
Bisimulation Congruences in

the Calculus of Looping Sequences

Roberto Barbuti, Andrea Maggiolo-Schettini,
Paolo Milazzo, and Angelo Troina

Dipartimento di Informatica, Università di Pisa
Largo B. Pontecorvo 3, 56127 - Pisa, Italy

{barbuti,maggiolo,milazzo,troina}@di.unipi.it

Abstract. The Calculus of Looping Sequences (CLS) is a calculus suit-
able to describe biological systems and their evolution. CLS terms are
constructed by starting from basic constituents and composing them by
means of operators of concatenation, looping, containment and parallel
composition. CLS terms can be transformed by applying rewrite rules.
We give a labeled transition semantics for CLS by using, as labels, con-
texts in which rules can be applied. We define bisimulation relations that
are congruences with respect to the operators on terms, and we show an
application of CLS to the modeling of a biological system and we use
bisimulations to reason about properties of the described system.

1 Introduction

In the last few years many formalisms originally developed by computer scientists
to model systems of interacting components have been applied to Biology. Among
these, there are Petri Nets [9], Hybrid Systems [1], and the π-calculus [6, 12].
Moreover, some new formalisms have been proposed to describe biomolecular
and membrane interactions [2, 4, 5, 7, 10, 11]. The formal modeling of biological
systems allows the development of simulators and the verification of properties
of the described systems.

The π–calculus and new calculi based on it [10, 11] have been particularly
successful in the description of biological systems. Interactions of biological com-
ponents are modeled as communications on channels whose names can be passed.
Sharing names of private channels allows describing biological compartments,
such as membranes. Calculi such as those proposed in [4, 5, 7] give an abstract
description of systems and offer special biologically motivated operators.

In [3] we have presented a new calculus, called Calculus of Looping Sequences
(CLS for short), for describing biological systems and their evolution, and we
have shown how to use it for modeling interactions among bacteria and bac-
teriophage viruses as well as bacteria sporulation. In this paper we focus on
semantic aspects of the formalism, in particular on bisimulation relations. We
define a simplified variant of CLS (that we still call CLS in the following), we
study bisimulations for it, and we apply such relations on the CLS model of a
real example of gene regulation.

1

The calculus we propose is more general than those in [4, 5, 7], which could
be encoded into CLS (see [3] for an example), and with respect to the π–calculi
and calculi based on the π–calculus [10, 11], which are more expressive, it has
the advantage of allowing the definition of bisimulations that are congruences.

The terms of our calculus are constructed by starting from basic constituent
elements and composing them by means of operators of sequencing, looping, con-
tainment and parallel composition. Sequencing can be used to describe biological
elements such as DNA fragments and proteins. DNA fragments can be modeled
as sequences of nucleotides or as sequences of genes; proteins can be modeled
as sequences of amino acids or as sequences of interaction sites. Looping allows
tying up the ends of a sequence, thus creating a circular sequence of the con-
stituent elements. We assume that the elements of a circular sequence can rotate,
and this motivates the terminology of looping sequence. A looping sequence can
represent a membrane. This description of membranes is finer than the one given
in specialized membrane calculi (see e.g. [4, 11]) as it allows representing interac-
tion of membrane constituent elements. The containment operator can be used
to represent that an element is inside the membrane, and parallel composition
expresses juxtaposition of elements.

A structural congruence relation allows considering as equivalent terms that
are intended to represent the same biological system. The evolution of a system
is described by a set of rewrite rules to be applied to terms. The definition of the
rewrite rules depends on the system and the evolution one wants to represent.

Bisimilarity is widely accepted as the finest extensional behavioural equiva-
lence one may want to impose on systems. It may be used to verify a property
of a system by assessing the bisimilarity of the considered system with a system
one knows to enjoy that property. The notion of congruence is very important for
a compositional account of behavioural equivalence. This is true, in particular,
for complex systems such as biological ones.

To define bisimilarity of systems, these must have semantics based on labeled
transition relations capturing potential external interactions between systems
and their environment. A labeled transition semantics for CLS is derived from
rewrite rules by using as labels contexts in which rules can be applied, in the
style of Sewell [13] and Leifer and Milner [8]. We define bisimulation relations
and we show them to be congruences with respect to the operators on terms.

The main difference between the definition of CLS we give in this paper with
respect to the one in [3], is the presence of some constraints on the syntax of
terms which simplifies the definition of the labeled transition relation for the
calculus. We model an example of gene regulation, namely the regulation of the
lactose operon in E. coli, to show that the new variant of the calculus, though
simple, is expressive enough to model real systems. We use bisimulations to
obtain an equivalent simplified model and to verify a property of the described
system.

2

2 Calculus of Looping Sequences

In this section we introduce the Calculus of Looping Sequences (CLS).

Definition 1 (Terms). Terms T , looping sequences SL, elementary sequences
S, and elementary constituents E of CLS are given by the following grammar:

T ::= S
˛̨

SL

˛̨
T | T

˛̨
SL c T

SL ::=
`
S

´L

S ::= E
˛̨

ε
˛̨

S · S

E ::= a
˛̨

b
˛̨

c
˛̨

. . .

We denote with E the set of elementary constituents a, b, c,
An elementary sequence S may be either an element in E or the empty

sequence ε or a concatenation of elementary sequences. An example of elementary
sequence is a · b · c. We denote with S the set of elementary sequences.

A looping sequence SL is obtained by applying the looping operator
()L

to
an elementary sequence S. A term T may be either an elementary sequence S,
or a looping sequence SL, or the combination of a looping sequence and a term
by means of the containment operator c , or the combination of two terms by
means of the parallel composition operator | .

A looping sequence
(
S

)L
is a closed circular sequence of the elements con-

stituting the elementary sequence S. Term
(
S

)L
c T represents the containment

of term T in the looping sequence
(
S

)L
. The set of all terms is denoted by T .

Brackets can be used to indicate the order of application of the operators
in a term. We assume that the c operator has precedence over the | operator,
therefore S c T1 | T2 stands for (S c T1) | T2. Moreover, from the definition of
CLS terms, the c operator is right–associative, therefore S1 c S2 c T denotes
S1 c (S2 c T). In Fig. 1 we show some examples of CLS terms and their visual
representation.

Definition 2 (Structural Congruence). The structural congruence relations
≡S and ≡T are the least congruence relations on elementary sequences and on
terms, respectively, satisfying the following axioms:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ε ≡S ε · S ≡S S

T1 | T2 ≡T T2 | T1 T1 | (T2 | T3) ≡T (T1 | T2) | T3 ε ≡T

`
ε
´L

T | ε ≡T T
`
S

´L
c ε ≡T

`
S

´L `
S1 · S2

´L
c T ≡T

`
S2 · S1

´L
c T

Axioms of the structural congruence state the associativity of · and | , the

commutativity of the latter and the neutral role of ε and
(
ε
)L

. We remark that
(
ε
)L

c T 6≡ T . Moreover, axiom
(
S1 · S2

)L
c T ≡T

(
S2 · S1

)L
c T says that

elementary sequences in a looping can rotate.
Note that ≡S can be lifted to ≡T , in the sense that if S ≡S S′ then S ≡T S′.

Moreover, note that the first operand of the c operator is not a general term,

3

(i)

b

ca

b

ca

d e(ii)

b

ca

d e

f g

(iii)

Fig. 1. (i) represents
`
a · b · c

´L
; (ii) represents

`
a · b · c

´L
c

`
d · e

´L
; (iii) represents`

a · b · c
´L

c (
`
d · e

´L
| f · g).

but a looping sequence
(
S

)L
, which is an element of SL, hence ≡T cannot be

applied to it, but ≡S can be applied to the sequence S. In the following, for
simplicity, we will use ≡ in place of ≡T .

Now, we define rewrite rules, which can be used to describe the transforma-
tion of terms by giving a transition relation as the semantics of rule applications.
Let us consider a set of term variables TV ranged over by X, Y, Z, . . ., a set of
elementary sequence variables SV ranged over by x̃, ỹ, z̃, . . ., and a set of ele-
ment variables X ranged over by x, y, z, All these sets are possibly infinite
and pairwise disjoint. We denote by V the set of all variables, V = TV ∪SV ∪X .

An instantiation is a function σ : V → T ; let Σ be the set of all the possible
instantiations. With TV we denote the set of CLS terms which may also contain
variables in V and, given T ∈ TV , with Tσ we denote the term obtained by
replacing each occurrence of each variable XV ∈ V appearing in T with the
corresponding term σ(XV). An instantiation σ must respect the type of variables,
thus for X ∈ TV , x̃ ∈ SV and x ∈ X we have σ(X) ∈ T , σ(x̃) ∈ S and σ(x) ∈ E ,
respectively.

Definition 3 (Rewrite Rule). A rewrite rule is a pair of terms (T, T ′), de-
noted with T 7→T ′, where T, T ′ ∈ TV , T 6≡ ε and such that V ar(T ′) ⊆ V ar(T).
We denote with < the infinite set of all the possible rewrite rules.

A rewrite rule (T, T ′) states that a ground term Tσ, obtained by instantiating
variables in T by some instantiation function σ, can be transformed into the
ground term T ′σ. The rewrite rules must be applied to terms only if they occur
in a legal context. Contexts are defined as follows.

Definition 4 (Contexts). Contexts C are given by the following grammar:

C ::= �
˛̨

C | T
˛̨

T | C
˛̨ `

S
´L

c C

where T ∈ T and S ∈ S. Context � is called the empty context.

By definition, every context contains a single �.
Let us assume C, C ′ ∈ C. With C[T] we denote the term obtained by replacing

� with T in C; with C[C ′] we denote the context composition, whose result is
the context obtained by replacing � with C ′ in C.

4

Definition 5 (Reduction Semantics). Given a set of rewrite rules R ⊆ <,
the reduction semantics of CLS is the least relation satisfying the following in-
ference rule:

T 7→ T ′ ∈ R Tσ 6≡ ε σ ∈ Σ C ∈ C

C[Tσ] → C[T ′σ]

Definition 6 (Parallel contexts). Parallel contexts CP are a subset of con-
texts given by the following grammar, where T ∈ T :

CP ::= �
˛̨

CP | T
˛̨

T | CP

Contexts are used for defining a labeled semantics of CLS terms.

Definition 7 (Labeled Semantics). Given a set of rewrite rules R ⊆ <, the
labeled semantics of CLS is the labeled transition system given by the following
inference rules:

(rule appl)
T 7→ T ′ ∈ R C[T ′′] ≡ Tσ T ′′ 6≡ ε σ ∈ Σ C ∈ C

T ′′ C
−→ T ′σ

(cont)
T

�
−→ T ′

T ′′ c T
�
−→ T ′′ c T ′

(par)
T

C
−→ T ′ C ∈ CP

T | T ′′ C
−→ T ′ | T ′′

where the dual version of the (par) rule is omitted.

The labeled semantics is similar to the one in [13] for ground term rewriting.

A transition T
C
−→ T ′ indicates that the application of the context C to T creates

an instance of the left part of a rewrite rule, with target instance T ′. Intuitively,
the transition makes observable the context C, which, when filled with the term
T , can be reduced to T ′, namely C[T] 7→ T ′ is an instance of a rewrite rule. Note
that, since in rule (rule appl) T ′′ 6≡ ε, the context C used as label cannot provide
completely the left part of the rule. Differently with respect to [13], we allow to
observe the context in the reduction of a subterm of a parallel composition.
For example, if C[T] 7→ T ′ is an instance of a rewrite rule, then we have that

T |T”
C
−→ T ′|T” (rule (par)).

The following proposition states that the labeled semantics is equivalent to
the reduction semantics when the context is empty. The proof is immediate.

Proposition 1. T → T ′ ⇐⇒ T
�
−→ T ′.

Lemma 1 gives a property of parallel contexts, and Lemma 2 gives the labeled
semantics with respect to context composition.

Lemma 1. Given T, T ′ ∈ T and a parallel context C ∈ CP , it holds that:
C[T]|T ′ ≡ C[T |T ′].

Proof. Since C ∈ CP there exists TC such that C[T] = TC |T , and moreover we
have that (TC |T)|T ′ ≡ TC |(T |T ′) = C[T |T ′].

5

Lemma 2. T
C[C′]
−−−→ T ′ ⇐⇒ C ′[T]

C
−→ T ′.

Proof. By induction on the depth of the derivation tree of T
C[C′]
−−−→ T ′.

– Base. Derivation trees of depth 1 are obtained by rule (rule appl).

T
C[C′]
−−−→ T ′ ⇐⇒ there exists T1 7→ T ′

1 ∈ R such that T1σ = C[C ′[T]] and

T ′
1σ = T ′ for some instantiation function σ ⇐⇒ C ′[T]

C
−→ T ′.

– Induction step. We assume that the thesis holds for depth n.
- (par). We first prove the direction =⇒. Let us assume T = T1|T2; then

T ′ = T ′
1|T2, T1

C[C′]
−−−→ T ′

1 and C[C ′] ∈ CP . We have C ′[T1]
C
−→ T ′

1 by

induction hypothesis, which implies C ′[T1]|T2
C
−→ T ′

1|T2 (by applying

rule (par)), and hence C ′[T]
C
−→ T ′, since T ′ = T ′

1|T2, C ′ ∈ CP and by
Lemma 1. The direction ⇐= can be proven symmetrically.

- (cont). This case is trivial because C[C ′] = �. ut

We introduce a notion of strong bisimilarity between CLS terms.

Definition 8 (Strong Bisimulation). A binary relation R on terms is a
strong bisimulation if, given T1, T2 such that T1RT2, the two following condi-
tions hold:

T1
C
−→ T ′

1 =⇒ ∃T ′
2 such that T2

C
−→ T ′

2 and T ′
1RT ′

2

T2
C
−→ T ′

2 =⇒ ∃T ′
1 such that T1

C
−→ T ′

1 and T ′
2RT ′

1.
The strong bisimilarity ∼ is the largest of such relations.

The strong bisimilarity ∼ is a congruence with respect to CLS operators.

Proposition 2 (Strong Congruence). The relation ∼ is a congruence.

Proof. We show that S
def
= { (C[T1], C[T2]) | T1 ∼ T2 and C ∈ C} is a bisimula-

tion. In particular, we note that ∼ ⊆ S and T1ST2 =⇒ C[T1] S C[T2]. Finally,

given T1 ∼ T2, we prove by induction on the derivation of C[T1]
C′

−→ T ′
1 that

C[T1]
C′

−→ T ′
1 =⇒ ∃T ′

2.C[T2]
C′

−→ T ′
2 and T ′

1ST ′
2. A detailed proof can be found

in Appendix A.1. ut

We denote with
�

=⇒ a sequence of zero or more transitions
�
−→, and with

C
=⇒,

where C 6= �, the sequence of transitions such that T
C

=⇒ T ′ if and only if there

exist T1, T2 ∈ T such that T
�

=⇒ T1
C
−→ T2

�
=⇒ T ′. We have two lemmas.

Lemma 3. If one of the following two conditions holds: (i) C, C ′ ∈ CP ,

(ii) C = �, C ′ ∈ C, then T
C

=⇒ T ′ ⇐⇒ C ′[T]
C

=⇒ C ′[T ′].

Proof. By definition of
C

=⇒ and of the labeled semantics. ut

Lemma 4. T
C[C′]
=⇒ T ′ ⇐⇒ C ′[T]

C
=⇒ T ′.

6

Proof. First of all, it is worth noticing that, by Lemma 3, T
�

=⇒ T ′ ⇐⇒

C[T]
�

=⇒ C[T ′] for any context C. Now, T
C[C′]
=⇒ T ′ ⇐⇒ there exist T1, T2 such

that T
�

=⇒ T1
C[C′]
−−−→ T2

�
=⇒ T ′. By Lemma 2, we have that C ′[T1]

C
−→ T2, and

hence C ′[T]
�

=⇒ C ′[T1]
C
−→ T2

�
=⇒ T ′, that is C ′[T]

C
=⇒ T ′. ut

Most of the time we want to consider bisimilarity without taking into account
system internal moves. This relation is usually called weak bisimilarity.

Definition 9 (Weak Bisimulation). A binary relation R on terms is a weak
bisimulation if, given T1, T2 such that T1RT2, the two following conditions hold:

T1
C
−→ T ′

1 =⇒ ∃T ′
2 such that T2

C
=⇒ T ′

2 and T ′
1RT ′

2

T2
C
−→ T ′

2 =⇒ ∃T ′
1 such that T1

C
=⇒ T ′

1 and T ′
2RT ′

1.
The weak bisimilarity ≈ is the largest of such relations.

Proposition 3 (Weak Congruence). The relation ≈ is a congruence.

Proof. Similar to the proof of Proposition 2, by using Lemmas 3 and 4. A detailed
proof can be found in Appendix A.2. ut

Example 1. Consider the following set of rules:

R = { a · c | b 7→ e | b , d | b 7→ f , e 7→ a · c , f 7→ f }

We have that a · c ∼ d, because a · c
�|b
−−→ e | b

�
−→ a · c | b

�
−→ e | b

�
−→ . . . and

d
�|b
−−→ f | b

�
−→ f | b

�
−→ . . ., and e ≈ d, because e

�
−→ a · c

�|b
−−→ e | b

�
−→ a · c | b

�
−→

e | b
�
−→ On the other hand, a · c 6∼ d | b and a · c 6≈ d | b.

One may also be interested in comparing the behaviour of terms whose evo-
lution is given by the application of two possibly different sets of rewrite rules.
To this aim we define CLS systems as pairs consisting of a CLS term and a set
of rewrite rules.

Definition 10 (System). A CLS System is a pair 〈T,R〉 with T ∈ T , R ⊆ <.

Given a system 〈T,R〉, we write R : T
C
−→ T ′ to mean that the transition

T
C
−→ T ′ is performed by applying a rule in R, and we write R : T

C
=⇒ T ′ to

mean that the sequence of transitions T
C

=⇒ T ′ is performed by applying rules
in R. Now, we introduce strong and weak bisimilarities between CLS systems.
With abuse of notation we denote such relations with ∼ and ≈, respectively.

Definition 11 (Strong Bisimulation on Systems). A binary relation R on
CLS systems is a strong bisimulation if, given 〈T1,R1〉 and 〈T2,R2〉 such that
〈T1,R1〉R〈T2,R2〉, the two following conditions hold:

R1 : T1
C
−→ T ′

1 =⇒ ∃T ′
2 such that R2 : T2

C
−→ T ′

2 and 〈T ′
1,R1〉R〈T ′

2,R2〉

R2 : T2
C
−→ T ′

2 =⇒ ∃T ′
1 such that R1 : T1

C
−→ T ′

1 and 〈T ′
2,R2〉R〈T ′

1,R1〉.
The strong bisimilarity ∼ is the largest of such relations.

7

Definition 12 (Weak Bisimulation on Systems). A binary relation R on
CLS systems is a weak bisimulation if, given 〈T1,R1〉 and 〈T2,R2〉 such that
〈T1,R1〉R〈T2,R2〉, the two following conditions hold:

R1 : T1
C
−→ T ′

1 =⇒ ∃T ′
2 such that R2 : T2

C
=⇒ T ′

2 and 〈T ′
1,R1〉R〈T ′

2,R2〉

R2 : T2
C
−→ T ′

2 =⇒ ∃T ′
1 such that R1 : T1

C
=⇒ T ′

1 and 〈T ′
2,R2〉R〈T ′

1,R1〉.
The weak bisimilarity ≈ is the largest of such relations.

If we fix a set of rewrite rules, strong and weak bisimilarities on CLS systems
correspond to strong and weak bisimilarities on terms, respectively. Namely, for
a given R ∈ <, 〈T1,R〉 ∼ 〈T2,R〉 if and only if T1 ∼ T2 and 〈T1,R〉 ≈ 〈T2,R〉 if
and only if T1 ≈ T2. However, as we show in the following example, bisimilarity
relations introduced for CLS systems are not congruences.

Example 2. Let R1 = {a | b 7→ c} and R2 = {a | d 7→ c , b | e 7→ c}. We have
that 〈a,R1〉 ≈ 〈e,R2〉 and 〈b,R1〉 ≈ 〈d,R2〉, but 〈a | b,R1〉 6≈ 〈e | d,R2〉.

Even if bisimilarity on CLS systems are not congruences, they allow us to
define equivalence relations on sets of rewrite rules.

Definition 13 (Rules Equivalence). Two sets of rewrite rules R1 and R2

are strongly (resp. weakly) equivalent, denoted R1 ' R2 (resp. R1
∼= R2), if and

only if for any term T ∈ T it holds 〈T,R1〉 ∼ 〈T,R2〉 (resp. 〈T,R1〉 ≈ 〈T,R2〉).

Example 3. Given R1 = {a 7→ c}, R2 = {a 7→ f} and R3 = {a 7→ b , b 7→ c},
we have that R1 ' R2, but R1 6' R3 and R1

∼= R2.

Now, if we resort to equivalent rules, we can prove congruence results on CLS
systems.

Proposition 4 (Congruences on Systems). Given R1 ' R2 (resp. R1
∼=

R2) and 〈T,R1〉 ∼ 〈T ′,R2〉 (resp. 〈T,R1〉 ≈ 〈T ′,R2〉), for any C ∈ C we have
〈C[T],R1〉 ∼ 〈C[T ′],R2〉 (resp. 〈C[T],R1〉 ≈ 〈C[T ′],R2〉).

Proof. Since R1 ' R2 we have that 〈T,R1〉 ∼ 〈T,R2〉; moreover, by hypothesis,
〈T,R1〉 ∼ 〈T ′,R2〉, and therefore 〈T,R2〉 ∼ 〈T ′,R2〉. Now, since the set of
rewrite rules is the same (R2), by the congruence results for CLS terms, we
have 〈C[T],R2〉 ∼ 〈C[T ′],R2〉. Again, since R1 ' R2, we have 〈C[T],R1〉 ∼
〈C[T],R2〉, and hence, 〈C[T],R1〉 ∼ 〈C[T ′],R2〉. The proof is identical for ∼=
and ≈ instead of ' and ∼, respectively. ut

3 An Application to the Modeling of Gene Regulation

In this section we develop a CLS model of the regulation process of the lactose
operon in E. coli (Escherichia coli), we use the weak bisimulation on terms to
simplify the model and the weak bisimulation on systems to prove a property.

E. coli is a bacterium often present in the intestine of many animals. As
most bacteria, it is often exposed to a constantly changing physical and chemical

8

i p o z y a

DNA

mRNA

proteins

lac Repressor beta-gal. permease transacet.

R

Fig. 2. The lactose operon.

environment, and reacts to changes in its environment through changes in the
kinds of proteins it produces.

In general, in order to save energy, bacteria do not synthesize degradative
enzymes (which are proteins) unless the substrates for these enzymes are present
in the environment. For example, E. coli does not sinthesize the enzymes that
degrade lactose (a sugar) unless lactose is in the environment. This phenomenon
is called enzyme induction or, more generally, gene regulation since it is obtained
by controlling the transcription of some genes into the corresponding proteins.

Let us consider the lactose degradation example in E. coli. Two enzymes
are required to start the breaking process: the lactose permease, which is incor-
porated in the membrane of the bacterium and actively transports the sugar
into the cell (without this enzyme lactose can enter the bacterium anyway, but
much more slowly), and the beta galactosidase, which splits lactose into glucose
and galactose. The bacterium produces also the transacetylase enzyme, whose
function is unknown, but is surely related with the usage of lactose.

The sequence of genes in the DNA of E. coli which produces the described
enzymes, is known as the lactose operon (see Fig. 2). It is composed by six genes:
the first three (i, p, o) regulate the production of the enzymes, and the last three
(z, y, a), called structural genes, are transcribed (when allowed) into the mRNA
for beta galactosidase, lactose permease and transacetylase, respectively1.

The regulation process is as follows (see Fig. 3): gene i encodes the lac Repres-
sor, which in the absence of lactose, binds to gene o (the operator). Transcription
of structural genes into mRNA is performed by the RNA polymerase enzyme,
which usually binds to gene p (the promoter) and scans the operon from left to
right by transcribing the three structural genes z, y and a into a single mRNA
fragment. When the lac Repressor is bound to gene o, it becomes an obstacle
for the RNA polymerase, and transcription of the structural genes is not per-
formed. On the other hand, when lactose is present inside the bacterium, it binds
to the Repressor and this cannot stop any more the activity of the RNA poly-
merase. In this case transcription is performed and the three enzymes for lactose
degradation are synthesized.

1 We recall that in protein synthesis first the DNA of one or more genes is transcribed
into a piece of mRNA, then the mRNA is translated into one or more proteins.

9

i p o z y a

R RNA

Polime-

 rase
NO TRANSCRIPTION

a)

i p o z y a

R

 RNA

Polime-

 rase

TRANSCRIPTION

b)

LACTOSE

Fig. 3. The regulation process. In the absence of lactose (case a) the lac Repressor
binds to gene o and precludes the RNA polymerase from trascribing genes z,y and a.
When lactose is present (case b) it binds to and inactivates the lac Repressor.

Now we describe how to model the gene regulation process with CLS. For
the sake of simplicity we give a partial model, in the sense that we describe
how the transcription of the structural genes is activated when the lactose is in
the environment, but we do not describe how the transcription of such genes is
stopped when the lactose disappears. Moreover, in order to simplify the exam-
ple, we assume that genes are transcribed directly into proteins (thus avoiding
the modeling of the mRNA), that the lac Repressor is transcribed from gene i
without the need of the RNA polymerase and that it can be produced only once.
Finally, we assume that one RNA polymerase is present inside the bacterium.

We model the membrane of the bacterium as the looping sequence
(
m

)L
,

where the elementary constituent m generically denotes the whole membrane
surface in normal conditions. Moreover, we model the lactose operon as the se-
quence lacI ·lacP ·lacO·lacZ ·lacY ·lacA (lacI−A for short), in which each element
corresponds to a gene, and we replace lacO with RO in the sequence when the
lac Repressor is bound to gene o. When the lac Repressor is unbound, it is mod-
eled by the elementary constituent repr. Finally, we model the RNA polymerase
as the elementary constituent polym, a molecule of lactose as the elementary
constituent LACT , and beta galactose, lactose permease and transacetylase en-
zymes as elementary constituents betagal, perm and transac, respectively.

When no lactose is present the bacterium is modeled by the following term:

Ecoli ::=
`
m

´L
c (lacI−A | polym)

The transcription of the DNA is modeled by the following set of rules:

lacI · ex 7→ lacI
′ · ex | repr (R1)

polym | ex · lacP · ey 7→ ex · PP · ey (R2)

ex · PP · lacO · ey 7→ ex · lacP · PO · ey (R3)

10

ex · PO · lacZ · ey 7→ ex · lacO · PZ · ey (R4)

ex · PZ · lacY · ey 7→ ex · lacZ · PY · ey | betagal (R5)

ex · PY · lacA 7→ ex · lacY · PA | perm (R6)

ex · PA 7→ ex · A | transac | polym (R7)

Rule (R1) describes the transcription of gene i into the lac Repressor. After
transcription lacI becomes lacI ′ to avoid further productions of the lac Re-
pressor. Rule (R2) describes the binding of the RNA polymerase to gene p.
We denote the complex formed by the binding RNA polymerase to a gene lac

with the elementary constituent P . Rules (R3)–(R6) describe the scanning of
the DNA performed by the RNA polymerase and the consequent production of
enzymes. Rule (R3) can be applied (and the scanning can be performed) only
when the sequence contains lacO instead of RO, that is when the lac Repressor
is not bound to gene o. Finally, in rule (R7) the RNA polymerase terminates
the scanning and releases the sequence.

The following rules describe the binding of the lac Repressor to gene o, and
what happens when lactose is present in the environment of the bacterium:

repr | ex · lacO · ey 7→ ex · RO · ey (R8)

LACT |
`
m · ex

´L
c X 7→

`
m · ex

´L
c (X | LACT) (R9)

ex · RO · ey | LACT 7→ ex · lacO · ey | RLACT (R10)

Rule (R8) describes the binding of the lac Repressor to gene o, rule (R9)
models the passage of the lactose through the membrane of the bacterium and
rule (R10) the removal of the lac Repressor from gene o operated by the lactose.
In this rule the elementary constituent RLACT denotes the binding of the lactose
to the lac Repressor.

Finally, the following rules describe the behaviour of the enzymes synthesized
when lactose is present, and their degradation:

`
ex

´L
c (perm | X) 7→

`
perm · ex

´L
c X (R11)

LACT |
`
perm · ex

´L
c X 7→

`
perm · ex

´L
c (LACT | X) (R12)

betagal | LACT 7→ betagal | GLU | GAL (R13)

perm 7→ ε (R14)

betagal 7→ ε (R15)

transac 7→ ε (R16)

Rule (R11) describes the incorporation of the lactose permease in the mem-
brane of the bacterium, rule (R12) the transporation of lactose from the en-
vironment to the interior performed by the lactose permease, and rule (R13)
the decomposition of the lactose into glucose (denoted GLU) and galactose (de-
noted GAL) performed by the beta galactosidase. Finally, rules (R14),(R15) and
(R16) describe degradation of the lactose permease, the beta galactosidase and
the transacetylase enzymes, respectively.

Let us denote the set of rewrite rules {(R1), . . . , (R16)} as Rlac, and the
lactose operon lacI ′ · lacP · lacO · lacZ · lacY · lacA, after the production of the

11

lac Repressor, as lacI ′−A. An example of possible sequence of transitions which
can be performed by the term Ecoli by applying rules in Rlac is the following:

Ecoli
�

=⇒
`
m

´L
c (lacI

′ · lacP · RO · lacZ · lacY · lacA | polym)

LACT |�
=⇒

`
m

´L
c (lacI

′−A|polym|RLACT)

�
=⇒

`
perm · m

´L
c (lacI

′−A|betagal|transac|polym|RLACT)

LACT |�
=⇒

`
perm · m

´L
c (lacI

′−A|betagal|transac|polym|RLACT |GLU |GAL)

In the example, by applying rules (R1) and (R8), Ecoli produces the lac
Repressor, which binds to gene o in the lactose operon. Then, the bacterium
interacts with an environment containing a molecule of lactose (represented by
the context LACT |�): by applying rule (R9) the lactose enters the membrane
of the bacterium and by applying rule (R10) it binds to the lac Repressor.
Then, a sequence of internal transitions are performed by applying rules (R2)–
(R7) and (R11): the result is the transcription of the structural genes and the
incorporation of the lactose permease in the membrane of the bacterium. Finally,
the term interacts with an environment containing another molecule of lactose,
which enters the bacterium and is decomposed into GLU and GAL. The rules
applied in this phase are (R12) and (R13).

Note that, if one starts from Ecoli, every time (R11) can be applied, also
(R9) can be applied giving the same results. Therefore, rule (R11) seems to
be redundant. Nevertheless, rule (R11) describes a precise phenomenon, namely
the action performed by the lactose permease, which is modeled by no other
rule. The difference between rules (R9) and (R11) is that the latter describes a
much faster event. However, since quantitative aspects are not considered in the
calculus, the difference between the two rules does not appear.

The model can be simplified. Let us denote by T the term lacP · lacO · lacZ ·
lacY · lacA | repr. Note that T behaves as lacI−A apart from the transcription
of the lac Repressor, which is already present. Therefore, the transition system
derived from T corresponds to the one derived form lacI−A apart from some �–
labeled transitions obtained by the application of rule (R1). As a consequence,
T ≈ lacI−A. Now, since ≈ is a congruence, we may replace lacI−A with T in
Ecoli, thus obtaining an equivalent term.

Now we use the weak bisimulation defined on CLS systems to verify a simple
property of the described system, namely that by starting from a situation in
which the lac Repressor is bound to gene o, and none of the three enzymes
produced by the lactose operon is present (which is a typical stable state of the
system), production of such enzymes can start only if lactose appears.

In order to verify this property with the bisimulation relation we defined, we
need to modify the rules of the model in such a way that the event of starting
the production of the three enzymes becomes observable. We can obtain this
result, for instance, by replacing rule (R10) with the rule

`
ew

´L
c (ex · RO · ey | LACT | X) | START 7→

`
ew

´L
c (ex · lacO · ey | RLACT | X) (R10bis)

12

We choose to modify (R10) because we know that, after applying rule (R10),
the three enzymes can be produced freely, and we add to the rule the interac-
tion with the artificial element START in the environment in order to obtain
�|START as a transition label every time the rule is applied to the term.

The property we want to verify is satisfied by the system 〈T1,R〉, where R
consists of the following four rules:

T1 | LACT 7→ T2 (R1’) T2 | START 7→ T3 (R3’)

T2 | LACT 7→ T2 (R2’) T3 | LACT 7→ T3 (R4’)

for some ground terms T1, T2 and T3.
It can be proved that the system 〈T1,R〉 is weakly bisimilar to the system

〈EcoliRO, (Rlac \ {R10}) ∪ {(R10bis)}〉, where:

EcoliRO =
`
m

´L
c lacI

′ · PP · RO · lacZ · lacY · lacA

In particular, the bisimulation relation associates (the system containing)
term T1 with (the system containing) term EcoliRO, term T2 with all the terms
representing a bacterium containing at least one molecule of lactose with the
Lac repressor bound to gene o, and, finally, term T3 with all the terms in which
the repressor has left gene o and is bound to the lactose.

4 Conclusions

We have presented a variant of CLS, we have given the calculus a labeled seman-
tics and we have defined bisimulation relations on terms and on systems of the
calculus. We have proven bisimilarities to be congruences and shown an example
of application of CLS to the modeling of a biological system.

As future work, we plan to develop a quantitative extension of the calculus
in which speed of events are modeled as rates of rewrite rule applications.

References

1. R. Alur, C. Belta, F. Ivancic, V. Kumar, M. Mintz, G.J. Pappas, H. Rubin and
J. Schug. “Hybrid Modeling and Simulation of Biomolecular Networks”. Hybrid
Systems: Computation and Control, LNCS 2034, pages 19–32, Springer, 2001.

2. R. Barbuti, S. Cataudella, A. Maggiolo-Schettini, P. Milazzo and A. Troina. “A
Probabilistic Model for Molecular Systems”. Fundamenta Informaticae, volume
67, pages 13–27, 2005.

3. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo and A. Troina. “A Calcu-
lus of Looping Sequences for Modelling Microbiological Systems”. Funda-
menta Informaticae, volume 72, pages 1–15, 2006 (in press: draft available at
http://www.di.unipi.it/∼milazzo/).

4. L. Cardelli. “Brane Calculi. Interactions of Biological Membranes”. CMSB’04,
LNCS 3082, pages 257–280, Springer, 2005.

5. N. Chabrier-Rivier, M. Chiaverini, V. Danos, F. Fages and V. Schachter. “Mod-
eling and Querying Biomolecular Interaction Networks”. Theoretical Computer
Science, volume 325, number 1, pages 25-44, 2004.

13

6. M. Curti, P. Degano, C. Priami and C.T. Baldari. “Modelling Biochemical Path-
ways through Enhanced pi-calculus”. Theoretical Computer Science, volume 325,
number 1, pages 111–140, 2004.

7. V. Danos and C. Laneve. “Formal Molecular Biology”. Theoretical Computer
Science, volume 325, number 1, pages 69–110, 2004.

8. J. Leifer and R. Milner. “Deriving Bisimulation Congruences for Reactive Sys-
tems”. CONCUR’00, LNCS 1877, pages 243–258, Springer, 2000.

9. H. Matsuno, A. Doi, M. Nagasaki and S. Miyano.“Hybrid Petri Net Representa-
tion of Gene Regulatory Network”. Pacific Symposium on Biocomputing, World
Scientific Press, pages 341–352, 2000.

10. C. Priami and P. Quaglia “Beta Binders for Biological Interactions”. CMSB’04,
LNCS 3082, pages 20–33, Springer, 2005.

11. A. Regev, E.M. Panina, W. Silverman, L. Cardelli and E. Shapiro. “BioAmbients:
An Abstraction for Biological Compartments”. Theoretical Computer Science,
volume 325, number 1, pages 141–167, 2004.

12. A. Regev, W. Silverman and E.Y. Shapiro. “Representation and Simulation of
Biochemical Processes Using the pi-calculus Process Algebra”. Pacific Sympo-
sium on Biocomputing, World Scientific Press, pages 459–470, 2001.

13. P. Sewell. “From Rewrite Rules to Bisimulation Congruences”. Theoretical Com-
puter Science, volume 274, pages 183–230, 2002.

A Proofs

A.1 Proof of Proposition 2

We show that S
def
= { (C[T1], C[T2]) |T1 ∼ T2 and C is a context} is a bisimula-

tion. First of all, it is worth noting that S includes ∼ because C[T1] = T1 when
C = �. Moreover, the following implication holds:

T1ST2 =⇒ C[T1]SC[T2] (1)

because T1ST2 implies ∃C ′.T1 = C ′[T ′
1], T2 = C ′[T ′

2] for some T ′
1, T

′
2 ∈ T such

that T ′
1 ∼ T ′

2. Hence C[C ′[T ′
1]]SC[C ′[T ′

2]], that is C[T1]SC[T2].
Now, since ∼ is a symmetric relation, we have only to show that given T1 ∼ T2

the following holds: C[T1]
C′

−→ T ′
1 =⇒ ∃T ′

2.C[T2]
C′

−→ T ′
2 and T ′

1ST ′
2 .

We prove this by induction on the depth of the derivation tree of C[T1]
C′

−→ T ′
1:

– Base case (rule appl). There exists T 7→ T ′
1 ∈ R such that C ′[C[T1]] ≡ Tσ

for some instantiation function σ. This implies T1
C′[C]
−−−→ T ′

1 and, since T1 ∼ T2,

there exists T ′
2 such that T2

C′[C]
−−−→ T ′

2 with T ′
1 ∼ T ′

2. Finally, T2
C′[C]
−−−→ T ′

2 implies

C[T2]
C′

−→ T ′
2 by Lemma 2 and T ′

1 ∼ T ′
2 implies T ′

1ST ′
2.

– Induction step (par). In this case C = C1[C2] for some C2 and where
C1 = �|T for some T . Hence, C[T1] = C1[C2[T1]] and by the premise of the

inference rule we obtain C2[T1]
C′

−→ T ′′
1 . It follows that T ′

1 = C1[T
′′
1]. By applying

the induction hypothesis we have that there exists T ′′
2 such that C2[T2]

C′

−→ T ′′
2

and T ′′
1 ST ′′

2 , hence, by applying the (par) rule, C1[C2[T2]]
C′

−→ C1[T
′′
2], that is

14

C[T2]
C′

−→ T ′
2. Finally, by the closure of S to contexts given in (1), we have

C1[T
′′
1]SC1[T

′′
2], that is T ′

1ST ′
2.

– Induction step (cont). In this case C ′ = � and C = C1[C2] for some C2 and
where C1 = T c � for some T . Hence, C[T1] = C1[C2[T1]] and by the premise

of the inference rule we obtain C2[T1]
�
−→ T ′′

1 . It follows that T ′
1 = C1[T

′′
1].

By applying the induction hypothesis we have that there exists T ′′
2 such that

C2[T2]
�
−→ T ′′

2 and T ′′
1 ST ′′

2 , hence, by applying the (cont) rule, C1[C2[T2]]
�
−→

C1[T
′′
2], that is C[T2]

�
−→ T ′

2. Finally, by the closure of S to contexts given in (1),
we have C1[T

′′
1]SC1[T

′′
2], that is T ′

1ST ′
2. ut

A.2 Proof of Proposition 3

We show that S
def
= { (C[T1], C[T2]) |T1 ≈ T2 and C is a context} is a weak

bisimulation. First of all it is worth noting that S includes ≈ because C[T1] = T1

when C = �. Moreover, the following implication holds:

T1ST2 =⇒ C[T1]SC[T2] (2)

because T1ST2 implies ∃C ′.T1 = C ′[T ′
1], T2 = C ′[T ′

2] for some T ′
1, T

′
2 ∈ T such

that T ′
1 ≈ T ′

2. Hence C[C ′[T ′
1]]SC[C ′[T ′

2]] that is C[T1]SC[T2].
Now, since ≈ is a symmetric relation, we have only to show that given T1 ≈ T2

the following holds: C[T1]
C′

−→ T ′
1 =⇒ ∃T ′

2.C[T2]
C′

=⇒ T ′
2 and T ′

1ST ′
2 .

We prove this by induction on the depth of the derivation tree of C[T1]
C′

−→ T ′
1:

– Base case (rule appl). There exists T 7→ T ′
1 ∈ R such that C ′[C[T1]] ≡ Tσ

for some instantiation function σ. This implies T1
C′[C]
−−−→ T ′

1 and, since T1 ≈ T2,

there exists T ′
2 such that T2

C′[C]
=⇒ T ′

2 with T ′
1 ≈ T ′

2. Finally, T2
C′[C]
=⇒ T ′

2 implies

C[T2]
C′

=⇒ T ′
2 by Lemma 4 and T ′

1 ≈ T ′
2 implies T ′

1ST ′
2.

– Induction step (par). In this case C = C1[C2] for some C2 and where
C1 = �|T for some T . Hence, C[T1] = C1[C2[T1]] and by the premise of the

inference rule we obtain C2[T1]
C′

−→ T ′′
1 . It follows T ′

1 = C1[T
′′
1]. By applying the

induction hypothesis we have that there exists T ′′
2 such that C2[T2]

C′

=⇒ T ′′
2 and

T ′′
1 ST ′′

2 , hence, by Lemma 3, C1[C2[T2]]
C′

=⇒ C1[T
′′
2], that is C[T2]

C′

=⇒ T ′
2. By

the closure of S to contexts given in (2), we have C1[T
′′
1]SC1[T

′′
2], that is T ′

1ST ′
2.

– Induction step (cont). In this case C ′ = � and C = C1[C2] for some C2 and
where C1 = T c � for some T . Hence, C[T1] = C1[C2[T1]] and by the premise

of the inference rule we obtain C2[T1]
�
−→ T ′′

1 . It follows that T ′
1 = C1[T

′′
1].

By applying the induction hypothesis we have that there exists T ′′
2 such that

C2[T2]
�

=⇒ T ′′
2 and T ′′

1 ST ′′
2 , hence, by Lemma 3, C1[C2[T2]]

�
=⇒ C1[T

′′
2], that

is C[T2]
�

=⇒ T ′
2. Finally, by the closure of S to contexts given in (2), we have

C1[T
′′
1]SC1[T

′′
2], that is T ′

1ST ′
2. ut

15

