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Abstract. A formal model for diagnostics of biological systems modeélas P systems is presented.
We assume the presence of some biologically motivated @satfgequently pathological) in the
systems behavior and investigate when these changes aodlddnosed by an external observer by
exploiting some techniques originally developed for re@sg on system security.

1. Introduction

Inthe last few years people have become aware that biolqgioeesses can be described by using means
originally developed by to model systems of interacting ponents. This permits simulation of system
behaviour and verification of properties. P systems weredniced by Paun [10] as distributed parallel
computing devices inspired by the structure and the funitg of a living cell. Given its biological
inspirations, P systems can be suitably used for descriliimiggical processes.

In this paper we show how semantics based techniques carebdetausliagnose pathological be-
haviours of biological systems described by P systems. \Weider the variant of P systems wipio-
motersandinhibitors [4], we assume the semantics of P systems given in [1] and malze a notion
of diagnosable system property. To do so we exploit tectasiquriginally developed for reasoning on
systems security. Many of these techniques are based oncaeptoof non-interferencg9, 17, 18], in
which systems are considered to be secure if from obsengatibtheir public activities no information
about private activities can be deduced. This approachdualifmany reformulations. We exploit here
one of its more general reformulations knowrnogscity[5].

We motivate the use of diagnosis with an example of signakttaction pathway modulating cell
proliferation, namely the signalling pathway induced by Epidermal Growth Factor Receptor (EGFR).
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2. P Systems and the P Algebra

We recall the definition of P systems [10, 12] and of the P Atgdh, 2]. The class of P systems we
consider includes rule promoters and inhibitors [4].

2.1. P Systems with Promoters and Inhibitors

A P system consists of kierarchy of membranegach of them containing a multiset objects rep-
resenting molecules, a set@folution rulesrepresenting chemical reactions, and possibly other mem-
branes. Each evolution rule consists of two multisets oéctisj describing the reactants and the products
of the chemical reaction. A rule in a membrane can be applidy to objects in the same membrane.
Some objects produced by the rule remain in the same memtess are serdut of the membrane,
others are sennto the inner membranes (assumed to exist) which are identifietidir labels. In the
original definition of P systems, rules are applied withximal parallelism namely it cannot happen
that a rule is not applied when the objects needed for itgerigg are available. However, other forms
of parallelism have been considered with different aime ésg. [3, 7, 8]). Here, we assume that at each
step at least one evolution rule in the whole system is appdied also that more than one rule and sev-
eral occurrences of the same rule can be applied at the seméatdifferent objects). In other words,
we assume that at each step a multiset of evolution ruleriostais non-deterministically chosen and
applied in each membrane, such that in the whole system sitdea rule is applied. This is a general
form of parallelism that is better suited than the maximad tmdescribe events in biological systems.

In P systems with promoters and inhibitors an evolution il membrane may have somp®mot-
ersand someénhibitors. Promoters are objects that are required to be present hitiitans are objects
that are required to be absent in the membrarie order to enable the application of the rule. Promoters
will be denoted simply as objects, namely, ¢, . . ., while inhibitors will be denoted as objects preceded
by a negation symbol, nametya, =b, ¢, . ... We denote withDy, the set of all possible promoters and
inhibitors symbols that can be obtained from an alphdabehamelyDy = V U -V. Given a set of
promoter and inhibitor symbol®, we denote withD™ and D~ the sets of objects containing all the
objects occurring inD as promoters and all the objects occurringliras inhibitors, respectively. We
remark thatD* and D~ are sets of objects, hence elementdonwill not be preceded by.. Moreover,
with =D we denote the set obtained by transforming each promoteriirio an inhibitor and viceversa.
As an example, ifD = {a, —b, ~c,d} we haveD™ = {a,d}, D~ = {b,c} and—D = {—a, b, ¢, ~d}.

We assume that all evolution rules have the following forrheveu, vy, v, v1, . . . , v, are multisets
of objects {1, ...,l,} is a set of membrane labelsN, andD is a set of promoters and inhibitors:

u — (vp, here)(v,, out)(vy,ing,) ... (vn,ing,)|D -

A rule can be applied only if requirements expressedbgre satisfied. When a rule is applied, the
multiset of objectsu is replaced bwy,,, multisetwv, is sent to the parent membrane, and egcis sent
to inner membrané;. Promoters are not consumed by the application of the quureing evolution
rule and a single occurrence of a promoter may enable thécapph of more than one rule in each
evolution step. Similarly, a single occurrence of an intaibforbids the application of all the evolution
rules in which it appears. We assume that the set of promatersnhibitorsD of an evolution rule does
not contain the same object both as a promoter and as aniiarhibamelyD™ N D~ = @, and that
consumed objectg are not mentioned among inhibitors, namely D~ = @.
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Figure 1. The first steps of the EGF pathway and the effecteo¥@BL virus.
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Definition 2.1. A P Systenil is a tuple(V, u, w1, ..., w,, R1, ..., R,) where:
e V is analphabetwhose elements are callethjects

e 1 C IN x IN is amembrane structuresuch thatl;, l2) € p denotes that the membrane labeled by
[ is contained in the membrane labeledlby

e w; with 1 < j < n are multisets of objects il associated with the membrangs. ., n of y;

e R; with 1 < j < n are finite sets oévolution rulesassociated with the membranks. ., n of p.

2.2. Running Example

We show a P system model of a biological system we use in thaniolg to present the notions we
introduce. The biological system we consider is the netvadrgrotein interactions known &sGFR
pathway We consider the first steps of the pathway and the effect cim steps of a viral infection.

Signal transduction is a process by which a cell convertskarg of signal, typically a protein that
may be present in the environment, into another. In orderetalide to recognize that signal proteins
are available in the environment, a cell exposes some m@cppidteins on its external membrane. A
complex signal transduction cascade, that modulates oaifgration, survival, adhesion, migration
and differentiation, is based on a family of receptors ca#lpidermal growth factor receptors (EGFRS).
These receptors are located on the cell surface and aratadtity the binding with a specific ligand
(epidermal growth factor, EGF) to form a ligand-receptanptex (Fig. 1). Subsequently, two complexes
bind to form a dimer and this stimulates intracellular phasylation which activates signalling proteins.
These activated signalling proteins (effector proteirfs-§) initiate several signal transduction cascades
(not shown in Fig. 1), leading to DNA synthesis and cell gesition. After the activation of effector
proteins, ligand-receptor dimers are internalized in spdwes. In a normal process an enzyme, known
as CBL, is involved: CBL binds an ubiquitin protein to the @infubiquitination). The ubiquitin protein
targets the dimers for lysosomal degradation (see Fig. 1).
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1 \
2 F EFF => (EFF,out) CBL CBL CBL W EGF EGF EGF EGF EGF EGF
EFF EFF EFF EFF EGF EGF EGF EGF EGF EGF

ENDO —> ENDOUb EFF EFF EFF EFF EGFR EGFR EGFR EGFR V
EGF EGFR =>> CPLX

ENDOub —=> (ENDOub.in3)ICBL

ENDO => VENDOIVCBL CPLX CPLX => DIM

VENDO => (EGFR EGFR,out) DIM —> DIMp

EFFp —> EFF EFF DIMp —> (EFFp,in2) DIMp

3 DIMp => (ENDO,in2)
ENDOub =>

V => (VCBL,in3)

Lk J v> J

Figure 2. A P system modeling the considered biologicaksyst

Many types of oncogenic viruses exploit the EGFR signalliagcade by manipulating its compo-
nents. When the vCBL, the viral oncogenic form of CBL, is prgs EGFRs might also be recycled to
the cellular membrane, thus promoting cellular proliferat(see Fig. 1).

The P system model of the considered biological system ig/ishio Fig. 2. In the figure, labels
here in evolution rules are omitted. Membrane 1 models the eatemembrane of the cell and the
external environment. Initially, it contains some objauntsdelling EGF and EGFR proteins and a special
objectV. Membrane 2 models the internal part of the cell, that iljtieontains objects modelling CBL
enzymes and effector proteins. Finally, membrane 3 motel/sosome, initially empty.

Evolution rules model the events that may happen in the systules in membrane 1 model the
first steps of the pathway, with PL X, DIM and DI Mp describing ligand-receptor complexes, dimers
and active dimers, resp. An active dimer might transformfecer EF' F', sent out by the first rule of
membrane 2, into its activated forfiF F'p that is sent back into membrane 2. The active dimer might
also be internalized as an endosome modelle@byDO. Rules involvingl” model the possibility for
the cell to become infected by vCBL, that is the result of a-deterministic choice. Rules in membrane
2 model the steps of the pathway that occur inside the celerevB N DOub and v EN DO model
the ubiquitinated and the virus-influenced endosomesgotisply. Note that’ BL andvC BL act as
promoters in the rules in which they are involved. One migi# gC BL a stronger effect by using it
also as inhibitor of endosome ubiquitination, namely byiagldnhibitor -vC'BL to rule ENDO —
EN DOwb. This would completely stop normal endosome degradati@ase of virus infection.

2.3. The P Algebra: Syntax and Semantics

In this section we recall th® Algebra the algebraic notation of P Systems we have introduced in
[1], with slight modifications.We assurié to be an alphabet of objects and we adopt the usual string
notation to represent multisets of objectslin For instance, to represefit, a, b, b, c} we may write
eitheraabbe, or a?b?c, or (ab)?c. We denote withSet(u) the support of multiset;,, namely the set of

all the objects occurring im. We denote multiset (and set) union as string concatenahience we
write ujug for u; U ug. Moreover, we shall writei(a) for the number of occurrences ofin multiset
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u. For the sake of legibility, we shall write — v,v,{v;, }|p for the generic evolution rule. —
(vp, here)(v,, out)(vy,ing, ) ... (vn,ing,)|D-
The abstract syntax of the P Algebra is defined as follows.

Definition 2.2. (P Algebra)
The abstract syntax shembrane contents membranesn, andmembrane systemss is given by the
following grammar, wheré ranges oveiN anda overV':

c 2= (2,9) | (u— vvo{u,}p,2) | (8,0) | cUC
m = [lc]l

ms u=ms|ms | p(m,ms) | F(m)

A membrane contenrtrepresents a paifR, u), whereR is a set of evolution rules andis a multiset
of objects. A membrane content is obtained through the upp@nation U _ from constants representing
single evolution rules and single objects, and can be plligge a membrane with labélby means of
the operatiorj; -], of membranesn. Hence, given a membrane contenepresenting the paifR, u)
andl € IN, [; ¢], represents the membrane haviras label;R as evolution rules and as objects.

Membrane systems:.s have the following meaningns; | mss represents the juxtaposition ofs;
andmsas, u(m,ms) represents the hierarchical compositionnofandms, namely the containment of
ms in m, and F'(m) represents dlat membrangnamely it states that. does not contain any child
membrane. Juxtaposition is used to group sibling membraraasely membranes all having the same
parent in a membrane structure. This operation allows takieal compositionu to be defined as a
binary operator on a single membrane (the parent) and gijosittzon of membranes (all the children).

Note that every P system has a corresponding membrane siystieenP algebra, and that there exist
membrane systems which do not correspond to any P system.

In what follows we will often write[; ¢], for F'([;c];,). We shall also often writ¢ R, «) where
R = {r1,...,m,} is aset of rules and = oy ... 0, a multiset of objects rather thgm,, &) U ... U

(rn, @)U(D,01)U...U (D, 0, ). Moreover, we shall often omit parentheses around memlo@mtents.
Let us consider again the P system model of EGFR signallitigw@y given in Fig. 2. The corre-
sponding P algebra term is the following:

p( [ Ri, EGF®EGFR'V), , u( [R2,CBL*EFF®), ., [3R3,2]s ) )

whereR{,R, andR 3 are the rules of membrane 1, 2 and 3, resp., as in Fig. 2.

The semantics of the P Algebra is given as a labelled transftystem (LTS). In this paper labels
of the LTS are slightly richer with respect to what definedin?]. In particular, we include in labels
some information on the internal configuration and on therimdl causes of the transition that can be
observed from outside. This information reflects the faat this usually possible to observe something
on the internal behavior of a biological system (such as ¥peession of some genes, the presence of
some molecules, etc...). More precisely, given an alphibete assume that the internal information
of a membrane to be exposed in a transition label is an eleofehit,, that is the set of all tuples
(u,v, D, I,01,0%) whereu,v,I,0" € V*, D € Dy andO! € IN x V*. In what follows we will write
T"in place ofl'y if the alphabet is clear from the context.

Labels of the LTS can be of the following forms:

e (u,v,v',D,I,0", 0O, describing a computation step performed by a membranexctnivhere:
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— wu is the multiset of objects consumed by the application ofwgian rules inc, as it results
from the composition, by means ofJ _, of the constants representing these evolution rules.

— v is the multiset of objects in offered for the application of the evolution rules, as itles
from the composition, by means ofJ _, of the constants representing these objects. When
operation; _|, is applied ta, it is required thav andw coincide.

— ¢’ is the multiset of objects in that are not used to apply any evolution rule and, therefore,
are not consumed, as it results from the composition, by meénuU _, of the constants
representing these objects.

— D is a set of promoters and inhibitors required to be presedtadisent, respectively, by
the application of evolution rules in More precisely,D~ contains all the inhibitors of the
applied evolution rules in, whereasD™ is a subset of the promoters of those rules. Such a
subset contains only those objects that are not present imtiitiset of objects of.

— I is the multiset of objects received as input from the parestnirane and from the child
membranes.

— O' is the multiset of objects sent as an output to the parent maemab

— Ol is a set of pairgl;, vy, ) describing the multiset of objects sent as an output to ehitth c
membrané,;.

e (0,Z',1",07,0!, app), describing a computation step performed by a membranahere: o
is a set containing only the pajt,v) where~y € T is the information on the internal causes of
the transition performed by membrang Z' is a set containing only the pa(, I) wherel is the
label of m and I is the multiset of objects received by as input from the parent membrarne,
is the multisets of objects received from the child membsasfen, andO' andO! are as in the
previous case. Finallyypp € {0, 1} is equal ta0 if no rule has been applied in in the described
computation step, and it is equal tatherwise.

e (0,Z',0", app), describing a computation step performed by a membranerayst, whereO'
andapp are as in the previous cases, anahdZ' differ with respect to the previous case because
they can contain more than one pdir7) and(l,~), respectively.

For the sake of legibility, in transitions with labels of tfiest form we shall write the first four
elements of the label under the arrow denoting the tramsiiod the other elements over the arrow.
Similarly, in transitions of the second and third forms wealkkvrite o under the arrow. Now, LTS
transitions are defined through SOS rules [13]. We give herera short explanation of such rules.
Please, refer to [1] for more details.

We start by giving in Fig. 3 the transition rules for membraoatents. Rulémcl,,) describes:
simultaneous applications of an evolution rule for ang IN. Rule (mc2) describes the case in which
an evolution rule is not applied because a subi¥etf the promoters and inhibitors iR it requires to be
present and absent, respectively, are assumed not toygatisfequirements. Rulgsnc3), (mc4) and
(mcb) describe the transitions performed by membrane contemisisting of a single object and the
transitions performed by an empty membrane content.

Rule (u1) describes the behaviour of a union of membrane contentsidrirainsition rule we use
some auxiliary notations. We assume a functisjects from membrane contents to multisets of objects
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Figure 3. Transition rules for membrane contents and urdbnsembrane contents.

such thatObjects((R,u)) = u. Moreover, given two set@% andO% representing two outputs to inner
membranes, we Writ@% Un O4 to denote the set(l, uv) | (I, u) € O% A(Lw) e O%} U{(l,u)|(l,u) €
O A B.(L,v) € Oy U{(L,v) | (I,v) € O} A Bu.(l,u) € O}}.

Now, we have to give transition rules for individual memhanjuxtaposition and hierarchical com-
positions. The labels of the transitions obtained from e¢hedes contain information on the internal
behaviour of membranes. Such information is a set of elespeaich denoted, that can be obtained
from the label of the transition performed by the contentasfremembrane. In particular, the part of the
membrane content transition label that could be used amiafiion on the internal behaviour consists
of the objects that were contained in the membrane befoferpging the transition (by distinguishing
between those that have been consumed by some evolutioduting the transition and those that have
not been consumed), the set of promoters and inhibitorshthat been used, and the information on the
objects received and sent by the membrane.

In Fig. 4 we give transition rules for individual membrangstaposition and hierarchical composi-
tion. Rules(m1) and(m2) describe the transitions performed by a membrane with [albelparticular,
(m1) describes the case in which no objects are received as anfinputhe external membrane, while
(m2) describes the case in which a multiset of objelgts4 @ is received. In these rulegyp is set to
zero if no evolution rule is applied«(= @), and it is set to one if at least one rule is appliad4 ).
Rule (fm1) allows us to infer the behaviour of a flat membrdpe], = F([; c],) from the behaviour
of membrang] c];,. Rule (jux1) allows us to infer the behaviour of a juxtaposition of two nigane
structures from the behaviours of the two structures. Kinalle (h1) describes the behaviour of a hi-
erarchical composition of membranes. In this rule we assurteebe an equivalence relation on sets of
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(e, z2) or0n 1y, y2)

Figure 4. Rules for individual membranes and hierarchioatgosition of membranes

pairs(l,u) with [ € IN andu € V*, such that, given two such séfg andZ,, thenZ; = 7, holds if and
only if (Z; \ {(1,@) |l € N}) = (Z2 \ {({,2) | | € IN}). In the last two rulesipp is set to one if at
least onezpp; andapp- is equal to one, namelypp = max(app1, app2). This means that at least one
rule has been applied in the whole composition.

We conclude by definingsystem tracas a sequence of internal information given by an execufion o
a P Algebra term. We assume that the system can send objeédtbe outmost membrane, but cannot
receive objects from outside. This requirement correspandhe fact that in a P system objects cannot
be received by the outmost membrane from the external enmmieat. Note that executions containing
steps in which no rule is applied, namely those with 0 as lashent of the label, are not considered.

Definition 2.3. (Trace)
A trace of a membrane systems with alphabetl is a (possibly infinite) sequenee such that, for any

O] andms; with i € IN*

, 2,01 2,0},1 2,051 2,0],1
eitherw = o1....0,, andms msy . ms, ,
01 02 on )
2,011 2,011 2,011
or w = 010903.... andms ——— msy mso e
01 02 03

We denote with7” the set of all traces.
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3. Security concepts as diagnostic concepts

We use the semantics of the P Algebra to define diagnosalpenies or activities of the corresponding
P systems. From now on we will assume that properties ofdatezannot be observed directly. We
will consider them to be diagnosable if they can be deduceabisgrving other, for an external observer
visible, system activities. In other words, a property etiosable if considering it as a private property,
the corresponding system is not secure as their presendeeadincovered by an intruder observing the
system activities. Hence, there is a direct connection &éetvdiagnosability and systems security.

We recall one of the most general security concepts calleditp[5]. By means of opacity many
other security concepts can be modelled [6], and moreovacigpcan be defined independently of
systems constructors and operations since it exploits ti\corresponding LTS. Opacity is based on
concepts of observations and of predicates over systemstratorder to define the notion of observation
in the transition rules we introduce a notionatfservation function

Definition 3.1. Given a set of observablés, anobservation functioiis any function® : 7 — ©*,

In general, different types of observation functions carubed, but here we consider orgyatic
observations This means that an observation of a trace is given by thenadtiens of each of its actions
separately, namely ib = 0109. . ... on thenO(w) = O(01)O0(02). . ... O(oy,). Opacity is defined for an
arbitrary predicate over sequences of system actions. Roughly, the observeotdaduce validity of
¢ if there are two traces, w’ such thaiy(w), —-¢(w’) and the the sequences cannot be distinguished by
the observer, namel§(w) = O(w’).

Definition 3.2. A predicate¢ over system traces igpaquew.r.t. the observation functiod® and P
systemlI if for every tracew of II such thatp(w) holds, there exists a trae€ such that-¢(w’) holds
andO(w) = O(w").

By predicatep we can express various types of properties, starting fromplsi ones (e.g. traces contain
a particular element) to more sophisticated ones.

Example 3.1. Let us consider again the P system model of the EGFR pathwayoperty of interest
on the behavior of the modelled system is the infection ofcitleby the vCBL virus. Such a property
can be expressed as a predicaten execution traces of the P system model as follows:

¢(w) holds iff { (1,71), (2, (u,vvCBL,D,I,0",0%)),(3,73)} € w.

Let us assume that what is observable is the presence of iheititated endosome in the lysosome.
This is modelled by the following observation function:

01(0) = LY SO if (3,(uENDOub,v,D,1,0",0%)) €0
1o A otherwise

In this case we have that predicaiés opaque. For every trace in which th€ B L virus occurs inside

membrane 24 is true) there are different kinds of behaviour. In the fiistkthe phosphorilated dimers

(DIMp) remain on the cell membrane and they continue to send $iggpadroteins E £ Fp) inside

the cell. In this case no endosome is sent to the lysosomee(d#re noLY SO observations). In a
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second kind of behaviour a phosphorilated complex is takearbendosome, but it is not destroyed
because of the presencewdf BL and theEG F'R receptors are recycled. Also in this case there are no
LY SO observations. The opacity gfderives from the fact that the above first kind of behaviour loa
expressed also by a cell withou€ B L virus. That is there exists a trace for whighis false with the
same observable behaviour. The same happens when the erdisstestroyed.

In general, opacity is undecidable, as stated by the foligwiheorem.

Theorem 3.1. Opacity is undecidable for P systems.

Proof:
We reduce opacity to the Post correspondence problem. Langider two finite lists:, ..., uy and
v1,...,vy Of words over some alphabdthaving at least two symbols. Let us consider P system which

randomly outputs through the outmost membrane objgcts . by. Leto; be elements of traces such
that (1, (u,v, D, I,b;, Ol)) € o0;. Let O be such that it hides everything, namely it maps everything t
¢, fore € ©. Let¢(w) hold if for w = o;, ...0;,, We haveu;, ... u;, # v; ...v;,. The opacity ofp
would mean that there exists another trac¢e= o;, . .. 0;,. such that-¢(w’) holds, but this would imply
Uj, ... Uj = Vj, ... Vj, Namely a solution of the Post correspondence problem. 0

Now we define diagnosability as a property dual to opacitybdls of LTSs defined in the previous
section carry complex information about systems state atidity. We exploit observation functions to
express what can be really observed by an external obseorarsiystems behavior.

Definition 3.3. A predicate¢ over system traces idiagnosablew.r.t diagnoser defined bg) and P
systemlI if the predicatep is not opaque w.r.t. the observation functiGrand P systenil, namely there
exists a tracev such thaty(w) holds and there is no traeé such that-(w’) holds and?(w) = O(w’).

In other words a diagnosable propedywith respect ta® is such that there exists a sequencef
system activities such tha{w) holds and als@(w’) holds for every trace such thé&(w) = O(w’).

Example 3.2. Let us consider again the P system model of the EGFR pathwhtharpredicate as in
Ex. 3.1. Let us assume that what is observable are the phdspioa of an effector protein, the creation
of an endosome and the presence of a ubiquitinated endosdimeliysosome. This can be modelled by
the following observation function:

PH if (1,(u,v,D,IU{(2,EFFp)},O!,0")) €0
ENDO if (1, (u,v,D,1U{(2, ENDO)},O01,0%)) € o
LYSO if (3,(uENDOub,v,D,I,0",0%)) €0

A otherwise

Os(0) =

In this case we have that predicatés diagnosable because there exists a tiagehich verifies it and
there is not a trace’ which does not and such thé(w) = O(w’). First of all note that the only pos-
sible looping situation in the system can be due to recupbasphorilations and de-phosphorilations of
effector proteinsE F'F'. In these cases we obtain infinite traces and inifinite sezpgenf observations
(as phosphorilation off F'F' is observable). Finite traces (and observations) occunahi¢he phospho-
rilated dimersDI M p sooner or later are taken by endosomes and then destroyelydysame. Let us
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now consider only the finite traces, in particular thosedsao which, in presence efCBL, a DI Mp

is taken by an endosom&(V DO observation) and th&E G F' R receptors are recycled. In this case there
would be an occurrence @& N DO that is not followed byl Y SO. Hence, when the virus is present we
may have finite traces with mo&N DOs than LY SOs. In the case in whichhC BL is absent, in each
finite trace in whichDIMp is taken by an endosome it is always destroyed by a lysosoamely an
observationE N DO is always followed by &Y SO. Thus, a finite tracev, such that-¢(w), in which

we can observe morBN DOs than LY SOs does not exist.

Theorem 3.2. Diagnosability is undecidable for P systems.

Proof:
Follows from undecidability of opacity. O

Diagnosability as it is defined in Definition 3.3 might be cdesed too weak. It is required that
there exists a computation with a property of interest sheth there cannot be another computation
without that property which is indistinguishable for an ebh&r from the first one. Hence, to diagnose
the property a diagnoser needs to force the system to petfi@rparticular computation having the above
property, and this might not be an easy task. To overcom@tbldem we propose strong diagnosability.

Definition 3.4. A predicate¢ over system traces &rongly diagnosablevith respect to diagnoser de-
fined by© and P systenil if there exists a trace such thai(w) holds and for every trace such that
¢(w) holds there is no trace’ such that-¢(w’) holds andO(w) = O(w").

With respect to diagnosability, in strong diagnosabititiytraces which satisfy the property allow the
property to be diagnosed. Note that the concept of stromgndiability is analogous to the concept of
simple visibility introduced in [11] in the framework of dtgl forensis investigations.

Example 3.3. Let us consider again the P system model of the EGFR pathwayhanpredicate) as
in Ex. 3.1 and Ex. 3.2. Let us assume that what is actuallyrghbe in this case is the presence of the
vC BL virus. This can be modelled by the following observationchion:

04(0) vCBL if (2,(u,vvCBL,D,I,0",0")) € o
0 =
3 A otherwise

In this case we have that predicatés obviously strongly diagnosable.

Theorem 3.3. Strong diagnosability is undecidable for P systems.

Proof:

The proof is similar to that of Theorem 3.1, but witljw) that holds if forw = o, ...o0;, we have
Uiy - .- Ui = Uj, ... ;. SiNCe strong diagnosability requires that there exista@etv such thaip(w)

holds (that is a solution of the Post correspondence proktduilows that it is undecidable. O

We consider some restrictions under which the introduceggties of opacity and diagnosability
become decidable. First of all, let us consider the notidnigitial opacity, initial diagnosability, and
stronginitial diagnosability. In the definition of these variants, we assuhat the P system may have
several different initial states (represented as a set offonene systemémsy, ..., ms,}. In particular,
we consider a notion axtended tracea which traces of a P system are associated with their sitzde.
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Definition 3.5. (Extended trace)
An extended tracef a set of membrane systerigisy, ..., ms,} is a pair(ms;, w), with 1 < i < n,
such thatw is a trace ofns;.

Given a set of extended tracéy’, let sup(ET) be the set of all membrane systems mentioned in
ET (calledsupportof ET), namelysup(ET) = {ms | (ms,w) € ET}. Similarly, we denote with
tr(ET) the set of traces obtained by removing from each extended thee reference to its initial state,
namelytr(ET) = {w | (ms,w) € ET}. We say that a set of extended tracesampleteif for every
ms € sup(ET) and every tracev that can be obtained from the semantics of membrane systerwe
have thatms, w) € ET. With use extended traces in new variants of opacity anchdisapility.

Definition 3.6. Given a complete set of extended traé€k, a predicate overtr(ET) isinitial opaque/
initial diagnosable/strongly initial diagnosabheith respect to observation functiafl if and only if ¢
is opaque/diagnosable/strongly diagnosable, respégtased there exists a predicafeover membrane
systems such as for evefyis, w) € ET), it holds p(w) = 1 (ms).

The introduced variants of opacity and diagnosability deigth properties of the behaviour which
depend tightly on the initial state of the system. In the ernbf system security the notion of initial
opacity has been introduced to deal, for instance, withesggprotocols in which the secrecy of some
information during the execution is ensured by the corréttidution of private keys in the initial state.

Note that, our definition of initial opacity is more genefigéu that given in [5] on Petri Nets [14]. In
[5] initial states of a system are different markings of thene net. Here, by the definition of extended
trace, we allow initial states to be completely differentmigane systems. In practice, initial states
constituting the support of an extended trace will oftenehitne same membrane structure and the same
evolution rules, but different objects. However, we do rad ¢his requirement here.

In the context of biological systems the notions of initi#ghosability can be used to discover
the presence of some pathological entity at the beginniagetiolution of a system, by analysing the
dynamics of the system itself. For example, let us considerititial states for our model of the EGFR
pathway, the first obtained by removing objdctfrom membrane 1, and the second in whighis
replaced by C BL (the virus) in membrane 2. Propeyof Ex. 3.1 holds only on traces starting from
the second initial state. Hence, being able to diagrpbg observing the behaviour of the system (as
in Ex. 3.2 and 3.3) gives information about the presence @fitus in the initial state. In the EGFR
model with two initial states we have thats initial diagnosable and strongly initial diagnosabfehe
observation functions of Ex. 3.2 and 3.3, resp., are coresitle

We give a decidability result on the variants of opacity arajdosability, that is based on the finite-
ness of the semantics of membrane systems. A membrane systdras a finite semantics if the LTS
obtained by the given inference rules and rootethincan reach a finite number of states. We consider

;
here only transitions of the fornqg’o—’l>, namely those in which at least one rule has been applied.
o

Theorem 3.4. Initial opacity, initial diagnosability and strong initigliagnosability are decidable for
every complete set of extended tradé¥ such thatsup(ET) is finite if the semantics of eachs €

;
sup(ET), restricted to transitions of the forn%’o—’l>, is finite.
o

Proof:
In order to prove that initial opacity, initial diagnosatyiland strong initial diagnosability are decidable,
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we follow the approach used to prove Th. 7 of [6] (that, in fusnbased on Th. 3.3 of [5]). The idea
is to reduce the three properties to regular language iieclygoblems. W.r.t. the proofs in [6, 5], here
we deal with possibly infinite traces, hence we shall redueetliree properties to-regular language
inclusion problems (see [16, 15] for an introductionddanguages and-automata). Let us consider
w-automata with Buchi acceptance condition, and let us ®enath L(A) the (v-regular) language
accepted bw-automatonA. Let the alphabets of the-automata we are going to construct consist of a
set of observable® and of a special symbelZ ©. We also assume, 1, O andE'T to be as in Def. 3.6.
Let us construct aw-automaton from the semantics of eaeld € sup(ET) (that is a finite LTS)
as follows: the set of states of the automaton is the sameaaothhe LTS, and the LTS contains a

A

transitionms; 201, mssy if and only if thew-automaton contains a transition frams; to ms, with
o

labelO(o). In addition, let thev-automaton contain a self-loopirgtransition from each state.s’ such

.
as in the LTS we haveus’ gﬁ’oéi. Moreover, let all the states of the obtainedutomaton to be final.

Now, let us consider an-aoutomatoml constructed by connetting, with aftransition, a fresh initial
state with everyns € sup(ET') such that)(ms) holds. Moreover, let us consider anotheautomaton
A, constructed by connetting, with artransition, a fresh initial state with everys € sup(ET) such
that - (ms) holds. It is easy to see thatis initial opaque if and only ifL(A;) C L(A,), that it is
initial diagnosable if and only if.(A4;) € L(A,), and that it is strongly initial diagnosable if and only if
L(Ay) # @ andL(A;) N L(A2) = . All these properties are decidable forregular languages. O

We remark that the model of the EGFR pathway we have given fiageasemantics. We have that
the initial diagnosability and strong inital diagnosalilof ¢ (as defined in example 3.1) with respect to
suitable observation functions in a EGFR model with twadahitates are decidable (and actually hold).

The decidability of the initial variants of opacity and dmmgability is based on a semantical require-
ment on membrane systems, nhamely finiteness of the semabtinsequently, such a decidability result
is meaningful only if the finiteness of the semantics of a Resyds decidable. We can prove that this
is the case for P systems with rules without promoters anditohs. For P systems with promoters and
inhibitors, we shall rather give a sufficient condition teasures finiteness of the semantics. Both these
results are based on a translation of P systems without gessnand inhibitors into Petri Nets [14].

Let us recall the definition of Petri Nets with weighted arésnetis a triple N = (P,T, W) such
that P is a finite set oplaces T is a finite set otransitionsandW : (T' x P)U (P x T') — IN is the
weight functionof V. A markingof a net/V is a multiset of places. Given a markidg and a place,
we write M (p) for the number of occurrences pfin M. The dynamics of a net consists of steps from
one marking to another, in which the latter is determinedhiyttansitions of the net. As in [5], we allow
here a multiset of simultaneously occurring transitions lsa performed at each step. Given a multiset
of transitionsU and a place, let prex (U)(p) andpostn (U)(p) be defined as follows:

pren(U)(p) = 2y U() - Wip, 1) posin(U)(p) = 2y U) - Wt p)

whereU (t) is the number of occurrences vin U. We say that a multiset of transitiosis enabledat
a markingM if Vp € P.M(p) > pren(U)(p). If U is enabled, it can be executed (or fired) leading to
markingM’ s.t. M'(p) = M (p) —pren(U)(p)+postn (U)(p), for everyp € P. A stepof the execution
of a netN from a markingM to another consists in the firing of a non-empty multiset afsitions.

Let us now give a translation of membrane systems withounpters and inhibitors into Petri Nets.
For the sake of simplicity, we give the translation of P sysgerather than of membrane systems.



14 R. Barbuti et al. / Interpretation of some systems secuitjons in biological diagnostics

Definition 3.7. Given a P systenmil = (V, u, w1, ..., wy, R1,..., Ry), its translation into Petri Net
N = (P, T,W)issuchthatP =V x {1,...,n} andT = Ry U... U R,,. Moreover,I¥ is such that
for everyl < j < nand everyr = u — vpv.{v, } in R; (hence inT"), the following axioms hold:
Va € u.W((a,j),r) = u(a) Va € v, W(r,(a,j)) = vp(a)
Va € v, W (r, (a,k)) = vo(a) if (k,j) € p Va € v, W(r, (a,i)) = v, (a) if (j,7) € p
and W gives0 otherwise. The initial marking/y; of the net is such that/((a,i)) = w;(a), with
1<i<nandaeV.

Proposition 3.1. Let ms be a membrane system without promoters and inhibitors sporeding to a P
T
systemIl. It holds thatms 2001 s if and only if Ny; performs a step frond/;; to M’, with ms’
o
corresponding to a P systeii, with N;; = Ny and M’ = M.

Proof:
Follows immediately from the definition of the translatiohFosystems into Petri Nets and from the fact
that the considered kinds of parallelism in Petri Nets anchbrane systems coincide. O

We are now ready to give our decidability results on the fivgtes of the semantics of a membrane
system which are necessary to ensure that the decidaleititytin Theorem 3.4 actually holds.

Theorem 3.5. The finiteness of the semantics of a membrane system witlioatgiers and inhibitors
is decidable.

Proof:
Follows from the translation into Petri Nets, and the faet the finiteness of the set of reachable mark-
ings in a Petri Net is decidable, through the standard cbildyetree construction [14]. O

Theorem 3.6. Given a membrane systems, letms’ be obtained by removing promoters and inhibitors
from the evolution rules ofns. If ms’ has a finite semantics, thems has a finite semantics as well.

Proof:
Follows from the fact that promoters and inhibitors arerietsbns on the applicability of rules. Hence,
transitions in the semantics ofs are a subset of those in the semanticsf. O

The proofs of the last two theorems exploit techniques dpeaxl to decide the finiteness of the
semantics of Petri Nets. Similar techniques could be deeeldor membrane systems. This could allow
a stronger result on membrane systems with promoters aitiitors to be obtained.

4. Conclusions

We have proposed and investigated notions of diagnosabilipathological changes in the behaviour
of biological systems by taking inspiration from notionssgbtems security. Moreover, we have shown
applications of such notions on a P system model of the EGgifaling pathway.

Diagnosability notions are in general undecidable. Howewe have considered classes of prop-
erties and systems for which such notions are decidable atticplar, we have considered a form of
diagnosability in which properties on the behaviour candsticed to properties on the initial states, and
we have shown that for systems with a finite semantics suchmadddiagnosability is decidable.
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