(vo, out)(v1, inl1) . . . (vn, inln)|D .

A rule can be applied only if requirements expressed byD are satisfied. When a rule is applied, the
multiset of objectsu is replaced byvh, multisetvo is sent to the parent membrane, and eachvi is sent
to inner membraneli. Promoters are not consumed by the application of the corresponding evolution
rule and a single occurrence of a promoter may enable the application of more than one rule in each
evolution step. Similarly, a single occurrence of an inhibitor forbids the application of all the evolution
rules in which it appears. We assume that the set of promotersand inhibitorsD of an evolution rule does
not contain the same object both as a promoter and as an inihibitor, namelyD+ ∩ D− = ∅, and that
consumed objectsu are not mentioned among inhibitors, namelyu ∩D− = ∅.
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Figure 1. The first steps of the EGF pathway and the effect of the vCBL virus.

Definition 2.1. A P SystemΠ is a tuple(V, µ,w1, . . . , wn, R1, . . . , Rn) where:

• V is analphabetwhose elements are calledobjects;

• µ ⊂ IN× IN is amembrane structure, such that(l1, l2) ∈ µ denotes that the membrane labeled by
l2 is contained in the membrane labeled byl1;

• wj with 1 ≤ j ≤ n are multisets of objects inV associated with the membranes1, . . . , n of µ;

• Rj with 1 ≤ j ≤ n are finite sets ofevolution rulesassociated with the membranes1, . . . , n of µ.

2.2. Running Example

We show a P system model of a biological system we use in the following to present the notions we
introduce. The biological system we consider is the networkof protein interactions known asEGFR
pathway. We consider the first steps of the pathway and the effect on such steps of a viral infection.

Signal transduction is a process by which a cell converts onekind of signal, typically a protein that
may be present in the environment, into another. In order to be able to recognize that signal proteins
are available in the environment, a cell exposes some receptor proteins on its external membrane. A
complex signal transduction cascade, that modulates cell proliferation, survival, adhesion, migration
and differentiation, is based on a family of receptors called epidermal growth factor receptors (EGFRs).
These receptors are located on the cell surface and are activated by the binding with a specific ligand
(epidermal growth factor, EGF) to form a ligand-receptor complex (Fig. 1). Subsequently, two complexes
bind to form a dimer and this stimulates intracellular phosphorylation which activates signalling proteins.
These activated signalling proteins (effector proteins, EFFs) initiate several signal transduction cascades
(not shown in Fig. 1), leading to DNA synthesis and cell proliferation. After the activation of effector
proteins, ligand-receptor dimers are internalized in endosomes. In a normal process an enzyme, known
as CBL, is involved: CBL binds an ubiquitin protein to the dimer (ubiquitination). The ubiquitin protein
targets the dimers for lysosomal degradation (see Fig. 1).
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Figure 2. A P system modeling the considered biological system.

Many types of oncogenic viruses exploit the EGFR signallingcascade by manipulating its compo-
nents. When the vCBL, the viral oncogenic form of CBL, is present, EGFRs might also be recycled to
the cellular membrane, thus promoting cellular proliferation (see Fig. 1).

The P system model of the considered biological system is shown in Fig. 2. In the figure, labels
here in evolution rules are omitted. Membrane 1 models the external membrane of the cell and the
external environment. Initially, it contains some objectsmodelling EGF and EGFR proteins and a special
objectV . Membrane 2 models the internal part of the cell, that initially contains objects modelling CBL
enzymes and effector proteins. Finally, membrane 3 models the lysosome, initially empty.

Evolution rules model the events that may happen in the system. Rules in membrane 1 model the
first steps of the pathway, withCPLX,DIM andDIMp describing ligand-receptor complexes, dimers
and active dimers, resp. An active dimer might transform an effectorEFF , sent out by the first rule of
membrane 2, into its activated formEFFp that is sent back into membrane 2. The active dimer might
also be internalized as an endosome modelled byENDO. Rules involvingV model the possibility for
the cell to become infected by vCBL, that is the result of a non-deterministic choice. Rules in membrane
2 model the steps of the pathway that occur inside the cell, whereENDOub and vENDO model
the ubiquitinated and the virus-influenced endosomes, respectively. Note thatCBL andvCBL act as
promoters in the rules in which they are involved. One might give vCBL a stronger effect by using it
also as inhibitor of endosome ubiquitination, namely by adding inhibitor ¬vCBL to ruleENDO →
ENDOub. This would completely stop normal endosome degradation incase of virus infection.

2.3. The P Algebra: Syntax and Semantics

In this section we recall theP Algebra, the algebraic notation of P Systems we have introduced in
[1], with slight modifications.We assumeV to be an alphabet of objects and we adopt the usual string
notation to represent multisets of objects inV . For instance, to represent{a, a, b, b, c} we may write
eitheraabbc, or a2b2c, or (ab)2c. We denote withSet(u) the support of multisetu, namely the set of
all the objects occurring inu. We denote multiset (and set) union as string concatenation, hence we
write u1u2 for u1 ∪ u2. Moreover, we shall writeu(a) for the number of occurrences ofa in multiset
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u. For the sake of legibility, we shall writeu → vhvo{vli}|D for the generic evolution ruleu →
(vh, here)(vo, out)(v1, inl1) . . . (vn, inln)|D.

The abstract syntax of the P Algebra is defined as follows.

Definition 2.2. (P Algebra)
The abstract syntax ofmembrane contentsc, membranesm, andmembrane systemsms is given by the
following grammar, wherel ranges overIN anda overV :

c ::= (∅,∅)
∣

∣ (u→ vhvo{vli}|D,∅)
∣

∣ (∅, a)
∣

∣ c ∪ c

m ::= [l c ]l

ms ::= ms | ms
∣

∣ µ(m,ms)
∣

∣ F (m)

A membrane contentc represents a pair(R, u), whereR is a set of evolution rules andu is a multiset
of objects. A membrane content is obtained through the unionoperation ∪ from constants representing
single evolution rules and single objects, and can be plugged into a membrane with labell by means of
the operation[l ]l of membranesm. Hence, given a membrane contentc representing the pair(R, u)
andl ∈ IN, [l c ]l represents the membrane havingl as label,R as evolution rules andu as objects.

Membrane systemsms have the following meaning:ms1 | ms2 represents the juxtaposition ofms1
andms2, µ(m,ms) represents the hierarchical composition ofm andms, namely the containment of
ms in m, andF (m) represents aflat membrane, namely it states thatm does not contain any child
membrane. Juxtaposition is used to group sibling membranes, namely membranes all having the same
parent in a membrane structure. This operation allows hierarchical compositionµ to be defined as a
binary operator on a single membrane (the parent) and a juxtaposition of membranes (all the children).

Note that every P system has a corresponding membrane systemin the P algebra, and that there exist
membrane systems which do not correspond to any P system.

In what follows we will often write[[l c ]]l for F ([l c ]l). We shall also often write(R, u) where
R = {r1, . . . , rn} is a set of rules andu = o1 . . . om a multiset of objects rather than(r1,∅) ∪ . . . ∪
(rn,∅)∪(∅, o1)∪ . . .∪(∅, om). Moreover, we shall often omit parentheses around membranecontents.

Let us consider again the P system model of EGFR signalling pathway given in Fig. 2. The corre-
sponding P algebra term is the following:

µ
(

[1 R1 , EGF
12EGFR4 V ]1 , µ

(

[2 R2 , CBL
3EFF 8 ]2 , [[3 R3 , ∅ ]]3

) )

whereR1,R2 andR3 are the rules of membrane 1, 2 and 3, resp., as in Fig. 2.
The semantics of the P Algebra is given as a labelled transition system (LTS). In this paper labels

of the LTS are slightly richer with respect to what defined in [1, 2]. In particular, we include in labels
some information on the internal configuration and on the internal causes of the transition that can be
observed from outside. This information reflects the fact that it is usually possible to observe something
on the internal behavior of a biological system (such as the expression of some genes, the presence of
some molecules, etc. . . ). More precisely, given an alphabetV , we assume that the internal information
of a membrane to be exposed in a transition label is an elementof ΓV , that is the set of all tuples
(u, v,D, I,O↑, O↓) whereu, v, I,O↑ ∈ V ∗,D ∈ DV andO↓ ∈ IN × V ∗. In what follows we will write
Γ in place ofΓV if the alphabet is clear from the context.

Labels of the LTS can be of the following forms:

• (u, v, v′,D, I,O↑, O↓), describing a computation step performed by a membrane contentc, where:
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– u is the multiset of objects consumed by the application of evolution rules inc, as it results
from the composition, by means of∪ , of the constants representing these evolution rules.

– v is the multiset of objects inc offered for the application of the evolution rules, as it results
from the composition, by means of∪ , of the constants representing these objects. When
operation[l ]l is applied toc, it is required thatv andu coincide.

– v′ is the multiset of objects inc that are not used to apply any evolution rule and, therefore,
are not consumed, as it results from the composition, by means of ∪ , of the constants
representing these objects.

– D is a set of promoters and inhibitors required to be present and absent, respectively, by
the application of evolution rules inc. More precisely,D− contains all the inhibitors of the
applied evolution rules inc, whereasD+ is a subset of the promoters of those rules. Such a
subset contains only those objects that are not present in the multiset of objects ofc.

– I is the multiset of objects received as input from the parent membrane and from the child
membranes.

– O↑ is the multiset of objects sent as an output to the parent membrane.

– O↓ is a set of pairs(li, vli) describing the multiset of objects sent as an output to each child
membraneli.

• (o,I↓, I↑, O↑, O↓, app), describing a computation step performed by a membranem, where: o
is a set containing only the pair(l, γ) whereγ ∈ Γ is the information on the internal causes of
the transition performed by membranem, I↓ is a set containing only the pair(l, I) wherel is the
label ofm andI is the multiset of objects received bym as input from the parent membrane,I↑

is the multisets of objects received from the child membranes ofm, andO↑ andO↓ are as in the
previous case. Finally,app ∈ {0, 1} is equal to0 if no rule has been applied inm in the described
computation step, and it is equal to1 otherwise.

• (o,I↓, O↑, app), describing a computation step performed by a membrane systemms, whereO↑

andapp are as in the previous cases, ando andI↓ differ with respect to the previous case because
they can contain more than one pair(l, I) and(l, γ), respectively.

For the sake of legibility, in transitions with labels of thefirst form we shall write the first four
elements of the label under the arrow denoting the transition and the other elements over the arrow.
Similarly, in transitions of the second and third forms we shall write o under the arrow. Now, LTS
transitions are defined through SOS rules [13]. We give here avery short explanation of such rules.
Please, refer to [1] for more details.

We start by giving in Fig. 3 the transition rules for membranecontents. Rule(mc1n) describesn
simultaneous applications of an evolution rule for anyn ∈ IN. Rule(mc2) describes the case in which
an evolution rule is not applied because a subsetD′ of the promoters and inhibitors inD it requires to be
present and absent, respectively, are assumed not to satisfy the requirements. Rules(mc3), (mc4) and
(mc5) describe the transitions performed by membrane contents consisting of a single object and the
transitions performed by an empty membrane content.

Rule (u1) describes the behaviour of a union of membrane contents. In this transition rule we use
some auxiliary notations. We assume a functionObjects from membrane contents to multisets of objects
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I ∈ V ∗ n ∈ IN

(u→ vhvo{vli}|D,∅)
I,vn

o
,{(li,vn

li
)}

−−−−−−−−−→
un,∅,∅,D

(u→ vhvo{vli}|D, Iv
n
h )

(mc1n)

I ∈ V ∗ D′ ⊆ ¬D D′ 6= ∅

(u→ vhvo{vli}|D,∅)
I,∅,∅

−−−−−−−→
∅,∅,∅,D′

(u→ vhvo{vli}|D, I)
(mc2)

I ∈ V ∗

(∅, a)
I,∅,∅

−−−−−−−→
∅,a,∅,∅

(∅, I)
(mc3)

I ∈ V ∗

(∅, a)
I,∅,∅

−−−−−−−→
∅,∅,a,∅

(∅, Ia)
(mc4)

I ∈ V ∗

(∅,∅)
I,∅,∅

−−−−−−−→
∅,∅,∅,∅

(∅, I)
(mc5)

x1
I1,O

↑
1
,O

↓
1−−−−−−→

u1,v1,v′
1
,D1

y1 x2
I2,O

↑
2
,O

↓
2−−−−−−→

u2,v2,v′
2
,D2

y2

(D−
1 ∪D−

2 ) ∩ Set(v1v
′
1v2v

′
2) = ∅ D1 ∩ ¬D2 = ∅ D = (D1D2) \ Set(v1v

′
1v2v

′
2)

x1 ∪ x2
I1I2,O

↑
1
O

↑
2
,O

↓
1
∪INO

↓
2−−−−−−−−−−−−−→

u1u2,v1v2,v′
1
v′
2
,D

y1 ∪ y2

(u1)

Figure 3. Transition rules for membrane contents and unionsof membrane contents.

such thatObjects((R, u)) = u. Moreover, given two setsO↓
1 andO↓

2 representing two outputs to inner
membranes, we writeO↓

1 ∪INO
↓
2 to denote the set{(l, uv) | (l, u) ∈ O

↓
1 ∧ (l, v) ∈ O

↓
2}∪ {(l, u) | (l, u) ∈

O
↓
1 ∧ ∄v.(l, v) ∈ O↓

2} ∪ {(l, v) | (l, v) ∈ O
↓
2 ∧ ∄u.(l, u) ∈ O↓

1}.

Now, we have to give transition rules for individual membranes, juxtaposition and hierarchical com-
positions. The labels of the transitions obtained from these rules contain information on the internal
behaviour of membranes. Such information is a set of elements, each denotedγ, that can be obtained
from the label of the transition performed by the content of each membrane. In particular, the part of the
membrane content transition label that could be used as information on the internal behaviour consists
of the objects that were contained in the membrane before performing the transition (by distinguishing
between those that have been consumed by some evolution ruleduring the transition and those that have
not been consumed), the set of promoters and inhibitors thathave been used, and the information on the
objects received and sent by the membrane.

In Fig. 4 we give transition rules for individual membranes,juxtaposition and hierarchical composi-
tion. Rules(m1) and(m2) describe the transitions performed by a membrane with labell. In particular,
(m1) describes the case in which no objects are received as an input from the external membrane, while
(m2) describes the case in which a multiset of objectsI1 6= ∅ is received. In these rulesapp is set to
zero if no evolution rule is applied (u = ∅), and it is set to one if at least one rule is applied (u 6= ∅).
Rule (fm1) allows us to infer the behaviour of a flat membrane[[l c ]]l = F ([l c ]l) from the behaviour
of membrane[l c ]l. Rule (jux1) allows us to infer the behaviour of a juxtaposition of two membrane
structures from the behaviours of the two structures. Finally, rule (h1) describes the behaviour of a hi-
erarchical composition of membranes. In this rule we assume≏ to be an equivalence relation on sets of
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x
I,O↑,O↓

−−−−−→
u,u,v′,D

y app =

{

0 if u = ∅

1 otherwise

D+ = ∅

γ = (u, v′, D, I, O↑, O↓)

[l x ]l
∅,I,O↑,O↓,app
−−−−−−−−−→

{(l,γ)}
[l y ]l

(m1)

x
I1I2,O↑,O↓

−−−−−−−→
u,u,v′,D

y app =

{

0 if u = ∅

1 otherwise

D+ = ∅ I1 6= ∅

γ = (u, v′, D, I1I2, O
↑, O↓)

[l x ]l
{(l,I1)},I2,O↑,O↓,app
−−−−−−−−−−−−−−→

{(l,γ)}
[l y ]l

(m2)

x
I↓,∅,O↑,∅,app
−−−−−−−−−−→

o
y

F (x)
I↓,O↑,app
−−−−−−−→

o
F (y)

(fm1)
x1

I1,O
↑
1
,app1

−−−−−−−→
o1

y1 x2
I2,O

↑
2
,app2

−−−−−−−→
o2

y2

x1|x2
I1I2,O

↑
1
O

↑
2
,max(app1,app2)

−−−−−−−−−−−−−−−−−−→
o1o2

y1|y2

(jux1)

x1
I↓
1
,I

↑
1

,O
↑
1
,O

↓
1
,app1

−−−−−−−−−−−→
o1

y1 x2
I2,O

↑
2
,app2

−−−−−−−→
o2

y2 O
↓
1 ≏ I2 O

↑
2 = I

↑
1

µ(x1, x2)
I↓
1
,O

↑
1
,max(app1,app2)

−−−−−−−−−−−−−−−→
o1o2

µ(y1, y2)

(h1)

Figure 4. Rules for individual membranes and hierarchical composition of membranes

pairs(l, u) with l ∈ IN andu ∈ V ∗, such that, given two such setsI1 andI2, thenI1 ≏ I2 holds if and
only if (I1 \ {(l,∅) | l ∈ IN}) = (I2 \ {(l,∅) | l ∈ IN}). In the last two rulesapp is set to one if at
least oneapp1 andapp2 is equal to one, namelyapp = max(app1, app2). This means that at least one
rule has been applied in the whole composition.

We conclude by defining asystem traceas a sequence of internal information given by an execution of
a P Algebra term. We assume that the system can send objects out of the outmost membrane, but cannot
receive objects from outside. This requirement corresponds to the fact that in a P system objects cannot
be received by the outmost membrane from the external environment. Note that executions containing
steps in which no rule is applied, namely those with 0 as last element of the label, are not considered.

Definition 2.3. (Trace)
A traceof a membrane systemms with alphabetV is a (possibly infinite) sequencew such that, for any

O
↑
i andmsi with i ∈ IN+

eitherw = o1....on andms
∅,O

↑
1
,1

−−−−→
o1

ms1
∅,O

↑
2
,1

−−−−→
o2

. . .
∅,O

↑
n,1

−−−−→
on

msn 6
∅,O↑,1
−−−−→

o
,

orw = o1o2o3.... andms
∅,O

↑
1
,1

−−−−→
o1

ms1
∅,O

↑
2
,1

−−−−→
o2

ms2
∅,O

↑
3
,1

−−−−→
o3

.... .

We denote withT the set of all traces.
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3. Security concepts as diagnostic concepts

We use the semantics of the P Algebra to define diagnosable properties or activities of the corresponding
P systems. From now on we will assume that properties of interest cannot be observed directly. We
will consider them to be diagnosable if they can be deduced byobserving other, for an external observer
visible, system activities. In other words, a property is diagnosable if considering it as a private property,
the corresponding system is not secure as their presence canbe discovered by an intruder observing the
system activities. Hence, there is a direct connection between diagnosability and systems security.

We recall one of the most general security concepts called opacity [5]. By means of opacity many
other security concepts can be modelled [6], and moreover opacity can be defined independently of
systems constructors and operations since it exploits onlythe corresponding LTS. Opacity is based on
concepts of observations and of predicates over system traces. In order to define the notion of observation
in the transition rules we introduce a notion ofobservation function.

Definition 3.1. Given a set of observablesΘ, anobservation functionis any functionO : T → Θ∗.

In general, different types of observation functions can beused, but here we consider onlystatic
observations. This means that an observation of a trace is given by the observations of each of its actions
separately, namely ifw = o1o2. . . . .on thenO(w) = O(o1)O(o2). . . . .O(on). Opacity is defined for an
arbitrary predicateφ over sequences of system actions. Roughly, the observer cannot deduce validity of
φ if there are two tracesw,w′ such thatφ(w),¬φ(w′) and the the sequences cannot be distinguished by
the observer, namelyO(w) = O(w′).

Definition 3.2. A predicateφ over system traces isopaquew.r.t. the observation functionO and P
systemΠ if for every tracew of Π such thatφ(w) holds, there exists a tracew′ such that¬φ(w′) holds
andO(w) = O(w′).

By predicateφ we can express various types of properties, starting from simple ones (e.g. traces contain
a particular element) to more sophisticated ones.

Example 3.1. Let us consider again the P system model of the EGFR pathway. Aproperty of interest
on the behavior of the modelled system is the infection of thecell by the vCBL virus. Such a property
can be expressed as a predicateφ on execution tracesw of the P system model as follows:

φ(w) holds iff
{(

1, γ1

)

,
(

2 , (u, v vCBL,D, I,O↑, O↓)
)

,
(

3, γ3

)}

∈ w .

Let us assume that what is observable is the presence of the ubiquitinated endosome in the lysosome.
This is modelled by the following observation function:

O1(o) =

{

LY SO if
(

3, (uENDOub, v,D, I,O↑ , O↓)
)

∈ o

λ otherwise

In this case we have that predicateφ is opaque. For every trace in which thevCBL virus occurs inside
membrane 2 (φ is true) there are different kinds of behaviour. In the first kind the phosphorilated dimers
(DIMp) remain on the cell membrane and they continue to send signalling proteins (EFFp) inside
the cell. In this case no endosome is sent to the lysosome (there are noLY SO observations). In a
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second kind of behaviour a phosphorilated complex is taken by an endosome, but it is not destroyed
because of the presence ofvCBL and theEGFR receptors are recycled. Also in this case there are no
LY SO observations. The opacity ofφ derives from the fact that the above first kind of behaviour can be
expressed also by a cell withoutvCBL virus. That is there exists a trace for whichφ is false with the
same observable behaviour. The same happens when the endosome is destroyed.

In general, opacity is undecidable, as stated by the following theorem.

Theorem 3.1. Opacity is undecidable for P systems.

Proof:
We reduce opacity to the Post correspondence problem. Let usconsider two finite listsu1, . . . , uN and
v1, . . . , vN of words over some alphabetA having at least two symbols. Let us consider P system which
randomly outputs through the outmost membrane objectsb1, . . . bN . Let oi be elements of traces such
that

(

1, (u, v,D, I, bi, O
↓)

)

∈ oi. Let O be such that it hides everything, namely it maps everything to
ǫ, for ǫ ∈ Θ. Let φ(w) hold if for w = oi1 . . . oiK we haveui1 . . . uiK 6= vi1 . . . viK . The opacity ofφ
would mean that there exists another tracew′ = oj1 . . . ojK

such that¬φ(w′) holds, but this would imply
uj1 . . . ujK

= vj1 . . . vjK
, namely a solution of the Post correspondence problem. ⊓⊔

Now we define diagnosability as a property dual to opacity. Labels of LTSs defined in the previous
section carry complex information about systems state and activity. We exploit observation functions to
express what can be really observed by an external observer from systems behavior.

Definition 3.3. A predicateφ over system traces isdiagnosablew.r.t diagnoser defined byO and P
systemΠ if the predicateφ is not opaque w.r.t. the observation functionO and P systemΠ, namely there
exists a tracew such thatφ(w) holds and there is no tracew′ such that¬(w′) holds andO(w) = O(w′).

In other words a diagnosable propertyφ with respect toO is such that there exists a sequencew of
system activities such thatφ(w) holds and alsoφ(w′) holds for every trace such thatO(w) = O(w′).

Example 3.2. Let us consider again the P system model of the EGFR pathway and the predicateφ as in
Ex. 3.1. Let us assume that what is observable are the phosphorilation of an effector protein, the creation
of an endosome and the presence of a ubiquitinated endosome in the lysosome. This can be modelled by
the following observation function:

O2(o) =























PH if
(

1, (u, v,D, I ∪ {(2, EFFp)}, O↑, O↓)
)

∈ o

ENDO if
(

1, (u, v,D, I ∪ {(2, ENDO)}, O↑, O↓)
)

∈ o

LY SO if
(

3, (uENDOub, v,D, I,O↑ , O↓)
)

∈ o

λ otherwise

In this case we have that predicateφ is diagnosable because there exists a tracew which verifies it and
there is not a tracew′ which does not and such thatO(w) = O(w′). First of all note that the only pos-
sible looping situation in the system can be due to recurrentphosphorilations and de-phosphorilations of
effector proteinsEFF . In these cases we obtain infinite traces and inifinite sequences of observations
(as phosphorilation ofEFF is observable). Finite traces (and observations) occur when all the phospho-
rilated dimersDIMp sooner or later are taken by endosomes and then destroyed by alysosome. Let us
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now consider only the finite traces, in particular those traces in which, in presence ofvCBL, aDIMp

is taken by an endosome (ENDO observation) and theEGFR receptors are recycled. In this case there
would be an occurrence ofENDO that is not followed byLY SO. Hence, when the virus is present we
may have finite traces with moreENDOs thanLY SOs. In the case in whichvCBL is absent, in each
finite trace in whichDIMp is taken by an endosome it is always destroyed by a lysosome, namely an
observationENDO is always followed by aLY SO. Thus, a finite tracew, such that¬φ(w), in which
we can observe moreENDOs thanLY SOs does not exist.

Theorem 3.2. Diagnosability is undecidable for P systems.

Proof:
Follows from undecidability of opacity. ⊓⊔

Diagnosability as it is defined in Definition 3.3 might be considered too weak. It is required that
there exists a computation with a property of interest such that there cannot be another computation
without that property which is indistinguishable for an observer from the first one. Hence, to diagnose
the property a diagnoser needs to force the system to performthe particular computation having the above
property, and this might not be an easy task. To overcome thisproblem we propose strong diagnosability.

Definition 3.4. A predicateφ over system traces isstrongly diagnosablewith respect to diagnoser de-
fined byO and P systemΠ if there exists a tracew such thatφ(w) holds and for every tracew such that
φ(w) holds there is no tracew′ such that¬φ(w′) holds andO(w) = O(w′).

With respect to diagnosability, in strong diagnosabilityall traces which satisfy the property allow the
property to be diagnosed. Note that the concept of strong diagnosability is analogous to the concept of
simple visibility introduced in [11] in the framework of digital forensis investigations.

Example 3.3. Let us consider again the P system model of the EGFR pathway and the predicateφ as
in Ex. 3.1 and Ex. 3.2. Let us assume that what is actually observable in this case is the presence of the
vCBL virus. This can be modelled by the following observation function:

O3(o) =

{

vCBL if
(

2, (u, v vCBL,D, I,O↑, O↓)
)

∈ o

λ otherwise

In this case we have that predicateφ is obviously strongly diagnosable.

Theorem 3.3. Strong diagnosability is undecidable for P systems.

Proof:
The proof is similar to that of Theorem 3.1, but withφ(w) that holds if forw = oi1 . . . oiK we have
ui1 . . . uiK = vi1 . . . viK . Since strong diagnosability requires that there exists a tracew such thatφ(w)
holds (that is a solution of the Post correspondence problem) it follows that it is undecidable. ⊓⊔

We consider some restrictions under which the introduced properties of opacity and diagnosability
become decidable. First of all, let us consider the notions of initial opacity, initial diagnosability, and
stronginitial diagnosability. In the definition of these variants, we assume that the P system may have
several different initial states (represented as a set of membrane systems{ms1, . . . ,msn}. In particular,
we consider a notion ofextended tracein which traces of a P system are associated with their initial state.
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Definition 3.5. (Extended trace)
An extended traceof a set of membrane systems{ms1, . . . ,msn} is a pair(msi, w), with 1 ≤ i ≤ n,
such thatw is a trace ofmsi.

Given a set of extended tracesET , let sup(ET ) be the set of all membrane systems mentioned in
ET (calledsupportof ET ), namelysup(ET ) = {ms | (ms,w) ∈ ET}. Similarly, we denote with
tr(ET ) the set of traces obtained by removing from each extended trace the reference to its initial state,
namelytr(ET ) = {w | (ms,w) ∈ ET}. We say that a set of extended traces iscompleteif for every
ms ∈ sup(ET ) and every tracew that can be obtained from the semantics of membrane systemms, we
have that(ms,w) ∈ ET . With use extended traces in new variants of opacity and diagnosability.

Definition 3.6. Given a complete set of extended tracesET , a predicateφ overtr(ET ) is initial opaque/
initial diagnosable/strongly initial diagnosablewith respect to observation functionO if and only if φ
is opaque/diagnosable/strongly diagnosable, respectively, and there exists a predicateψ over membrane
systems such as for every(ms,w) ∈ ET , it holdsφ(w) = ψ(ms).

The introduced variants of opacity and diagnosability dealwith properties of the behaviour which
depend tightly on the initial state of the system. In the context of system security the notion of initial
opacity has been introduced to deal, for instance, with secrecy protocols in which the secrecy of some
information during the execution is ensured by the correct distribution of private keys in the initial state.

Note that, our definition of initial opacity is more general than that given in [5] on Petri Nets [14]. In
[5] initial states of a system are different markings of the same net. Here, by the definition of extended
trace, we allow initial states to be completely different membrane systems. In practice, initial states
constituting the support of an extended trace will often have the same membrane structure and the same
evolution rules, but different objects. However, we do not add this requirement here.

In the context of biological systems the notions of initial diagnosability can be used to discover
the presence of some pathological entity at the beginning the evolution of a system, by analysing the
dynamics of the system itself. For example, let us consider two initial states for our model of the EGFR
pathway, the first obtained by removing objectV from membrane 1, and the second in whichV is
replaced byvCBL (the virus) in membrane 2. Propertyφ of Ex. 3.1 holds only on traces starting from
the second initial state. Hence, being able to diagnoseφ by observing the behaviour of the system (as
in Ex. 3.2 and 3.3) gives information about the presence of the virus in the initial state. In the EGFR
model with two initial states we have thatφ is initial diagnosable and strongly initial diagnosable, if the
observation functions of Ex. 3.2 and 3.3, resp., are considered.

We give a decidability result on the variants of opacity and diagnosability, that is based on the finite-
ness of the semantics of membrane systems. A membrane systemms has a finite semantics if the LTS
obtained by the given inference rules and rooted inms can reach a finite number of states. We consider

here only transitions of the form
∅,O↑,1
−−−−→

o
, namely those in which at least one rule has been applied.

Theorem 3.4. Initial opacity, initial diagnosability and strong initial diagnosability are decidable for
every complete set of extended tracesET such thatsup(ET ) is finite if the semantics of eachms ∈

sup(ET ), restricted to transitions of the form
∅,O↑,1
−−−−→

o
, is finite.

Proof:
In order to prove that initial opacity, initial diagnosability and strong initial diagnosability are decidable,
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we follow the approach used to prove Th. 7 of [6] (that, in turn, is based on Th. 3.3 of [5]). The idea
is to reduce the three properties to regular language inclusion problems. W.r.t. the proofs in [6, 5], here
we deal with possibly infinite traces, hence we shall reduce the three properties toω-regular language
inclusion problems (see [16, 15] for an introduction toω-languages andω-automata). Let us consider
ω-automata with Büchi acceptance condition, and let us denote with L(A) the (ω-regular) language
accepted byω-automatonA. Let the alphabets of theω-automata we are going to construct consist of a
set of observablesΘ and of a special symbolǫ 6∈ Θ. We also assumeφ,ψ,O andET to be as in Def. 3.6.

Let us construct anω-automaton from the semantics of eachms ∈ sup(ET ) (that is a finite LTS)
as follows: the set of states of the automaton is the same as that of the LTS, and the LTS contains a

transitionms1
∅,O↑,1
−−−−→

o
ms2 if and only if theω-automaton contains a transition fromms1 toms2 with

labelO(o). In addition, let theω-automaton contain a self-loopingǫ-transition from each statems′ such

as in the LTS we havems′ 6
∅,O↑,1
−−−−→

o
. Moreover, let all the states of the obtainedω-automaton to be final.

Now, let us consider anω-automatonA1 constructed by connetting, with anǫ-transition, a fresh initial
state with everyms ∈ sup(ET ) such thatψ(ms) holds. Moreover, let us consider anotherω-automaton
A2 constructed by connetting, with anǫ-transition, a fresh initial state with everyms ∈ sup(ET ) such
that¬ψ(ms) holds. It is easy to see thatφ is initial opaque if and only ifL(A1) ⊆ L(A2), that it is
initial diagnosable if and only ifL(A1) 6⊆ L(A2), and that it is strongly initial diagnosable if and only if
L(A1) 6= ∅ andL(A1) ∩ L(A2) = ∅. All these properties are decidable forω-regular languages. ⊓⊔

We remark that the model of the EGFR pathway we have given has afinite semantics. We have that
the initial diagnosability and strong inital diagnosability of φ (as defined in example 3.1) with respect to
suitable observation functions in a EGFR model with two initial states are decidable (and actually hold).

The decidability of the initial variants of opacity and diagnosability is based on a semantical require-
ment on membrane systems, namely finiteness of the semantics. Consequently, such a decidability result
is meaningful only if the finiteness of the semantics of a P system is decidable. We can prove that this
is the case for P systems with rules without promoters and inhibitors. For P systems with promoters and
inhibitors, we shall rather give a sufficient condition thatensures finiteness of the semantics. Both these
results are based on a translation of P systems without promoters and inhibitors into Petri Nets [14].

Let us recall the definition of Petri Nets with weighted arcs.A net is a tripleN = (P, T,W ) such
thatP is a finite set ofplaces, T is a finite set oftransitionsandW : (T × P ) ∪ (P × T ) → IN is the
weight functionof N . A markingof a netN is a multiset of places. Given a markingM and a placep,
we writeM(p) for the number of occurrences ofp in M . The dynamics of a net consists of steps from
one marking to another, in which the latter is determined by the transitions of the net. As in [5], we allow
here a multiset of simultaneously occurring transitions can be performed at each step. Given a multiset
of transitionsU and a placep, let preN (U)(p) andpostN (U)(p) be defined as follows:

preN(U)(p) =
∑

t∈U U(t) ·W (p, t) postN (U)(p) =
∑

t∈U U(t) ·W (t, p)

whereU(t) is the number of occurrences oft in U . We say that a multiset of transitionsU is enabledat
a markingM if ∀p ∈ P.M(p) ≥ preN (U)(p). If U is enabled, it can be executed (or fired) leading to
markingM ′ s.t.M ′(p) = M(p)−preN (U)(p)+postN (U)(p), for everyp ∈ P . A stepof the execution
of a netN from a markingM to another consists in the firing of a non-empty multiset of transitions.

Let us now give a translation of membrane systems without promoters and inhibitors into Petri Nets.
For the sake of simplicity, we give the translation of P systems, rather than of membrane systems.
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Definition 3.7. Given a P systemΠ = (V, µ,w1, . . . , wn, R1, . . . , Rn), its translation into Petri Net
NΠ = (P, T,W ) is such thatP = V × {1, . . . , n} andT = R1 ∪ . . . ∪ Rn. Moreover,W is such that
for every1 ≤ j ≤ n and everyr = u→ vhvo{vli} in Rj (hence inT ), the following axioms hold:

∀a ∈ u.W ((a, j), r) = u(a) ∀a ∈ vh.W (r, (a, j)) = vh(a)

∀a ∈ vo.W (r, (a, k)) = vo(a) if (k, j) ∈ µ ∀a ∈ vli .W (r, (a, i)) = vli(a) if (j, i) ∈ µ

andW gives0 otherwise. The initial markingMΠ of the net is such thatMΠ((a, i)) = wi(a), with
1 ≤ i ≤ n anda ∈ V .

Proposition 3.1. Letms be a membrane system without promoters and inhibitors corresponding to a P

systemΠ. It holds thatms
∅,O↑,1
−−−−→

o
ms′ if and only if NΠ performs a step fromMΠ to M ′, with ms′

corresponding to a P systemΠ′, withNΠ = NΠ′ andM ′ = MΠ′ .

Proof:
Follows immediately from the definition of the translation of P systems into Petri Nets and from the fact
that the considered kinds of parallelism in Petri Nets and membrane systems coincide. ⊓⊔

We are now ready to give our decidability results on the finiteness of the semantics of a membrane
system which are necessary to ensure that the decidability result in Theorem 3.4 actually holds.

Theorem 3.5. The finiteness of the semantics of a membrane system without promoters and inhibitors
is decidable.

Proof:
Follows from the translation into Petri Nets, and the fact that the finiteness of the set of reachable mark-
ings in a Petri Net is decidable, through the standard coverability tree construction [14]. ⊓⊔

Theorem 3.6. Given a membrane systemms, letms′ be obtained by removing promoters and inhibitors
from the evolution rules ofms. If ms′ has a finite semantics, thenms has a finite semantics as well.

Proof:
Follows from the fact that promoters and inhibitors are restrictions on the applicability of rules. Hence,
transitions in the semantics ofms are a subset of those in the semantics ofms′. ⊓⊔

The proofs of the last two theorems exploit techniques developed to decide the finiteness of the
semantics of Petri Nets. Similar techniques could be developed for membrane systems. This could allow
a stronger result on membrane systems with promoters and inhibitors to be obtained.

4. Conclusions

We have proposed and investigated notions of diagnosability of pathological changes in the behaviour
of biological systems by taking inspiration from notions ofsystems security. Moreover, we have shown
applications of such notions on a P system model of the EGFR signalling pathway.

Diagnosability notions are in general undecidable. However, we have considered classes of prop-
erties and systems for which such notions are decidable. In particular, we have considered a form of
diagnosability in which properties on the behaviour can be reduced to properties on the initial states, and
we have shown that for systems with a finite semantics such a form of diagnosability is decidable.
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[4] P. Bottoni, C. Martin-Vı́de, G. Pǎun, G. Rozemberg: Membrane systems with promoters/inhibitors. Acta
Informatica 38, 695-720, 2002.

[5] J. Bryans, M. Koutny, P. Ryan: Modelling opacity using Petri Nets. Proc. of the 2nd Int. Workshop on
Security Issues with Petri Nets and other Computational Models (WISP’04), ENTCS 121, 101-115, 2004.
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