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Abstract. Delays in biological systems may be used to model events
for which the underlying dynamics cannot be precisely observed. Math-
ematical modeling of biological systems with delays is usually based on
Delay Differential Equations (DDEs), a kind of differential equations in
which the derivative of the unknown function at a certain time is given
in terms of the values of the function at previous times. In the literature,
delay stochastic simulation algorithms have been proposed. These algo-
rithms follow a “delay as duration” approach, which is not suitable for
biological systems in which species involved in a delayed interaction can
be involved at the same time in other interactions. We show on a DDE
model of tumor growth that the delay as duration approach for stochastic
simulation is not precise, and we propose a simulation algorithm based
on a “purely delayed” interpretation of delays which provides better re-
sults on the considered model. Moreover, we give a formal definition
of a stochastic simulation algorithm which combines both the delay as
duration approach and the purely delayed approach.

1 Introduction

Biological systems can often be modeled at different abstraction levels. A simple
event in a model that describes the system at a certain level of detail may
correspond to a rather complex network of events in a lower level description.
The choice of the abstraction level of a model usually depends on the knowledge
of the system and on the efficiency of the analysis tools to be applied to the
model.

Delays may appear in models of biological systems at any abstraction level,
and are associated with events whose underlying dynamics either cannot be
precisely observed or is too complex to be handled efficiently by analysis tools.
Roughly, a delay may represent the time necessary for the underlying network
of events to produce some result observable in the higher level model.

Mathematical modeling of biological systems with delays is mainly based on
delay differential equations (DDEs), a kind of differential equations in which the
derivative of the unknown function at a certain time is given in terms of the
values of the function at previous times. In particular, this framework is very



general and allows both simple (constant) and complex (variable or distributed)
forms of delays to be modeled.

As examples of DDE models of biological systems we mention [3,15,10,14,7].
In [3,15] an epidemiological model is defined that computes the theoretical num-
ber of people infected with a contagious illness in a closed population over time;
in the model a delay is used to model the length of the infectious period. In [10] a
simple predator-prey model with harvesting and time delays is presented; in the
model a constant delay is used based on the assumption that the change rate of
predators depends on the number of prey and predators at some previous time.
Finally, models of tumor growth [14] and of HIV cellular infection [7] have been
presented and analyzed by using DDEs.

Models based on DDEs, similarly to their simplest versions based on ordinary
differential equations (ODEs), may be studied either analytically (by finding the
solution of the equations, equilibria and bifurcation points) or via approximated
numerical solutions. However, for complex real models analytical solutions are
often difficult or impossible to be computed, whereas their approximated numer-
ical solution is more feasible.

Models based on differential equations, although very useful when dealing
with biological systems involving a huge number of components, are not suitable
to model systems in which the quantity of some species is small. This is caused by
the fact that differential equations represent discrete quantities with continuous
variables, and when quantities are close to zero this becomes a too imprecise
approximation. In these cases a more precise description of systems behavior can
be obtained with stochastic models, where quantities are discrete and stochastic
occurrence of events is taken into account.

The most common analysis technique for stochastic models is stochastic sim-
ulation that, in the case of models of biological systems without delays, often
exploits Gillespie’s Stochastic Simulation Algorithm (SSA) of chemical reactions
[9], or one of its approximated variants [8,6]. In recent years, the interest for
stochastic delayed processes increased [13]. In [2] a Delay Stochastic Simulation
Algorithm (DSSA) has been proposed, this algorithm gives an interpretation as
durations to delays. The delay associated with a chemical reaction whose reac-
tants are consumed (i.e. are not also products) is interpreted as the duration of
the reaction itself. Such an interpretation implies that the products of a chem-
ical reaction with a delay are added to the state of the simulation not at the
same time of reactants removal, but after a quantity of time corresponding to
the delay. Hence, reactants cannot be involved in other reactions during the time
modeled by the delay.

We argue that the interpretation of delay as duration is not always suitable for
biological systems. We propose a simple variant of the DSSA in which reactants
removal and products insertion are performed together after the delay. This
corresponds to a different interpretation of delays, that is the delay is seen as
the time needed for preparing an event which happens at the end of the delay.
An example of a biological behavior which can be suitably modeled by this
interpretation is mitosis. Cell mitosis is characterized by a pre–mitotic phase and



by a mitotic phase (cell division). The pre–mitotic phase prepares the division
of the cell, when a cell undergoes the mitotic process, the pre–mitotic phase can
be seen as a delay before the real cell division. During the pre–mitotic phase the
cell can continue to interact with the environment, for example it can die. The
DSSA in [2] cannot model this interactions because the reactants (in this case
the cell itself) are removed at the beginning of reaction and the products are
added at its end (that is after the delay).

In this paper we start by recalling the definition of DDEs and a DDE model
of tumor growth [14]. Then, we give a stochastic model of the considered tumor
growth example and simulate it by using the DSSA introduced in [2] and based
on an interpretation of delays as durations. Subsequently, we propose a new
“purely delayed” interpretation of delays and, consequently, a new variant of
the DSSA that we apply to the considered tumor growth example. Although
this new DSSA permits to have more precise results than the DSSA in [2] and it
has a very easy implementation, there exist some scenarios in which this version
of the algorithm does not work properly. Hence, we define a more precise version
of it which requires a much more complex implementation. Before drawing our
conclusions, we give a formal definition of a stochastic simulation algorithm
which combines both the delay as duration approach and the purely delayed
approach in its most precise definition.

2 Delay Differential Equations (DDEs)

The mathematical modeling of biological systems is often based on Ordinary
Differential Equations (ODEs) describing the dynamics of the considered systems
in terms of variation of the quantities of the involved species over time.

Whenever phenomena presenting a delayed effect are described by differential
equations, we move from ODEs to Delay Differential Equations (DDEs). In
DDEs the derivatives at current time depend on some past states of the system.
The general form of a DDE for X(t) ∈ R

n is

dX

dt
= fx(t, X(t), {X(t′) : t′ ≤ t}),

The simplest form of DDE considers constant delays, namely consists of equa-
tions of the form

dX

dt
= fx(t, X(t), X(t − σ1), . . . , X(t − σn))

with σ1 > . . . > σn ≥ 0 and σi ∈ R. This form of DDE allows models to de-
scribe events having a fixed duration. They have been used to describe biological
systems in which events have a non-negligible duration [3,15,10] or in which a
sequence of simple events is abstracted as a single complex event associated with
a duration [14,7].

In what follows we recall an example of DDE model of a biological system
that we shall use to compare delay stochastic simulation approaches.



2.1 A DDE model of tumor growth

Villasana and Radunskaya proposed in [14] a DDE model of tumor growth that
includes the immune system response and a phase-specific drug able to alter the
natural course of action of the cell cycle of the tumor cells.

The cell cycle is a series of sequential events leading to cell replication via cell
division. It consists of four phases: G1, S, G2 and M. The first three phases (G1,
S, G2) are called interphase. In these phases, the main event which happens is
the replication of DNA. In the last phase (M), called mitosis, the cell segregates
the duplicated sets of chromosomes between daughter cells and then divides.
The duration of the cell cycle depends on the type of cell (e.g a human normal
cell takes approximately 24 hours to perform a cycle).

The model in [14] considers three populations of cells: the immune system,
the population of tumor cells during cell cycle interphase, and the population
of tumor cells during mitosis. A delay is used to model the duration of the
interphase, hence the model includes a delayed event that is the passage of a
tumor cell from the population of those in the interphase to the population of
those in the mitotic phase. In the model the effect of a phase-specific drug, able
to arrest tumor cells during the mitosis, is studied. Such a drug has a negative
influence also on the survival of cells of the immune system.

In this paper we study a simplified version of the model (presented in sub-
section 4.1.2 of [14]), where the effects of the immune response and of the drug
are not taken into account. The simplified model, which considers only tumor
cells (both in pre-mitotic and mitotic phases), consists of the following DDEs:

dTI

dt
= 2a4TM − d2TI − a1TI(t − σ) TI(t) = φ0(t) for t ∈ [−σ, 0]

dTM

dt
= a1TI(t − σ) − d3TM − a4TM TM (t) = φ1(t) for t ∈ [−σ, 0]

Function TI(t) denotes the population of tumor cells during interphase at time
t, and function TM (t) denotes the tumor population during mitosis at time t.
The terms d2TI and d3TM represent cell deaths, or apoptosis. The constants
a1 and a4 represent the phase change rates from interphase to mitosis (a1) and
back (a4). In the following we shall denote with d the rate at which mitotic cells
disappear, namely d = d3 + a4.

We assume that cells reside in the interphase at least σ units of time; then
the number of cells that enter mitosis at time t depends on the number of cells
that entered the interphase at least σ units of time before. This is modeled by
the terms TI(t − σ) in the DDEs. Note that each cell leaving the mitotic phase
produces two new cells in the TI population (term 2a4TM ). In the model the
growth of the tumor cell population is obtained only through mitosis, and is
given by the constants a1, a4, and σ which regulate the pace of cell division.
The delay σ requires the values of TI and TM to be given also in the interval
[−σ, 0]: such values are assumed to be constant in the considered interval, and
hence equal to the values of TI and TM at time 0.



Fig. 1. The regions which describe the different behaviors of the DDE model by varying
parameters a1 and d (picture taken from [14]).

The analytic study of the DDEs constituting the model gives (0, 0) as unique
equilibrium. In Figure 1 (taken from [14]) some results are shown of the study
of the model by varying a1, d and σ and by setting the parameters a4 and d2 to
0.5 and 0.3, respectively. Figure 1 shows five regions.

When σ = 0, the region in which the tumor grows is R-I, while in the other
regions the tumor decays.

When the delay is present (σ > 0), the growth region is essentially unaltered,
but the decay is split into regions in which the tumor has different behaviors: in
regions R-II ∪ R-IV the tumor still decays, but in regions R-III ∪ R-V, when the
value of σ is sufficiently large, the equilibrium becomes unstable. This is shown
in Figures 2 and 3.

Figure 2 describes the behavior of the model, obtained by numerical solutions,
inside the regions R-I, R-II, R-III, and R-IV, when σ = 1. Actually, we considered
the point (0.6, 0.6) in R-I, the point (0.4, 1.0) in R-II, the point (1.0, 1.8) in R-III,
the point (0.8, 0.8) in R-IV and an initial state consisting in 105 tumor cells in the
interphase and 105 tumor cells in mitosis. We shall use always these parameters
in the rest of the paper. In the figure, we can observe that, while the tumor
grows in region R-I, it decays in all the other regions.

Figure 3 describes the behavior of the model when σ = 10. In regions R-I
and R-IV the tumor has the same behavior as before. In region R-II it decays
after some oscillations, while in region R-III it expresses an instability around
the equilibrium. However, remark that values of TM and TI under 0 are not real-
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Fig. 2. Results of the numerical solution of the DDE model with σ = 1 for the regions
described in Figure 1. On the x-axis time is given in days and on the y-axis is given
the number of cells.

istic, and, as we will see in the following, they cannot be obtained by stochastic
simulations.

3 Delay Stochastic Simulation

In this section we present algorithms for the stochastic simulation of biological
systems with delays. Firstly, we introduce a well–known formulation of one of
these algorithms, and we analyze the results of the simulations of the stochastic
model equivalent to the one presented in the previous section. Secondly, we
propose a variant of this algorithm and we compare the results of the simulations
done by using this algorithm with those of the simulation done by using the
original one.

All the simulations and the algorithms that we are going to present in this
section have been implemented in the software tool DelaySim. This tool, avail-
able at http://www.di.unipi.it/msvbio, has been written in Java.

3.1 The Delay as Duration Approach (DDA)

In [2] Barrio et al. introduced a Delay Stochastic Simulation Algorithm (DSSA)
by adding delays to Gillespie’s Stochastic Simulation Algorithm (SSA) [9]. The
algorithm has been used to explain more carefully than with DDE models the
observed sustained oscillations in the expression levels of some proteins.
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Fig. 3. Results of the approximated numerical simulation of the DDE model with
σ = 10 for the regions described in Figure 1. On the x-axis time is given in days and
on the y-axis is given the number of cells.

In order to recall the definition of the algorithm in [2] we consider a well–
stirred system of molecules of N chemical species {S1, . . . , SN} interacting through
M chemical reaction channels R = R1, . . . , RM . We assume the volume and the
temperature of the system to be constant. We denote the number of molecules of
species Si in the system at time t with Xi(t), and we want to study the evolution
of the state vector X(t) = (X1(t), . . . , XN (t)), by assuming that the system was
initially in some state X(t0) = x0.

A reaction channel Rj is characterized mathematically by three quantities.
The first is its state–change vector νj = (ν1j , . . . , νNj), where νij is defined to
be the change in the Si molecular population caused by one Rj reaction; let
us denote each state–change vector νj as a the composition of the state–change
vector for reactants, νr

j , and the state–change vector for products, ν
p
j , noting

that νj = νr
j + ν

p
j . For instance, given two species A and B, a reaction of the

form A −→ B is described by the vector of reactants (−1, 0), by the vector of
products (0, 1) and by the state–change vector (−1, 1); differently, a reaction of
the form A −→ A+B is described by the vector of reactants (−1, 0), by the vector
of products (1, 1), and by the state–change vector (0, 1).

The second characterizing quantity for a reaction channel Rj is its propensity

function aj(x); this is defined, accordingly to [9], so that, given X(t) = x, aj(x)dt

is the probability of reaction Rj to occur in state x in the time interval [t, t+dt].



As stated in [9], the propensity function can be defined as follows

aj(x) = k ·
N
∏

i=1

(

Xi(t)

|νr
i,j |

)

where k ∈ R denotes the kinetic function of reaction Rj and |νr
i,j | denotes the

absolute value of the i-th coordinate of vector νr
j . This probabilistic definition

finds its justification in physical theory.
The other characterizing quantity is a constant delay defined by a real num-

ber σ ≥ 0. Following Barrio et al., we classify reactions with delays into two
categories: non-consuming reactions, where the reactants are also products (e.g.
A −→ A + B), and consuming reactions, where some of the reactants are con-
sumed (e.g. A −→ B). Throughout the paper, we denote the set of non-consuming
reactions with delay by Rnc, the set of consuming reactions with delay by Rc,
and the reactions without delays by Rnd; notice that R = Rnc ∪Rc ∪Rnd and
Rnc, Rc and Rnd are pair–wise disjoint.

By adding delays to the SSA, Barrio et al. provide a method to model the
firing of a reaction with delay based on the previously given classification. For-
mally, given a system in state X(t) = x, let us denote with τ the stochastic
time quantity computed as in the SSA representing the putative time for next
reaction to fire. Let us assume to choose to fire a non-consuming reaction with
delay (a reaction from set Rnc); then the reaction is scheduled at time t+σ + τ ,
where σ is the delay of the reaction. Furthermore, the clock is increased to the
value t + τ and the state does not change. On the contrary, if a consuming reac-
tion with delay (a reaction from set Rc) is chosen to fire, then its reactants are
immediately removed from the state x, the insertion of the products is scheduled
at time t+σ + τ , and, finally, the clock is increased to the value t+ τ . Reactions
from set Rnd (non–delayed reactions) are dealt with exactly as in the SSA. The
DSSA by Barrio et al. is given in Figure 4.

We discuss now on the scheduling of the reactions with delay. When a non-
consuming reaction is chosen, the algorithm does not change state, but simply
schedules the firing of the reaction at time t + σj + τ (step (B2)). The reaction
will complete its firing (reactants and products will be removed and inserted,
respectively) when performing steps (A) and (A1).

Differently, as regards consuming reactions, the removal of the reactants is
done at time instant t (step (B3)) preceding the time instant of insertion of
the products (steps (A) and (A2)), namely the time at which the insertion is
scheduled, t + σj + τ . Notice that the removed reactants cannot have other
interactions during the time interval [t, t + σj + τ).

As the reactants cannot have other interactions in the time quantity passing
between the removal of the reactants and the insertion of the products, then
this quantity can be seen as a duration needed for the reactants to exclusively
complete the reaction. Since the approach of Barrio at al. gives this interpretation
of delays we shall call it “delays as duration approach” (DDA).

As regards the handling of the scheduled events (step (A) of the algorithm), if
in the time interval [t; t+ τ) there are scheduled reactions, then τ is rejected and



Algorithm DSSA with “delays as duration approach”

1. Initialize the time t = t0 and the system state x = x0.
2. Evaluate all the aj(x) and their sum a0(x) =

PM

j=1
aj(x);

3. Given two random numbers r1, r2 uniformly distributed in the interval
[0; 1], generate values for τ and j in accordance to

τ =
1

a0(x)
ln(

1

r1

)

j−1
X

i=1

ai(x) < r2 · a0(x) ≤

j
X

i=1

ai(x)

(A) If delayed reaction Rk
a is scheduled at time t + τk and τk < τ

(A1) If Rk ∈ Rnc then update x = x + νk and t = t + τk;
(A2) If Rk ∈ Rc then update x = x + ν

p

k and t = t + τk;
(B) else:

(B1) If Rj ∈ Rnd then update x = x + νj and t = t + τ ;
(B2) If Rj ∈ Rnc, schedule Rj at time t + σj + τ and set time to

t + τ ;
(B3) If Rj ∈ Rc, schedule Rj at time t+σj +τ , update x = x+νr

k

and set time to t + τ ;
4. go to step 2.

a This is the reaction with minimum τk, hence the first to complete.

Fig. 4. The DSSA with “delays as duration approach” proposed in [2].

the scheduled reaction is handled. At this step the algorithm implicitly assumes
Rk to be the scheduled action with the minimum τk. Among all the others which
could be chosen the choice of the one with the minimum τk is quite intuitive since
this will be the first to complete. Since generating random numbers is a costly
operation, other authors defined variants of the DSSA that avoid rejecting τ

in the handling of scheduled reactions [5,1]. However, the interpretation of the
delays used to define these variants is the same as that of Barrio et al..

This interpretation of delays may not be precise for all biological systems.
In particular, it may be not precise if in the biological system the reactants can
have other interactions during the time window modeled by the delay. The tumor
growth system we have recalled in Section 2.1 is an example of these systems.
In fact, while tumor cells are involved in the phase change from interphase to
mitosis (the delayed event) they can also die.

We applied the DSSA by Barrio at al. (we refer to the simulations done
by applying this DSSA as DDA simulations) to a chemical reaction model cor-
responding to the DDE model of tumor growth recalled in Section 2.1. The
reactions of the model are the following:

TI
a1−→ TM with delay σ TM

a4−→ 2TI TI
d2−→ TM

d3−→ .

We have run 100 simulations for each considered parameter setting. The results
of simulations with the same parameters as those considered in Figures 2 and 3



 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0  20  40  60  80  100

R-I

TI
TM

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0  5  10  15  20  25

R-III

TI
TM

 0
 1
 2
 3

 22  24

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  10  20  30  40  50  60

R-II

TI
TM

 0
 1
 2
 3

 56  58  60  62

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  50  100  150  200  250  300  350  400  450

R-IV

TI
TM

 0
 1
 2
 3

 416  418  420

Fig. 5. DDA simulation of the stochastic model with σ = 1 for the regions described
in Figure 1. On the x-axis time is given in days and on the y-axis is given the number

of cells.

are shown in Figures 5 and 6, respectively. Actually, in the figures we show the
result of one randomly chosen simulation run for each parameter setting.

Qualitatively, results obtained with DDA simulations are the same as those
obtained with numerical simulation of the DDEs: we have exponential tumor
growth in region R-I, tumor decay in the other regions and oscillations arise
when the delay is increased. However, from the quantitative point of view we
have that in the DDA simulations the growth in region R-I and the decay in the
other regions are always slower than in the corresponding numerical simulation
of the DDEs. In fact, with σ = 1 by the numerical simulation of the DDEs
we have that in region R-I after 100 days both the quantities of tumor cells in
interphase and in mitotic phase are around 300000, while in the result of DDA
simulations they are around 130000. In the same conditions, but with σ = 10,
in the numerical simulation of the DDEs we have about 47000 tumor cells in
mitosis and 57000 tumor cells in interphase, while in the DDA simulations we
have about 5000 and 5500 cells, respectively. As regards the other regions, in
Table 1 the average tumor eradication times obtained with DDA simulations are
compared with those obtained with numerical simulation of the DDEs (in this
case with “eradication” we mean that the number of tumor cells of both kinds
is under the value 1). Again, we have that in DDA simulations the dynamics is
slower than in the numerical simulation of the DDEs. For instance, with σ = 10,
in region R-IV the time needed for eradication in the DDEs is about 41% of
the time needed in the DDA (440 against 1072), in region R-II the percentage
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is smaller, 26% (59 against 224), and, in region R-III, it reaches 9% (12 against
126). For the same regions with σ = 1 these differences are smaller but not
negligible.

3.2 A Purely Delayed Approach (PDA)

In this section we propose a variant of the DSSA based on a different inter-
pretation of delays, namely a Stochastic Simulation Algorithm which follows a
“purely delayed approach” (PDA). With this interpretation we try to overcome
the fact that in the DDA the reactants cannot have other interactions. Further-
more, differently from Barrio et al., we use the same interpretation of delays to
define the method for firing both non-consuming and consuming reactions. This
interpretation of delays was firstly implicitly adopted by Bratsun et al. in [4], to
model a very simple example of protein degradation.

The approach we propose consists in firing a reaction completely when its
associated scheduled events is handled, namely removing its reactants and in-
serting its products after the delay. The fact that we simply schedule delayed
reactions without immediately removing their reactants motivates the terminol-
ogy of “purely delayed”. Notice that non-consuming reactions are handled in the
same way by DDA and PDA.

In this interpretation of delays it may happen that, when handling a sched-
uled reaction (again assuming to pick the one with the minimum τk as in the



Algorithm DSSA with “purely delayed approach”

1. Initialize the time t = t0 and the system state x = x0.
2. Evaluate all the aj(x) and their sum a0(x) =

PM

j=1
aj(x);

3. Given two random numbers r1, r2 uniformly distributed in the interval
[0, 1], generate values for τ and j in accordance to

τ =
1

a0(t)
ln(

1

r1

)

j−1
X

i=1

ai(X(t)) < r2 · a0(t) ≤

j
X

i=1

ai(X(t))

(a) If delayed reaction Rk
a is scheduled at time t + τk and τk < τ

and νr
k ≺ x, then update x = x + νk and t = t + τk;

(b) else, schedule Rj at time t + σj + τ , set time to t + τ ;
4. go to step 2.

a This is the reaction with minimum τk, hence the first to complete.

Fig. 7. The DSSA with “purely delayed approach”.

DDEs DDA Simulation PDA Simulation

R-II with σ = 1.0 50 64 51
R-II with σ = 10.0 59 224 67

R-III with σ = 1.0 15 29 17
R-III with σ = 10.0 12 126 20

R-IV with σ = 1.0 238 302 214
R-IV with σ = 10.0 440 1072 248

Table 1. Average eradication times given in days for DDE model, DDA and PDA
stochastic models. For the stochastic models the entries represent the sample of 100
simulations.

DDA since this is the first to complete), the reactants may not be present in the
current state. In fact, they could have been destroyed or transformed by other
interactions happened after the scheduling. In this case, the scheduled reaction
has to be ignored. To formalize this, we know that a reaction Rj can be applied
only if its reactants are all present in the current state of the simulation. Alge-
braically this corresponds to the fact that νr

j ≺ x where νr
j is the state–change

vector of the reactants of reaction Rj , the system is described by x and ≺ is the
ordering relation defined as ∀i = 1, . . . , N. − νr

ij ≤ Xi(t). In order to verify that
a scheduled reaction can effectively fire, it will be sufficient to check whether
this condition holds. The formal definition of the DSSA with PDA is given in
Figure 7.

As for the DDA, we have run 100 simulations of the stochastic model of
tumor growth for each considered parameter setting. The results of simulations
(we refer to these simulations as PDA simulations) with the same parameters as
those considered in Figures 2 and 3 are shown in Figures 8 and 9, respectively.



Actually, in the figures we show the result of one randomly chosen simulation
run for each parameter setting.

Qualitatively, results obtained with PDA simulations are the same as those
obtained with numerical simulation of the DDEs (and with DDA simulations).
From the quantitative point of view we have that in the PDA simulations the
growth in region R-I with σ = 1 is almost equal to the corresponding numerical
simulation of the DDEs (about 300000 tumor cells in both mitosis and interphase
after 100 days, we recall that the DDA had reached values around 130000). On
the contrary, with σ = 10, the difference between DDEs and PDA is higher: we
have about 22000 tumor cells in interphase against 57000 for the DDEs and 5500
for the DDA, and 16000 tumor cells in mitosis against 47000 for the DDEs and
5000 for the DDA.

As regards the other regions, in Table 1 the average tumor eradication times
obtained with PDA simulations are compared with those obtained with numeri-
cal simulation of the DDEs (again, in this case with “eradication” we mean that
the number of tumor cells of both kinds is under the value 1). In PDA simula-
tions the dynamics is generally slower than in the numerical simulation of the
DDEs but it is faster than the DDA one. With σ = 10, in region R-IV the time
needed for eradication in the PDA is smaller than the one in the DDEs (248
days against 440, DDA is 1072). In region R-II the values are: 67 days for the
PDA and 59 days for the DDEs, DDA is 224. In region R-III values are: 20 days
for the PDA, 12 days for the DDEs, and 126 days for DDA.

It is important to remark that differences between delay stochastic simula-
tion results and numerical solutions of DDEs are also influenced by the initial
conditions. The numerical solution of the DDEs assumes the initial population
to be constant and greater than zero in the time interval [−σ, 0]. This allows de-
layed event to be enabled in the time interval [0, σ]. Both variants of the DSSA
start to schedule delayed events from time 0, hence delayed reactions can fire
only after the time σ. This results, when σ is great enough, in a behavior that
is, in general, delayed with respect to that given by the DDEs.

Now, even if for this particular model this PDA definition is enough to justify
the introduction of simulation techniques different from the DDA one,we must
make some considerations about the PDA algorithm we proposed. In particular,
there are some scenarios in which the algorithm does not work properly. We will
go through these scenarios via some examples. For instance, consider a system
described by the following initial state and chemical reaction:

X(t0) = (1, 0) A
k,σ
−−→ B

where the initial state contains one single molecule A and the only reaction is the
one transforming a molecule A in a molecule B with a kinetic constant k and a
delay σ > 0. When applying the PDA algorithm to simulate this system it is easy
to observe that the algorithm may over-schedule the firing of the reaction. This
could happen because the reaction has a delay and, dependently on the value σ

and on the random numbers generated by the algorithm, between time t0 and the
first firing of the scheduled reactions, the PDA may schedule an arbitrary amount
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Fig. 8. PDA simulation of the stochastic model with σ = 1 for the regions described
in Figure 1. On the x-axis time is given in days and on the y-axis is given the number

of cells.

of times the reaction. However, after applying the first scheduled reaction at time
t+ϕ, the system state becomes the vector X(t0 +ϕ) = (0, 1) and, consequently,
all the other scheduled reactions are not applicable anymore. This situation is not
incorrect in fact, as expected, just one molecule A is transformed in a molecule
B, but it is computationally unpleasant since it schedules a lot of reactions that
will be never performed.

Also, it is possible to define, on top of this scenario, a new model such that the
behavior of the PDA becomes incorrect. Imagine, for instance, to have the same
scenario enriched with a reaction which produces, by an external unbounded
source, molecules of type A. As there is no way of tracking the time since a
molecule is in the system, then there is no way of preventing to apply a scheduled
rule to a molecule A which is not in the current state of the system by, at least,
σ time units. In this enriched scenario it may be the case that molecules A just
appearing in the state by the firing of the new reaction, may be used to perform
over-scheduled reactions and this is, obviously, incorrect.

Consequently, even if the PDA is, for some biological systems, a better can-
didate than the DDA algorithm by Barrio et al., it needs to be properly tuned to
avoid to simulate incorrect behaviors of the modeled system. The next section
will be devoted to the definition of a variant of the PDA in order to face these
issues. The more precise variant of the PDA will also be extended to obtain an
algorithm that integrates the two approaches.
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Fig. 9. PDA simulation of the stochastic model with σ = 10 for the regions described
in Figure 1. On the x-axis time is given in days and on the y-axis is given the number
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3.3 The PDA with markings

In order to get a correct version of the PDA we consider a solution based
on a marking of molecules. This variant of the PDA, in the following named
“marked Purely Delay Approach” (mPDA), is based on the idea of assigning,
to each molecule of the system, a marking which permits the identification of
the molecules involved in any scheduled reaction. On one side, this will fix the
liabilities of the PDA approach but, as it is intuitive, it will be computationally
much more expensive than the PDA.

In order to define the mPDA, we still assume the framework we used to
introduce the PDA where the state vector X(t) describes the time evolution of
a set of molecules belonging to n chemical species and R denotes a set of of
chemical reaction channels.

In what follows we describe the mPDA, whose definition will be given in
Figure 10.

Marking the molecules. The marking of molecules is based on the use of
natural numbers as identifiers. In order to get a clear marking policy we classify
the molecules of the system. Firstly, the molecules are classified in species, hence
a system is described by a set of species S = {Σ1, . . . , Σn} which defines the type
of molecules we are considering. Furthermore, any Σi denotes a set of molecules



such that
Σi = {Si,1

N1
, . . . , S

i,ni

Nni

}

where S
i,j
N is a single molecule belonging to species Σi ∈ S, with a unique

identifier j ∈ N and concurrently performing the reactions in N ⊂ ℘({z|Rz ∈
R}), a set of identifiers of the reactions which are present in the current model.
Notice that, for any molecule of the model, we carry much more information
than the one we had in the PDA. In particular, for any molecule we can exactly
know which reactions it is concurrently performing and, in this context, this
means that there is an instance of reaction consuming that molecule which is
currently scheduled in the event list. As these sets change during the simulation
of a system, we may denote by S(t) and Σi(t) the set of species and the set of
molecules of species Σi at time t, respectively.

The marking of molecules requires to discuss the use of vector X(t) which, as
in the PDA, will be used to observe the state changes due to the reactions firing.
The construction of the state vector X(t) is slightly changed, with respect to
the PDA, by the introduction of this marking notation. In particular, we define
X(t) as

X(t) = (|Σ1(t)|, . . . , |Σn(t)|) (1)

where |Σi(t)| denotes the cardinality of the set Σi(t). Notice that |Σi(t)| rep-
resents the number of molecules of species Σi at time t, exactly as the element
Xi(t) of X(t) in the definition of the PDA.

As regards X(t0), given an initial input state x0 for the mPDA, a proper
initial marking for the system to simulate has to be computed. Let us as-
sume x0 = (X1(t0), . . . , Xn(t0)), the set of species can be defined as S(t0) =
{Σ1(t0), . . . , Σn(t0)} where

∀i = 1, . . . , n. Σi(t0) = {Si,1
∅ , . . . , S

i,Xi(t0)
∅ }. (2)

This construction creates n sets of species types Σi(t0) and, for each of them,
it creates Xi(t0) molecules, each one with a different identifier, which are per-
forming no reactions (at time t0 the event list is empty, hence their set subscript
is the empty set). This guarantees that the molecules are correctly marked and,
hence, distinguishable.

In general, at any step of computation, the mPDA algorithm may modify
some of the sets Σi(t) ∈ S(t). The discussion about how the mPDA modifies
the sets in S(t), accordingly to the time–evolution of the simulated system, is
presented in the forthcoming subsections.

Evaluating the propensity functions. The firing of a reaction is the result of
a probabilistic choice based on the propensity function of the reaction, evaluated
in the current state of the simulation. In order to explain how the mPDA works,
we recall the assumption which is at the basis of the definition of this PDA



algorithm. The molecules can perform multiple reactions in parallel, but each
molecule can be involved in each reaction at most once at a time. The first
reaction to finish interrupts the others running in parallel and involving the same
molecule. In order to avoid over-scheduling phenomena it is to be ensured that
propensity function of a reaction depends only on the occurrences of reactants
that are not yet involved in the same reaction.

Let us assume that we have to evaluate the propensity function of a reaction

Rz : M
k,σ
−−→ P ∈ R such that Rz transforms a multiset of molecules M in a

multiset of molecules P with a kinetic constant k ∈ R. More precisely, let us
assume M to be a multiset of the form {(1, n1), . . . , (w, nw)}, namely reaction
Rz transforms, for any j = 1, . . . , w, a number of nj molecules of species Σj .
Notice that this corresponds to a set representation of the state–change vector
for reactants.

As we want to take into consideration only the molecules in the current
state of the simulation which are not already involved in any scheduled firing
of reaction Rz , then we have to filter those that are candidate for being used,
if any. Let us denote by [Σi(t), z] the set of identifiers of molecules belonging
to species Σi(t) which have to be considered in the evaluation of the propensity
function of Rz, namely the set

[Σi(t), z] = {j | S
i,j
N ∈ Σi(t) ∧ z 6∈ N}.

Notice that this set is obtained by considering all the molecules in the current
system, and by filtering them on the basis of the marking information that the
mPDA stores in S(t). In the PDA this set could not have been defined.

Given X(t) = x, the propensity function az(x) must consider only those
molecules required by M which are not already performing reaction Rz, hence
it can be defined as follows:

az(x) = k ·
∏

(i,ni)∈M

(

|[Σi(t), z]|

ni

)

(3)

where |[Σi(t), z]| denotes the cardinality of the set [Σi(t), z]. This definition of
the function az(x) is such that mPDA propensity functions compute, in general,
strictly smaller values than the PDA ones. Again, the PDA cannot distinguish
the molecules which are performing a reaction from those which are not.

Scheduling a reaction to fire. Whenever the propensity functions have been
evaluated, for any Rz ∈ R, accordingly to the definition (3), the index of the
reaction to fire can be chosen with the same policy used in the PDA. How-
ever, having a marking of molecules, the mPDA has a further level of choice to
determine to which molecules the reaction will be applied.

To clarify this, as an example consider a system with two distinct molecules of
the same type and both available for being consumed by a reaction. Whenever
the mPDA decides to fire that reaction, it has to choose to which of the two
molecules the reaction will be applied. This further choice is required by the



mPDA because it stores individual information about the molecules and, hence,
there exist two different destination markings that the system may reach. Notice
that, as the PDA abstracted these informations, it did not perform this further
choice.

In order to define this further probabilistic choice, assume the mPDA has

chosen to schedule the firing of the reaction Rz : {(1, n1), . . . , (w, nw)}
k,σ
−−→ P

introduced in the previous section. The mPDA stores in the event list the same
information of the PDA, namely the index of the reaction, z, and the time in
which it will fire, some t + τ + σ if t is the current time, τ is the putative time
for next reaction as computed in the PDA and σ is the delay of the reaction.
Together with this information, the mPDA stores in each element of the event
list a set of labels E representing the identifiers of the molecules which will be
consumed by the reaction, when handled. The set E contains pairs of natural
numbers and is such that if (i, j) ∈ E then the molecule S

i,j
N ∈ Σi(t) is involved in

the reaction. The set E is built by considering the molecules which can effectively
perform reaction Rz. Formally, for all (i, ni) ∈ M , we choose ni molecules from

the set [Σi, z]. Each molecule is chosen with probability |[Σi(t), z]|−1, hence the
probability of choosing a set E, with a system at time t, denoted by P (E, t), is
defined as

P (E, t) =
∏

(i,ni)∈M

(

|[Σi(t), z]|

ni

)−1

(4)

The mPDA updates the system clock to a value t + τ , stores the triple
(z, t + τ + σ, E) in the event list and changes the marking of the molecules
belonging to the set E. The marking is updated to store the information that
the molecules in E are performing reaction Rz. This will guarantee that, when
evaluating the propensity function for reaction Rz in the next time, the molecules
in E will not be counted again, as expected. The updated set S(t + τ), built by
modification of the set S(t) satisfies the following proposition

∀i = 1, . . . , n.Σi(t + τ) = {Si,j
N ∈ Σi(t) | (i, j) 6∈ E} ∪

{Si,j

N∪{z} ∈ Σi(t) |S
i,j
N ∈ Σi(t) ∧ (i, j) ∈ E}. (5)

Intuitively, any molecule in Σi(t) that has not been assigned to the firing of
reaction Rz is simply copied in Σi(t + τ). Differently, all the molecules assigned
to this firing of Rz , are copied in Σi(t + τ) with the index z added to their set
of concurrently running reactions.

Handling a scheduled reaction. When the mPDA decides, with the system
at time t, to handle a scheduled reaction Rz it finds, as information in the event
list, a triple (z, t′, E) where z is the identifier of the reaction to fire, t′ is the time
to which the clock must be set and E is the set of identifiers of the molecules
which will be consumed by the reaction. It is guaranteed, by construction, that
the molecules denoted by the set E are still present in the current state of the



simulation. Hence, differently from the PDA, the condition νr
z ≺ x has not to be

checked at this time.
The scheduled reaction is applied, as expected, by using the same policy of the

PDA, namely the reactants are removed and the products are inserted. However,
the mPDA must perform some additional operations to keep the marking of the
molecules correct.

First of all, let us assume the set E = {(s1, l1), . . . , (sm, lm)}, then all the
molecules denoted by these labels in S(t) must not be present anymore in the
set S(t′), built by the mPDA to represent the markings after the application

of reaction Rk. In particular, for any j = 1, . . . , m, the molecule S
sj ,lj
N must be

removed from the proper set in S(t′). To define this, we start by defining the
following sets

∀i = 1, . . . , n. Σi(t
′) = Σi(t) \ {Si,j

N ∈ Σi(t) | (i, j) ∈ E} (6)

Notice that this corresponds to remove exactly the number of reactants re-
quired by the application of the reaction Rz. Consequently, given the state vector
X(t) = x defined accordingly to (1), this new marking corresponds to a new state
x − νr

z .
As regards the interruption of the concurrently running reactions which were

assuming to use the reactants just consumed by reaction Rz , the mPDA performs
two operations. Firstly, the mPDA interrupts these reactions by removing them
from the event list and, secondly, it unlocks all the involved partners molecules,
so that they may start again, in the future, the interrupted reactions.

The interruption of the scheduled reactions is trivial. Let us denote with E(t)
the event list of the system at time t, all the reactions to be interrupted are
those which contain, at least, one reactant which is consumed by reaction Rz.
We denote by B(t) the set of reactions to be interrupted at time t, namely the
set

B(t) = {(w̃, t̃, Ẽ) ∈ E(t) | Ẽ ∩ E 6= ∅}.

Consequently, the mPDA modifies the event list E(t) creating a new event list
E(t′) such that

E(t′) = E(t) \ B(t). (7)

Unlocking the partners of the interrupted reactions is less easy. First of all,
when considering a generic molecule S

i,j
N ∈ Σi(t

′), where Σi(t
′) is a set of

molecules satisfying (6), it may be the case that it is coupled to some of the
events which have been interrupted in E(t′), and these events belong to the set
B(t). Also, it may be the case that the molecule is performing other reactions
which have not been interrupted. In general, even if w ∈ {w|(w, t, E) ∈ B(t)},
this does not imply that all the scheduled events referring to reaction Rw have
to be interrupted. Clearly, this depends on the one-to-many correspondence be-
tween a reaction and all the related scheduled events. Hence, in order to filter
the reactions which have been really interrupted for a molecule S

i,j
N ∈ Σi(t

′), we
define the set

D(t, i, j) = {w | (w, t̃, Ẽ ∪ {(i, j)}) ∈ B(t)}.



The construction of the set D(t, i, j) is straightforward. All the reactions which
have to be interrupted, with respect to molecule S

i,j
N , are only those relative

to events effectively interrupted and such that the molecule was assumed to
be consumed by that instance of reaction. This constraint filters any possible
collision between the indexes of the reactions relative to the interrupted events
and those which are performed with partners whose are not affected by the
application of the scheduled reaction Rz .

After this considerations, we can formally define how the interruption of some
events affects the marking of the molecules by defining these new sets

∀i = 1, . . . , n. Σ′
i(t

′) = {Si,j
N ′ | S

i,j
N ∈ Σi(t

′) ∧ N ′ = N\D(t, i, j)}. (8)

Notice that, as this definition does not modify the number of molecules
present in the markings, then this marking, with respect to definition (1), still
represents the vector state x − νr

z .
Finally, we discuss how the insertion of the products affects the marking

of the molecules in the system, with respect to the sets just created. Let us
assume that the scheduled reaction Rz creates a multiset of products P =
{(1, n1), . . . , (p, np)}, namely Rz produces, for any j = 1, . . . , p, a number nj

of new molecules of species Σj .
The creation of new objects to add to the sets Σ′

i(t
′) requires to assign them

new fresh identifiers respecting the uniqueness of the markings. As the marking
is based on the use of natural numbers, the mPDA has an infinite set of numbers
from which to choose the new identifiers. Let us denote, for a species Σi, the
maximum among all the used identifiers appearing in Σ′

i(t
′) as follows

µi = max{j | S
i,j
N ∈ Σ′

i(t
′)}.

Hence, for the set Σ′
i(t

′), the creation of ni non colliding identifiers can be
obtained by choosing the ni successors of the number µi. By these consideration
we can define the following sets

∀i = 1, . . . , n. Σ′′
i (t′) = Σ′

i(t
′) ∪ {Si,µi+1

∅ , . . . , S
i,µi+ni

∅ | (i, ni) ∈ P}. (9)

Finally, the complete marking computed by the mPDA after the application
of a scheduling rule is defined as

S(t′) = {Σ′′
1 (t′), . . . , Σ′′

n(t′)}. (10)

This new marking is obtained by modifying the one representing, accordingly to
definition (1), the state vector x− νR

z . As this marking is built by inserting, for
each species, exactly the number of product molecules of reaction Rz, then this
new marking corresponds to the state vector x − νr

z + νp
z = x + νz which is, as

expected, the resulting state of the correct application of reaction Rz.

3.4 A DSSA combining the mPDA and the DDA

In this section we define a stochastic simulation algorithm which combines the
delay as duration approach and the purely delayed approach in its most precise



Algorithm DSSA with “marked purely delayed approach”

1. Initialize the time t = t0, build the initial marking w.r.t definition (2)
by using the input initial state x0.

2. Evaluate all the aj(x) w.r.t. definition (3), define a0(x) =
PM

j=1
aj(x);

3. Given two random numbers r1, r2 uniformly distributed in the interval
[0, 1], generate values for τ and j in accordance to

τ =
1

a0(t)
ln(

1

r1

)

j−1
X

i=1

ai(x) < r2 · a0(t) ≤

j
X

i=1

ai(x)

(a) If delayed reaction Rk
a is scheduled at time t + τk and τk < τ ,

then:
– update the event list w.r.t. definition (7);
– update the marking w.r.t definitions (6), (8), (9) and (10);
– set time to t = t + τk.

(b) else:
– choose, w.r.t. definition (4), the set of reactants E that will

be modified by reaction Rj ;
– update the marking w.r.t. definition (5);
– schedule the triple (j, t + σj + τ, E);
– set time to t + τ .

4. go to step 2.

a This is the reaction with minimum τk, hence the first to complete.

Fig. 10. The DSSA with “marked purely delayed approach”.

definition. This will allow biological phenomena that cannot be suitably dealt
with by only one of the two approaches, to be studied.

The framework in which we define this DSSA, in the following denoted as
Full DSSA, is a simple modification of the one in which we defined the mPDA.
This requires to redefine the DSSA with DDA in a framework were markings
are present. As regards the notation, we introduce two disjoint sets of possible
reactions R = RD ∪ RP where RD and RP are the sets of reactions that are
treated with a DDA approach and a mPDA approach, respectively.

In what follows we describe the Full DSSA, whose definition will be given in
Figure 11.

Marking the molecules. Marking the molecules is necessary to use the mPDA
inside the Full DSSA. Clearly, the marking defined by the mPDA in Section 3.3,
together with definitions (1) and (2), is still valid in the Full DSSA.

Evaluating the propensity functions. We introduced two disjoints sets of
reactions, RD and RP , in order to separate reactions whose delays have to be
considered as durations from those whose delays are pure. However, it is easy to



notice that, for any reaction in Rz ∈ R, its propensity function can be correctly
defined as in (3). This can be done because the different interpretations of the
delays do not require different definitions of the propensity functions, but simply
different semantics of the firings of reactions.

Despite this similarity, it is worth making a simple consideration about re-
actions in RD. Those reactions are such that, whenever started, they remove
the reactants from the state of the simulation and, when the firing terminates,
they add to the state their products. Hence, if a reaction of set RD is performed
by a molecule S

i,j
N ∈ Σi(t), then all the reactions concurrently running in N

have to be interrupted and, the involved partners, have to be unlocked. By this
consideration it is easy to notice that ∀i ∈ N.Ri ∈ RP and, hence, it holds that
∀t > t0. ∀z ∈ RD. [Σi(t), z] = Σi(t). Summarizing, evaluating the propensity
function of a reaction from set RD does not require to define the set [Σi(t), z],
an operation whose cost is at most linear in the size of Σi(t), and, consequently,
it is computationally less expensive than the evaluation of a propensity function
of a reaction in RP .

Scheduling a reaction to fire. Reactions in RP are scheduled accordingly to
the definitions (4) and (5) whereas, the reactions in the set RD are scheduled
with a different policy.

Assume that the Full DSSA wants to schedule a reaction Rw ∈ RD at time
t+τ +σw. Firstly, the Full DSSA must choose the reactants to which the reaction
is applied. As this choice is independent with respect to the interpretation of the
delays, the set E to which the reaction will be applied can be chosen accordingly
to definition (4), as in the mPDA.

Now, as the state must be modified by the removal of the reactants, the
Full DSSA changes the marking accordingly to definition (6) which corresponds
exactly to this operation. Furthermore, as the Full DSSA has, for all molecules
in the set E, to interrupt all the reactions that they are concurrently performing,
it modifies the event list accordingly to definition (7). Finally, the Full DSSA
further modifies the marking accordingly to definition (8) in order to unlock the
partners involved in the interrupted reactions.

The scheduling of the reaction is then performed by adding, to the event
list E(t), a pair (w, t + τ + σw). Consequently, the event list in the case of the
Full DSSA contains some triples referring to scheduled reactions belonging to
set RP , and some pairs referring to scheduled reactions belonging to set RD.

We remark that, in the mPDA, definitions (6), (7) and (8) were introduced
when handling a scheduled reaction. The fact that for a reaction in RD the Full
DSSA uses these definitions at the time of scheduling the reaction is due to the
different interpretations of delays.

Handling a scheduled reaction. Scheduled reactions belonging to set RP

are handled, accordingly to the mPDA, as explained in Section 3.3.
Differently, handling a reaction with a DDA approach is trivial because the

major computational effort has been done when it was scheduled. Assume that



Algorithm Full DSSA

1. Initialize the time t = t0, build the initial marking w.r.t definition (2)
by using the input initial state x0.

2. Evaluate all the aj(x) w.r.t. definition (3), define a0(x) =
PM

j=1
aj(x);

3. Given two random numbers r1, r2 uniformly distributed in the interval
[0, 1], generate values for τ and j in accordance to

τ =
1

a0(t)
ln(

1

r1

)

j−1
X

i=1

ai(x) < r2 · a0(t) ≤

j
X

i=1

ai(x)

(a) If delayed reaction Rk
a is scheduled at time t + τk and τk < τ ,

then:

– if Rk ∈ RD update the marking w.r.t definitions (9) and (10);
– if Rk ∈ RP update the event list w.r.t. definition (7), update

the marking w.r.t definitions (6), (8), (9) and (10);
– set time to t = t + τk.

(b) else:
– choose, w.r.t. definition (4), the set of reactants E that will

be modified by reaction Rj ;
– if Rj ∈ RD update the event list w.r.t. definition (7), update

the marking w.r.t. definitions (6) and (8), schedule the pair
(j, t + σj + τ );

– if Rj ∈ RP update the marking w.r.t. definition (5) and
schedule the triple (j, t + σj + τ, E);

– set time to t + τ .
4. go to step 2.

a This is the reaction with minimum τk, hence the first to complete.

Fig. 11. The Full DSSA with both “delay as duration approach” and “marked purely
delayed approach”.

the Full DSSA wants to handle a scheduled reaction described by the pair (w, t′)
where Rw ∈ RD. In order to insert the product molecules of Rw by modifying
the current marking the Full DSSA modifies S(t) by applying definitions (9) and
(10).

4 Discussion

In the previous sections we showed two different approaches to the firing of
delayed reactions. The two approaches can be conveniently used for dealing
with two different classes of delayed reactions. The delay as duration approach
suitably deals with reactions in which reactants cannot participate, whenever
scheduled, in other reactions. On the other hand, the purely delayed approach
can be conveniently used in cases in which reactants can be involved in other
reactions during the delay time.



In the example we have shown, cells in the interphase, which wait for entering
the mitotic phase, can be involved in another reaction, namely their death. Thus
in this example the purely delayed approach seems to be more appropriate for
capturing the behavior of this real system.

However, the algorithm we have defined, implemented and applied to the
considered cell–growth model is rather naive, and may be incorrect in several
scenarios. Consequently, we have defined a more precise algorithm, the mPDA,
based on the purely delayed approach, which exploits a technique of marking of
the molecules. The marking technique makes the mPDA computationally costly.
As future work, we plan to study simplified versions of the mPDA to be proved
correct by means of abstract interpretation techniques.

Furthermore, as there are biological systems in which, due to the hetero-
geneity of reactions, both the approaches should be used, we combined, in a
new framework, both the duration as delay approach and the purely delayed
approach with markings.

In the future, we plan to define formal languages for the definition of models
with delays. These languages should be such that the time evolution of the
described models is in accordance with the algorithms we proposed. As far as
we know, similar notions of delay have been presented in the framework of Petri
nets with time information. In particular, in Timed nets [12] a notion of delay
similar to a duration appears; differently, in Time nets [11] the notion of delay
corresponds to our purely delayed approach.
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