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1. Introduction

The most common approach of biologists to describe bioctgigstems is based on the use of determin-
istic mathematical means (like, e.g., ODE), and makes giptesto abstractly reason on the behaviour of
biological systems and to perform a quantitaiiveilico investigation. This kind of modelling, however,
becomes more and more difficult, both in the specificatiorselzand in the analysis processes, when the
complexity of the biological systems taken into consideraincreases. This has probably been one of
the main motivations for the application of Computer Sciefirmalisms to the description of biological
systems[[19]. Other motivations can also be found in thetfatthe use of formal methods from Com-
puter Science permits the application of analysis tectasighat are practically unknown to biologists,
such as, for example, static analysis and model checking.

Among the formalisms that have either been applied to biotmghave been inspired by biological
systems there are automata-based modeéls_|2, 16], rewstersyg [TIL[ 17], and process calculi][19,
[20,[18,[10]. On the one hand, automata inspired models havadiantage of allowing the direct
use of many verification tools such as model checkers. On tiner thand, rewrite systems usually
allow describing biological systems with a notation that b& easily understood by biologists. While
automata-based models and rewrite systems present, inajemeblems of compositionality (which
might allow studying the behaviour of a system componermyithese are resolved in general by using
process calculi, included those used to describe biolbgysiems.

In [B] we introduced a new formalism, called Calculus of LompSequences (CLS for short), for
describing biological systems and their evolution. CLSasdd on term rewriting with some features,
such as a commutative parallel composition operator, ange smantic means, such as bisimulations,
that are common in process calculi. This permits to combiresimplicity of notation of rewriting
systems with the advantage of a form of compositionalitytuatty, in |[4] we have defined bisimulation
relations which are congruences with respect to the opsraidis is ensured by the assumption that the
same set of rewrite rules is used for terms that are composed.

CLS terms are constructed by starting from basic constitelements and composing them by means
of operators of sequencing, looping, containment and lghdmposition. Sequences may represent
DNA fragments and proteins, looping sequences may represembranes, and parallel composition
may represent juxtaposition.

A formalism for modelling protein interactions was deveddgn the seminal paper by Danos and
Laneve [11], and extended inJ15]. This formalism allows regsing proteins by a node with a fixed
number of domains; binding between domains allows comfplexgroteins. In this work we extend
CLS to represent protein interaction at the domain levelchSan extension, called Linked Calculus
of Looping Sequences (LCLS), is obtained by labelling eletm®f sequences. Two elements with the
same label are considered to be linked.

The possibility of modelling protein interaction at the daimlevel allows some combinatorial prob-
lems in the description of cellular pathways to be avoidedodrticular, cellular pathways often involve
many different proteins, which can bind with each other wesal different ways, thus forming a huge
number of different protein complexes. The usual approadiné modelling of these pathways is by
considering each possible protein complex as a differegitisp, hence as a different entity in the model.
The result is that models often become too complex to be sedlyThe modelling of protein interaction
at the domain level allows the set of species considered iodehto consist only of the proteins involved
in the described pathway by representing complexes adwteschaving proteins as building blocks. In
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the case of LCLS, we can combine the advantages of this waydéling protein interactions with the
advantages of having a rather general formalism.

The use of pairs of labels to represent links in LCLS requarestion of well-formedness of terms
to be defined. Moreover, it is important to ensure that walirfedness is preserved by the application
of rewrite rules. This is not true in general, but we propase &pproaches to obtain this result: the
first approach is based on a syntactic constraint for rewuies and the second on a type system. The
two approaches are different in terms of expressivenessféinincy. As an example of application, we
show the LCLS description of a biological system, namelyE# pathway.

This paper derives from the merging of the two papersi[4, 8thBapers study well-formedness of
links between protein sites within the Linked Calculus obping Sequences. The present version con-
tains a detailed description of the two approaches, a ttieareomparison, and an explicit application
in which the two approaches are put at work.

1.1. Systems Biology and Type Systems

In the last few years there has been a growing interest ingb®fitype disciplines to enforce biological
properties. In[[B] a type system has been defined to ensuredléormedness of links between protein
sites within the Linked Calculus of Looping Sequences (@§e [n [14] three type systems are defined
for the Biochemical Abstract Machine, BIOCHAM (séé [1]). &first one is used to infer the functions
of proteins in a reaction model, the second one to infer aiitim and inhibition effects of proteins,
and the last one to infer the topology of compartments [T} {18 have defined a type system for the
Calculus of Looping Sequences (s€k [6]) to guarantee thedsess of reduction rules with respect
to the requirement of certain elements, and the repellehothers. Bioglio, in [8], refines this idea
by designing a type system which assures that the cardasabf elements of some types are in given
numerical intervals. We have proposed [inl[12] a type systentHe Stochastic Calculus of Looping
sequences (se [5]) that allows for a quantitative analyrgismodels how the presence of catalysers (or
inibitors) can modify the speed of reactions. [ [9], we ehrihe BioAmbients calculus with a static
type system classifying each ambient with group types §prgithe kind of compartments in which the
ambient can stay. The type system ensures that, in a wabtppocess, ambients cannot be nested in a
way that violates the type hierarchy.

1.2. Summary

The remainder of this paper is organised as follows. In 8e@li we present the Calculus of Loop-
ing Sequences and introduce our running example about thedifBalling pathway. In Sectidd 3 we
provide the formalisation of the Linked Calculus of Loopiigquences and introduce the definition of
well-formed terms with links. We also redefine the EGF silijnglpathway example by taking links
into account. The well-formedness condition on the linkictiure should be checked at run-time on the
term resulting after the application of a rewrite rule. Irc@@n[4 we investigate two statically verifiable
conditions that allow to avoid or simplify the run-time ckew. Hence, we introduce the condition of
compartment safetghecking that the structure of our rewrite rules do notrahie well-formed linkage

of a term to be rewritten, and the onetgped safetychecking that the right hand side of the rule has a
type which issimilar to the one of the left hand side. For this last condition, weetlg a type inference
technigue which simplifies checking applicability of retgrrules. In Sectiofl5 we discuss, through an
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Figure 1. Examples of CLS terms: (i) represefitsb - c)L; (ii) representga - b - c)L ] (d- e)L; (iii) represents
(a-b-0)" ] ((d-e)" [ f-g).

example, our techniques to guarantee the well-formedrfeesms. Finally, in Sectiofil6, we draw our
conclusions.

2. The Calculus of Looping Sequences

In this section we recall the Calculus of Looping Sequen€as). It is essentially based on term rewrit-
ing, hence a CLS model consists of a term and a set of rewités.rlihe term is intended to represent the
structure of the modelled system, and the rewrite rulespgmesent the events that may cause the system
to evolve.

We start with defining the syntax of terms. We assume a pgssilihite alphabetf of symbols
ranged over by, b, ¢, . . ..

Definition 2.1. (Terms)
TermsT andSequences§ of CLS are given by the following grammar:

T =5 | (9T | T|IT
S =€ | a ‘ S-S

wherea is a generic element &, ande represents the empty sequence. We denote Witthe infinite
set of terms, and witls the infinite set of sequences.

In CLS we have a sequencing operator, a looping operato(_)L, a parallel composition operator
_| - and a containment operatot _. Sequencing can be used to concatenate elements of théetgha
The empty sequencedenotes the concatenation of zero symbols. A term can bereiteequence, or a
looping sequence (that is the application of the loopingajoe to a sequence) containing another term,
or the parallel composition of two terms. By definition, Iamgp and containment are always applied
together, hence we can consider them as a single binarytopaér;aL | _ that applies to one sequence
and one term.

The biological interpretation of the operators is the follog: the main entities which occur in
cells are DNA and RNA strands, proteins, membranes, and athero-molecules. DNA strands (and
similarly RNA strands) are sequences of nucleic acids, liey tan be seen also, at a higher level of
abstraction, as sequences of genes. Proteins are seqoénaoc@go acids that may have a very complex
three-dimensional structure. In a protein there are ug@alatively) few subsequences, called domains,
which actually are able to interact with other entities byam® of chemical reactions. CLS sequences
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can model DNA/RNA strands and proteins by describing eacte g each domain with a symbol
of the alphabet. Membranes are closed surfaces, oftersjriesed with proteins, which may contain
something. A closed surface can be modelled by a loopinges®gu The elements (or the subsequences)
of the looping sequence may represent the proteins on thebraam and by the containment operator
it is possible to specify the content of the membrane. Otheeroimolecules can be modelled as single
alphabet symbols, or as short sequences. Finally, juxitagosf entities can be described by the parallel
composition of their representations.

Brackets can be used to indicate the order of applicatiohebperators, and we assur(rléL |-
to have precedence over| _. In Figure[1 we show some examples of CLS terms and their iisua
representation.

In CLS we may have syntactically different terms represgnthe same structure. We introduce a
structural congruence relation to identify such terms.

Definition 2.2. (Structural Congruence)
The structural congruence relatioas and= are the least congruence relations on sequences and on
terms, respectively, satisfying the following rules:

Sy (Sy-S3) =5 (Sy-S2)-S3 S-e=ge-S=g85
S) =g Sy implies S; =7 Sy and ($))" | T =7 (S)" | T
| Th=rT|Th T (T2|13)=r (T1 | 12) | T3
Tle=rT  (S1-8)" | T=r (S2-5)" | T

Rules of the structural congruence state the associat¥ityand | , the commutativity of the latter
and the neutral role af Moreover, axiom( S 'SQ)L | T=r (Sg-Sl)L | T says that looping sequences
can rotate. In the following, for simplicity, we will use in place of=r.

Rewrite rules will be defined essentially as pairs of termsyhich the first term describes the portion
of the system in which the event modelled by the rule may gamud the second term describes how
that portion of the system changes when the event occurdieltetms of a rewrite rule we allow the
use of variables. As a consequence, a rule will be applicabkdl terms which can be obtained by
properly instantiating their variables. Variables can béhcee kinds: two of these are associated with
the two different syntactic categories of terms and sece®rand one is associated with single alphabet
elements. We assume a set of term variallgsranged over byX, Y, 7, . . ., a set of sequence variables
SV ranged over by, v, z, . . ., and a set of element variabldsranged over by, y, z, . . .. All these sets
are possibly infinite and pairwise disjoint. We denotelbthe set of all variablesy = TV U SV U X,
and withp a generic variable of. Hence, a pattern is a term which may include variables.

Definition 2.3. (Patterns)
PatternsP andsequence patternSP of CLS are given by the following grammar:
P =8P | (sp*]P | PP | X
SP:::e‘a‘SP-SP‘i‘:U

wherea is a generic element &, and X, z andx are generic elements @f//, SV andX’, respectively.
We denote withP the infinite set of patterns.
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We assume the structural congruence relation to be tgvedtended to patterns. Anstantiation
is a partial functions : V — TI. An instantiation must preserve the type of variables, fousX €
TV,z € SV andz € X we haver(X) € T, 0(z) € S ando(z) € &, respectively. GiverP € P, with
Po we denote the term obtained by replacing each occurrencachf\eariablep € V appearing inP
with the corresponding term(p). With 3 we denote the set of all the possible instantiations anéngiv
P € P, with Var(P) we denote the set of variables appearind’irNow we define rewrite rules.

Definition 2.4. (Rewrite Rules)
A rewrite rule is a pair of patterng;, P»), denoted withP, — P,, whereP;, P, € P, P, # e and such
thatVar(P,) C Var(P;). We denote withR the infinite set of all the possible rewrite rules.

A rewrite rule P, — P, states that a tern#; o, obtained by instantiating variables iy by some
instantiation functiors, can be transformed into the terMo. We define the semantics of CLS as a
transition system, in which states correspond to termsiramgditions correspond to rule applications.

Definition 2.5. (Semantics)
Given a set of rewrite rule® C R, the semanticof CLS is the least transition relations on terms
closed undet=, and satisfying the following inference rules:

P—P,eR Po#e oeX
Pio — Pyo
T — T T — 15

TIM—=T|T. ()" |1 - (9" T

A modelin CLS is given by a term describing the initial state of theteyn and by a set of rewrite
rules describing all the events that may occur.

In order to show the usage of CLS as a model of biological systeve give the CLS model of a
well-known example of cellular signal transduction, nayrtbe EGF signalling pathway.

In Biology, signal transduction refers to any process byolha cell converts one kind of signal or
stimulus into another. Signals are typically proteins thaly be present in the environment of the cell.
In order to be able to receive the signal, namely to recoghiaethe corresponding ligand is available in
the environment, a cell exposes some receptors on its ekteembrane. A receptor is a transmembrane
protein that can bind to a signal protein on its extracellelad. When such a binding is established, the
intracellular end of the receptor undergoes a conformatiohange that enables interaction with other
proteins inside the cell. This typically causes an ordesgfience of biochemical reactions inside the
cell, usually called signalling pathway, that are carriettyy enzymes and may produce different effects
on the cell behaviour.

A complex signal transduction cascade, that modulatespeeliferation, survival, adhesion, mi-
gration and differentiation, is based on a family of recepitalled epidermal growth factor receptors
(EGFRs). While EGFR signalling is essential for many normalrphogenic processes, the aberrant
activity of these receptors has been shown to play a fundiinte in proliferation of tumor cells. Epi-
dermal growth factor receptors are sinthesized from spapines in the DNA through transcription into
RNA (mediated by polymerase enzymes) and translation irtteim (mediated by ribosomes), and they
are located on the cell surface. Receptors are activateldeblgihding with a specific ligand (epidermal
growth factor, EGF) to form a EGFR (ligand-receptor) compl&lpon activation, EGFR undergoes a
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Figure 2. The EGF signaling pathway.

transition from a monomeric form to an active dimeric one.HRZlimerization stimulates its intracel-
lular phosphorylation which activates signalling progeirrhese activated signalling proteins (effector
proteins) initiate several signal transduction cascddasing to DNA synthesis and cell proliferation.
Now we give the CLS model of the first steps of the signallinthpay. We model the cell membrane
as a looping sequen((en)L, where the alphabet symbol generically denotes the whole membrane
surface when no receptors are present yet on the membrandar§i, we model the membrane of the
nucleus as the looping sequer(oe)L. Moreover, we model DNA and RNA as the elememt& A and
RN A, and the signal and receptor proteins as the elenfe@tg and EG F' R, respectively. Polymerases
and ribosomes are modelled as elemdn€3.Y and RI BO, respectively. A signal-receptor complex
is denoted as’'M PLX and a dimer composed by two of such complexes is denoted eishe/ M,
before phosphorylation, or d31 M p, after phosphorylation. We denote an effector protein \&if,

that become® I M EF F when bound to a dimer anbl ' F'p after phosphorylation.
First of all, synthesis of the EGFR receptor from the DNA isa&ed by the following rules:

POLY | DNA — POLY | DNA|RNA (R1)

(n)" | (RNA|X) — RNA|(n)" | X (R2)
RNA|RIBO +— RNA|RIBO|EGFR (R3)
(m-%)" | (EGFR| X) ~— (m-%-EGFR)" | X (R4)

Rule (R1) describes the transcription of DNA into RNA penfi@d by the polymerase enzyme. Rule
(R2) describes the coming out of the RNA from the nucleuseRiaB) describes the translation of RNA
into the EGFR protein performed by the ribosome. Rule (R4rdees the incorporation of the EGFR
in the cell membrane.

The first steps of the EGF signalling pathway are describetthidyollowing rules:
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EGF | (EGFR-Z)" | X (CMPLX 7' x (R5)
(CMPLX -%-CMPLX -5)" | X — (DIM-Z-3)" | X (R6)
(DIM -7)" | X — (DIMp :v) | X (R7)

(DIMp-3)" | (X | EFF) — (DIMEFF-%)" | X (R8)
(DIMEFF-%)" | X — (DIMp-3)" | (X | EFFp) (R9)

Rule (R5) describes the binding of the EGF signal proteimaiteceptor EGFR on the cell mem-
brane. The result of the binding is a signal-receptor compleose dimerization is described by rule
(R6). Rule (R7) describes the phosphorylation (activatafra dimer, which enables the propagation of
the signal inside the cell by means of phosphorylation adatéir proteins (rules (R8) and (R9)).

3. The Linked Calculus of Looping Sequences

To model a protein at the domain level in CLS it would be ndttoraise a sequence with one symbol for
each domain. However, the binding between two domains ofdifferent proteins, that is the linking
between two elements of two different sequences, cannoxfressed in CLS. For example, the CLS
terma-b-c | d-e- f could model two proteins each having three domains. How&/e® does not
provide any suitable method to model the binding of one oftihmains of the first protein to one of the
domains of the second protein. To represent this, we exté&®ib@ labels on basic symbols. If in aterm
two symbols have the same label, we intend that they repreleenains that are bound to each other.
For example, we will denote with - b' - ¢ | d - ! - f two proteins in which domaih of the first protein

is bound to domair of the second protein. If in a term there is a single symbadh\aitertain label, we
intend that the term represents only a part of a system we Iynanuie that the symbol will be linked to
another symbol in another part of the term representinguthenodel.

As membranes create compartments, elements inside a ¢pepguence cannot be linked to ele-
ments outside. Elements inside a membrane can be linkeat éitlother elements inside the membrane
or to elements of the membrane itself. An element can bediakenost to another element. The partner
to which an element is bound may be different at differenesinand a domain able to bind to multiple
partners simultaneously could be described by using meraegits instead of a single one.

Now we formally define the Linked Calculus of Looping Sequesn@_CLS), hamely the extension
of CLS with labels on basic symbols. In the definition we oftdiuse of notations already introduced
for CLS. However, this will not cause ambiguities becausehanfollowing we shall always use these
notations with reference to LCLS.

The syntax of LCLS terms is defined as follows. We use as latalsal numbers.

Definition 3.1. (Terms)
TermsT andSequences§ of LCLS are given by the following grammar:

T =5 | (9T | T|T
S:::e|a‘a"|5'5
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@) (i)

Figure 3. Examples of well-formed and non well-formed terisrepresents’ | (b1* - b22)L | el 2% ¢3;
(ii) represents:® | (b)LJ ct; (iii) representsi! | b | c!.

whereq is a generic element &, andn is a natural number. We denote willi the infinite set of terms,
and withS the infinite set of sequences.

We will denote byO(T'), 7 (T') the set of labels which occur once or twicelinrespectively, and by
L(T) the setO(T) U T (T).

In what follows, we will use the notion dbp-level compartmendf a term. The top-level com-
partment is the portion of the term that is not inside any logsequence. For instance, the top-level
compartment of the following term

T=al®)"cl(d)" ] fl(g)"]h)

al (0" el ()" e

Formally, we define a functiotic(T") that gives the top-level compartment of teffras follows:
te(S) =S He((S)" | T) = (S)" | e  He(Ty | Tp) = te(Th) | tle(Ty).

As explained before, it is intended that in an LCLS term eatfel should appear either once or
twice. Moreover, for a term to beell formedit is also important that labels i (T") either appear in the
same compartment, or one in a looping sequence and the atliex compartment immediately inside
such a looping sequence. Moreover, label®ifT") must appear in the top-level compartment/oin
order to allow them to correctly pair with another label pded by a possible context @f. In Figure[B
we show some examples of well-formed and non well-formeaiseterm (i) is well formed since labels
appear twice and in proper positions; term (ii) is not wethfied since the two occurrences of the label
are associated with elements that are in completely diffevempartments; term (iii) is not well formed
since there is a label occurring three times.

We now define a unary relatiom f on terms such thab f(7) holds if and only if termT is well
formed.
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Definition 3.2. (Well-formedness)
The unary relationv f on LCLS terms is the least relation satisfying the followmggs:

wf(e)  wfla)  wfla")

wf(Sl) UJf(SQ) E(Sl) N T(SQ) = T(Sl) N ﬁ(SQ) =y
wf(S1 - S2)

wf(Ty) wf(lz) LT)NT(T)=T(T1)NL(T) =2
wf(Ty | Ty

wf(S) wf(T) LIS)NT(T)=TES)NLT) =2 O(T)C O(S)
wf((S)" ] 1)

Rules of well-formedness simply check that labels do notiootore than twice in a term, and that
symbols occurring only once in a term contained in a loopegugnce occur once also in the looping
sequence itself.

We can show that, as expected, labels occurring only oncetémna are placed in the top-level
compartment of the term.

Proposition 3.1. GivenT € 7, if wf(T') holds, thenO(T") = O(tlc(T)).

Proof:
Easy by structural induction dmi. O

The structural congruence for LCLS extends the correspgnidilation for CLS with a notion aof-
renaming that allows labels Ih(7") to be replaced ifl" by other unused labels (i.e. labels not belonging
to £(T)). Thea-renaming is assumed not to change label®{") since this could break a binding
between an element ifi and another in the context @f, leading to a non well-formed term.

Patterns of LCLS are similar to those of CLS, with the additd the labels.

Definition 3.3. (Patterns)
PatternsP andsequence patternSP of LCLS are given by the following grammar:

P u= Sp | (sp)'|P | P|P | X
SP = € ‘ a ‘ a” | SP-SP |

wherea is an element of, n is a natural number and’,z and x are elements of'V, SV and X,
respectively. We denote witR the infinite set of patterns.

Structural congruence, the notions of top-level compantma&nd the well-formedness relatianf
trivially extend to patterns.

Rewrite rules for LCLS are defined exactly as for CLS, namelypairs of patterng’, — P, with
the conditionsP; # e andVar(P,) C Var(P;). Obviously,P; and P, are now LCLS patterns.

The definition of the semantics of LCLS is similar to that of&lbut with the requirement that states
are well-formed terms. This means that the initial term oEL@b.S model has to be well formed and that
application of rules leading to non well-formed terms andifdden.
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Definition 3.4. (Semantics)
Given a set of rewrite rule® C R, thesemanticof LCLS is the least transition relation> on well-
formed terms (according to the definition off) that is closed undet, and satisfies the following
inference rules:
P—PceR P10'§é€ ogeXx
Plo' — PQU
T — T Ty — T

TIM—=TIT. ()" |1 - (9" T

Now, let us reformulate the CLS model of signal transductjmen in Sectioll2 as an LCLS model.
We model the EGFR protein as the sequeRgg - Rpo - Ry1 - Rro, WhereRp, and Rgs describe two
extra-cellular domains, wheredg;; and R;, describe two intra-cellular domains. In particul&tz,
models theEGF signal binding site Rg- the dimerization siteR;; the phosphorilation site, anil;s
the effector binding site. The use of links will allow us teayintroducing different elements to model
complexes, such astlieM PLX, DIM andDIM EFF elements we used in the CLS model in Section
2.

The rewrite rules modeling the pathway are the followingctaule in this model has a correspond-
ing (unprimed) rule in the CLS model in Sectith 2. In the diggitm of the rules we will focus on the

main differences with respect to the corresponding ondsarCiS model.
First of all, synthesis of the EGFR receptor from the DNA isaéed by the following rules:

POLY | DNA — POLY | DNA|RNA (R1)

(n)" | (RNA|X) — RNA|(n)" | X (R2))

RNA | RIBO +— RNA | RIBO | RE‘l . REQ . R]l . R]2 (RS’)

(m . f)L J (REl . RE2 . R[l . R[Q | X) = (m T REI . RE2 . R[l 'R[Q)L J X (R4')

Rule (R3’) represents the ribosome translation of the RNé&\the EGFR sequendez; - Rp2- R - Ryo.

Rule (R4’) defines the embedding of the sequence within tterexl cell membrane.
The first steps of the EGF signalling pathway are describetthidyollowing rules:

EGF | (Rgi -%)" | X — EGF'| (R, -7)" | X (R5))
(Rby-Rpo -7 Ryy-Rio-§)" | X — (Rby-Rbp -7 Rby-Rip-3)" | X (R6")
(Rip-Rii %) | X — (Rhw-Rpn-7)" | X (R7))
(lem'Rpll'RI2'E'R11E2'RPII'§)LJ (X[EFF) (lem'Rle'Riz'E'lem'Rle'g)LJ (X|EFF2) (R8)
(Rl ©)" | (X | EFFY) — (Rp2-7)" | (X | EFFp) (R9)

Rule (R5’) describes the binding of the EGF signal proteithwihe Rr; domain by creating a
link with label 1. When two of these bindings are constructed on the membthaesignal-receptor
complexes might dimerise originating a new link betweentthe R - domains of the two receptors:
see the link labelled witB in rule (R6"). Then, thekR;; domain of a receptor of a dimer formed on the
membrane can be activated (phosphorylated) moving to time fép;1. This process is represented in
rule (R7’). The activated dimer enables the propagatiorhefdignal inside the cell by promoting the
binding of the effector protein EFF inside the cell with orféte R, domains (link labelled witl2 in
rule (R8)). The effector protein bound to the dimer getsgptwrylated and released within the cell: in
Rule (R9’) the link between EFF and tlity, domain is removed.
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4. Syntactic Constraints and Types for LCLS

The semantics of LCLS ensures that by starting from a weihém term it is not possible to reach non
well-formed terms. In practice, this means that beforeapgla rewrite rule one has to check that the
whole term obtained as the result of the application is waiinled. Checking the well-formedness of
a term at run-time, before applying every rule, could be § eesstly operation. Hence, in this section
we investigate two statically verifiable conditions thdbal run-time checking to be either avoided or
reduced.

The first condition we investigate is whether the two pateoheach rule are similar enough to
avoid non well-formed terms to be obtained as result of tapplication to a well-formed term. If this
condition, that we shall catompartment safetys satisfied by the rules of an LCLS model, then it is
possible to avoid any run-time well-formedness checking.

The second condition we investigate is whether the two pettef each rule have similar types,
according to a type system we shall define. If this conditibat we shall caltyped safetyis satisfied by
the rules of an LCLS model, then the run-time checking catnbiégdd to a control on the instantiation of
variables. Note that the constraints of typed safety arekarethan those of compartment safety, hence
the corresponding semantics is more general. Moreoverhaledevelop a type inference technique for
typed safety based on the machinenpdhcipal typing

4.1. Compartment safety in LCLS

Compartment safety is defined as a condition on pairs of {leethed) patterns, intended to be LCLS

rewrite rules. Roughly speaking, the condition forbids nimvrules (i) to introduce single occurrences

of labels, (ii) to create copies or delete sequence and tariables, and (iii) to move sequence and term
variables from one compartment to another. In fact, all eséthree actions may lead to non well-formed
terms. For instance, the introduction of a single occugaf@ label may lead to a non well-formed term

if in the same compartment two occurrences of such a labelleaady present. Moreover, duplication or

movement of a sequence (or term) variable from one compatttn@nother may cause either too many
occurrences of the same labels to be created in the same orepaor single occurrences to remain in

some inner compartment.

The compartment safety relation is defined as follows.

Definition 4.1. (Compartment Safety)
The compartment safety relatiors is the least congruence on well-formed patterns satisfthegfol-
lowing rules:

cs(e,v) es(v™, u™) es(e, v | ™) (csl,cs2,cs3)

cs(Py | Po, Py | Pr) cs(Pe | P) (cs4,csb)

cs(SP | SPy,SPy-SPy)  cs(SP, (SP)" | ¢) (cs6,cs7)
es((SPy-SP)" | P (SP)" | (SP| P)) with SP; € SP* (cs8)
es((SP - SPy)" | PSP | (SPy)" | P) with SP, € SP* ortlc(P) € P* (cs9)

wherev,u € EU X, n € IN, P, P,, P3, P, are any patternS Py, SP,, SPs are any sequence pattern.
Moreover,P* andSP* denote the set of all patterns and sequence patterns, tigepgedn which only
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element varialble are allowed (sequence and term variapéesot allowed).

We remark that compartment safety is defined on well-formegtepns and that it is a congruence,
hence the condition can be verified on two patterns in a coitigoal and transitive way.

The definition of the relatiores is such that one can prowe(P;, P») to hold by proving that
cs(Py, Py), es(P{, Py) andes(Py, P») hold, whereP] and P} are obtained by moving all elements and
element variables i, and P,, respectively, in a parallel composition in the top-leveinpartment. For
example, fromP, = (a - b' - %’)L ] (c¢!'| X)we obtainP] = a | b' | ¢! | (:E)L ] X, and from
Py=(a-b"-7)" | (' || X)weobtainPy = a | b |t | 2|62 (7)" ] X.

In order to provecs(Py, P,), rules (cs6-9) should be used to prowgP;, P|) and cs(Ps, Py),
whereas rules (cs1-5) to prove(P], P;). The essence of the relation is actually represented by rule
(cs1-3) which state that two compartment safe patterns riff@y dnly in the presence of elements and
element variables without labels, in the element or elemaritble carrying a specific label or in the
presence of additional pairs of elements or element vasablth the same label. The fact tHatand P
are required to be well formed ensures that two labels of pattpossibly introduced by a compartment
safe rewrite rule will be placed in the same compartment.

Definition 4.2. (Compartment Safe Rewrite Rule)

A rewrite rule P, — P, is compartment safe (CH) cs(P;, P») holds. It iscompartment unsafe (CU)
otherwise. We denote witR““ C R the infinite set of CS rewrite rules, and witf'V ¢ R the infinite
set of CU rewrite rules.

Compartment safety is a rather strong syntactical req@iréron rewrite rules. For example, it
forbids rules such ag +— a', 7 -y +— 7, anda - 7 | (b)L | X (b)L(a -7 | X) to be used. However,
compartment safe rewrite rules are expressive enough twiblesnost of the biochemical interactions
typical of cellular processes. For exampleg -y | w-b-Z — Z-a'-7 | w-b'-Z could describe the creation
of protein/protein or protein/dna bindings; a -y | (w-b- Z)LJ X—z-a-y|(w-b- Z)L | X the
creation of signal-receptor complexes on cell membramﬁs(i)L | (X Jazy)—azy] (5)LJ X
the release by a cell of a signal protein (represented byetipgeice: - = - y not containing any sequence
variable). In all these cases sequence and term variabieallgglay the role of the context in which
the interaction occurs, hence they are not moved from ongadment to another. What cannot be
described by compartment safe rules are more complex ewdnth involve, for example, changes in
compartments structure. Moreover, it does not allow elémgsuch as signal proteins) that are usually
moved from one compartment to another to be described in simagb way by means of sequence
variables.

The application of a rule satisfying compartment safety teed-formed term preserves the well-
formedness of the term.

Lemma 4.1. Giveno € X and a rewrite ruléP; — P, € 9, it holds thatw f (P o) impliesw f(Pyo).

Proof:
By induction on the derivation afs(P;, P»). The only non-trivial (base) cases are those of rules (cs8)
and (cs9).
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e Let (cs8) be the last applied rule, naméty = (SPl-SPg)LJ PandP, = (SPQ)LJ (SP | P).
By definition of wf and by distributivity ofo we have thatw f (((SP; - SPQ)L ] P)o) implies
wf(SPio), wf(SPyo) andwf(Po). By definition ofwf we also have thaf((SP; - SP,)o) N
T(Po)=T((SP,-SPy)o)NL(Po)=2andO(Pc) C O((SP; - SP,)o). It follows immedi-
ately thatwf((SP; | P)o)) holds.

In order to prove th&t[)f(((SPg)L | (SPy | P))o) holds it remains to prove that((SP,)o) N
T((SP, | P)o) = T((SPy)o) N L((SP, | P)o) = @ andO((SP, | P)o) C O(SP0).
Sincecs is defined on well-formed patterns, we have tia6P,) N 7(SP, | P) = T(SP) N
L(SP, | P) = @ andO(SP, | P) C O(SP) hold. In other words, the only possible
cause of violation of well-formedness is instantiation efjsence and term variables. How-
ever, conditionSP; € SP* in (cs8) implies thalO(SPio) = O(SPy), T(SPio) = T(SP)
andL(SPio) = L(SPy). Hence, from the facts thal((SP; - SP;)o) N T(Po) = @ implies
ﬁ(SPgO’) N T(PO‘) = J, thatE(SP2) - E(SPQU), and thatC(SPg) N T(SPl) = JJ, we can
conclude thal’ (SP,o) N T ((SP; | P)o) = L(SPyo) N (T (SPy) UT(Po)) = 2. Similarly we
can also prove thaf ((SPx)o) N L((SPy | P)o) = @. AsregardO((SP, | P)o) C O(SPo),
namely (O(SPio) U O(Po)) C O(SPo), from conditionSP, € SP* in (cs8) we have that
O(SPyo) = O(SPy). Moreover, fromO(SP; | P) C O(SP,) we have thaO(SP) C O(SP),
which impliesO(SPio) C O(SP20). Hence, it remains to prove thé&t(Po) C O(SPyo), but
this follows immediately fromO(Po) C O((SP; - SP2)o).

e The case in which (cs9) is the last applied rule can be proiradasly to the case of (cs8) if
condition SP, € SP* of (cs9) is satisfied. The case in which conditida( P) € P* is satisfied
can be proved by following a similar approach and by expigitPropositioh-3]1.

0

Now, we can define the semantics of LCLS.

Definition 4.3. (Semantics)
Given a finite set of rewrite ruleR ¢ R, thesemanticof LCLS is the least relation on terms closed
under=, and satisfying the following inference rules:

P—PeR Plo';ée ogeX

(appCS)
Pio Ss, Pyo
oa) 1 S T NL(T) ={n,...,nn}  ,...,n, fresh
Ty | Ty S5 T {0 M fny g} | T
(cont) TELT TN LS) ={n,....nu}  n,,...,n), fresh

(S)" | T E2 (9)" | TPy, g}

Rule (appCS) describes the application of compartmentrsafigte rules. The (par) and (cont) rules
propagate the effect of a rewrite rule application to cotstéy resolving conflicts in the use of labels.

Finally, we prove a lemma stating that transitions perfairbg the semantics preserve the set of
labels occurring only once in the term. This lemma will becuseprove the main theorem stating that
the application of well-formed rewrite rules to well-forctheerms produces new well-formed terms.
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Lemma 4.2. Given a finite set of rewrite rule® c R“° and 7,7’ € 7, it holds thatwf(T) and
T <5 T imply O(T) = O(T").

Proof:
By induction on,.

e If the last applied rule is (appCS), théh — P, € R, T = Pyo andT’ = P,o. It can be easily
proved by induction on the derivation of( Py, P») that O(P;) = O(F%). Hence, a difference
betweenO(T") andO(T") can only be caused by a difference in the occurrences of seguand
term variables inP; and in P,. By Propositioi_311 we have that actually only variableshia t
top-level compartments aP; and P, have to be considered. Again, it can be easily proved by
induction on the derivation afs(P;, P,) that every occurrence of a sequence or a term variable in
tle(Py) is also intle(P,) and viceversa.

e If the last applied rule is either (par) or (cont), the pro®fitrivial application of the induction
hypothesis.
O

Theorem 4.1. Given a finite set of rewrite ruleR ¢ R¢S andT, 7’ € 7, it holds thatw f(T") and
795 imply wf(T").

Proof:
By induction on,

e If the last applied rule is (appCS), théh — P, € R. The fact thatw f(7”) holds follows from
wf(T) and Lemm@4]1.

e If the last applied rule is (par), théh = 17 | T3 andT} 95, Ty. By definition ofw f we have that
wf(Ty | To) impliesw f(T1) andw f (T%). Moreover,w f(77]) holds by induction hypothesis. By
definition ofwf, fromw f (T} | T>) we getL(Ty) N7 (Tz) = 7 (1T1) N L(T») = @, and in order
to provew f (1] | T4) we have to prove that(77) N 7 (Tz) = 7(17) N L(T») = @. By Lemma
B2 we have)(Ty) = O(T7). This means that what we only have to prov&i&7) N L(T3) = &,
but this is ensured by the substitution of conflicting lalweith fresh ones done in rule (par) of the
semantics.

e For rule (cont) the proof is similar to that of rule (par).
O

From TheoreniL4]1 it follows immediately that the semantioimed by considering only compart-

ment safe rules is contained in the general semantics of L.@a®elyT; L% Ty impliesT; — Ts.
The viceversa does not hold @s— o' € RV could be used to derive | b — a' | b, whereas this rule
cannot be used in the semantics based on compartment safety.
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4.2. Typed safety in LCLS

In this section we propose a generalisation of compartnagetysin two respects:

e we classify elements with basic types and we assure thatedehyents of the same basic types are
linked,;

e we relax the restrictions on the shapes of the rewrite ruldsod the instantiations.

To this aim we require atomic elements to be of some basic tyyeassume a possibly infinite 98t

of basic types and we useto range over basic types. Intuitively, given a moleculeaespnted by an
element in&, we associate with it a type I8 which specifies the kind of the molecule and the kind of
bindings the molecule can create. We assume a fixed typjrigr the elements ig, i.e. I’y is a mapping
from £ to B5.

We usen € SV UTYV to denote either sequence or term variables. Witlve denote a finite set
of natural numbers and witthh we denote a finite set of typed natural numbers, i.e. numissiecated
with basic types.

Intuitively, given a patternP, we can associate witk a set of numberg which contains all the
numbers used to create closed point to point bindings. A&pathay however also contain some numbers
which do not bind another molecule # but may bind somewhere else in the environment. Thus, we
may associate with a pattefd a set0 of typed numbers. We do not need to keep track of types for
closed links, but, for open links, we should guarantee timbkecule of some type is bound, somewhere
else in the environment, with a molecule of the same type.uho gp we associate with a patteripair
typeof the shap€T, 0). We associate pair types also with sequence patterns.

We define the domain of a set of typed numb@ras

dom(0) ={n|n:t €0}

We say that two sets of typed numberand0’ arecompatible(written 0 i Q') if and only if whenever
n:t € 0andn : t' € 0, then it holdst = t’. Thelinked unionof two compatible set§ and0’
(notation0 W 0’) is defined as

0owo' ={n:t€0Angdom(0)} U{n:t €0 An¢dom(0)}.

With the following grammar we definbasesl’, which map element variables to basic types, and
map sequence and term variables to pair types:

I == 10 ‘ Ne:t | I,n:(T,0).

The type discipline to check safe bindings, namely, to anoid well-formed bindings, is defined by
the typing rules in FigurEl 4.

Rules(e)-(a)-(z): any basis types witlf and0 empty sets, the terraand any elementary object
without binding labels. Rule&:™)-(2"): an elementary object with a binding labebets typed witT
empty (there are no labels defining a closed link) and with {n : t} (there is an open link represented
by labeln of typet). Rule(n): complex sequences and terms may contain both closed Imkspen
links.
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a:tely a:tely
Dke:(0,0) (e) —(a) (a™)
I'ta: (0,0 Lka™:(0,{n:t})

Dyz:tka:(0,0) (x) Dyz:tbka™:(0,{n:t}) (z") L,n:(T,0) Fn:(T,0)(n)

F'+=SP:(T,0) T'FSP :(T0') TNT =TNdom(0') =T Ndom(0) =0 00’

'FSP-SP" : (TUT U (dom(0) Ndom(0’)),0w 0") (e
'-P:(T,00 TFP :(T,0) TNT =TNdom(0’) =T Ndom(0) =0 00
I'-P|P :(TUT U(dom(0)Ndom(0")),0w0") (per)
'FSP:(T,0) TFP:(T,0) TNT =TNdom(0) =T Ndom(0)=0 0 C0O (toon)
oop

- (SP)" | P:(TUdom(0'),0\0)

Figure 4. Typing rules for safe bindings

Rule (seq): when putting two sequences together, the numbers repiregene closed links should
not appear in any other binding. Open links in the two segeee be join can form a closed link if they
have the same label (since we require compatibility betveeand0’, the labels closing each open link
are of the same type). In the resulting sequences, the laitt got closed are removed forrando’
and added to the final set of labels representing closed. IRk (par): similarly to what happens for
Rule (seq), putting two patterns in parallel may allow to close somehef links which are open in the
two patterns in isolation.

Rule (loop): we can put a patter® inside a looping sequenceP only when all the open links of
P are closed. This is becauseHf gets inside a compartment (represented by the looping segle
it cannot interact any more with the environment. Thus?ihas some open link, it should be bound
with equal open links present on the looping sequetPe which now represents the only environment
surroundingP. For this to be done, we require that the set of open link® @ a subset of the set of
open links ofS P (all the open links inP can be closed by P).

The following lemma clarifies the meaning of pair types and loa easily shown by induction on
LCLS terms.

Lemma 4.3. The following implications hold:
1. =T :(T,0)ifand only if wf(T).
2. If T :(T,0), thenT = 7(T) anddom(0) = O(T)).
3. If-T: (TU{n},0) andn’ is fresh, ther- T{"'/n} : (T U {n'},0).

Rewrite rules may modify the status of the bindings by creatiew closed links or destroying some
of them. We require, however, that rewrite rules do not ckahg status of open bindings, which are
assumed to be closed by the environment and represent oalyial gtate of the system.
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Definition 4.4. (I-Safe Rules)
A rewrite rule P — P’ is I'-safe(notationP — P’ € Rp)if I' - P : (T,0) andl’ = P’ : (T',0) for
someT, T’, 0.

An instantiationo agreeswith a basisl' (notationo € Xr) if x : t € T' implieso(z) : t € T and
n:(T,0) € I'impliesT" - o(n) : (T,0).

Lemma4.4.If o € X, then Po : (T,0) ifand only if ' - P : (T, 0).

Proof:

(<) By induction onl - P : (T,0). Consider the last applied rule.

e For rules(e), (a), (") we havePo = P and, moreoverp is typable from the empty
environment. If the rule i$z), (™), or (n), the proof follows froms € Xr.

° RU|G(S€q). In this case”® = SP; - SP,, T =T; UTy U (dom([]l) N dom(Og)), 0 = 07 W09,
'SP : (Tl, 01), 'SP (TQ, 02), TiNTo=T1 N dO’I’)’L(OQ) =To N dom(Ol) = () and
0; 1 09. By induction hypotheses$; SPo : (T1,07) and- SPyo : (T2,02). Therefore,
sinceSPio - SPyo = (SP; - SPy) o, applying rule(seq) we conclude- (SP; - SPy)o :
(T,0).

e For rules(par), (loop) the proof is similar.
(=) By induction onP.

e If Pis avariable the proof follows from € Y. If P = ¢, or P = a, or P = a", the lemma
holds by weakening.

e LetPheSP;-SP,. Since(SP,-SP,) o = SPyo-SPyo, the factthat (SP;-SP,) o : (T,0)
implies that the last applied rule must be:=q). Therefore,T = T; U Ty U (dom(01) N
dO”ITL(OQ)), 0=01W0,, 'SP : (Tl, 01), 'SP (TQ, 02), TiNTe =Ty ﬂdom(Dg) =
T2 Ndom(01) = () and0; > 05. By induction hypothesis o P, andSP, we getl’ - SP; :
(T1,01) andI' = SP, : (T2, 02). Applying rule(seq) we concludd™ - SP; - SP, : (T,0).

o If P=P'|P"orP = (SP)" | P'the proof s similar.
O

We can safely apply &-safe rule to a term only if the involved instantiation agr@ath I'. In this
case we denote bgi the so obtained reduction. More formally:

Definition 4.5. (Typed Semantics)
Given a finite set of rewrite ruleR, thetyped semanticef LCLS is the least relation on terms closed
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with respect ta= and satisfying the following inference rules:

Py — Py eRrp P10§é€ o E XD

(appTS)
Pio s, Pyo
TS
(par) T —1T] T(T7) N L'(Tg)/: {nlj conart ny,...,n,, fresh
Ty | Ty 25 T "y g} | T
Ts
(cont) T—=1T T(TYNLS)={n1,....,nm} ny,...,n,, fresh

($)" | T L2 (8)" T My g}
As expected,T—s> reduction preserves typing of LCLS terms.

Theorem 4.2 If =T : (T,0) andT' L5, 17, then- 7" (T’,0) for someT’.

Proof:
By induction on’2,,

e If the last applied rule is (appTS), théh — P, € Rp, 0 € ¥p and- Pyo : (T,0). By Lemma
B4 we gefl' - P; : (T, 0), which impliesI" - P, : (T/,0) for someT’ by definition ofl’-safe rule.
Again by LemmdZM we conclude Pyo : (T',0).

e If the last applied rule is (par), thef = T3 | T, and- T : (T, 0) is derived by using rulépar).
Therefore- Tj : (Tl, 01), FT5 (Tg, 02), T1NTy = Tlﬁdom(Og) = Tgﬁdom(ol) = (), 01 <1 0o,
T = T1 U Te U (dom(01) N dom(03)), 0 = 07 W 02. By induction hypothesis 77 : (T}, 0;) for
someT}. By LemmaZHRY) = {n1,...,ny} UT] for someT/, and then by[{3) of the same
lemmar- T{{”/l’ e ’n/M/nl, cona} o ({nd, oo 0, UTY, 01). We can then apply rulgpar) to
H T{{”/lv - "n/M/nl, —onut s ({nh, .o 0, JUTY, 01) and- Ty - (T2, 02), since by construction
{n},...,n,} UTY, 01, T2, 02 satisfy the required conditions, and concludé&” : (T’,0), where
T ={n},...,n) } UT{ UT2 U (dom(01) N dom(02)).

e For rule (cont) the proof is similar to that of rule (par).
0

In order to decide which rewriting rules afesafe the inference of principal basis schemes, type
schemes and typing conditions for patterns is handy.

We convene that for each variabtee X’ there is are-type variablep, ranging over basic types,
and for each variable € SV U TV there are two variables,, v, (calledt-type variableand o-type
variable) ranging over sets of untyped and typed numbers, respBctive

A basis schem® is a map from atomic variables to their e-type variables, famth sequence and
term variables to pairs of their t-type variables and o-typeables:

© =10 | O,z:¢: | O,m:(dn ).
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a:tely a:t el
Fe:0;(0,0);0 (Ie) — (Ia) (Ia™)
Fa:0;(0,0);0 Fa™ 0 (0,{n:t});0
Fa{r:pa};(0,0);0 (Io) o™ {z o}t (0, {n: pa}); 0 (I27)
F mn: {77 : (QS']?w'I)}; (¢717d)71);0 (177)

FSP:0;(®,¥);= FSP e (@, v)=
(Iseq)
FSP.-SP": @ ue’;(®Ud U (dom(¥)Ndom(¥)),Tww);="
whereZ" =ZUZ' U{®P NP =P Ndom(¥') =P Ndom(¥) =0} U{¥ T}
FP:0;(®,V);= 10 (9, v, E
(Ipar)
FP|P 00U (®Ud U(dom(¥)Ndom(¥)), VW), ="
where=" = ~u:’u{<1m<1>’ D Ndom(¥') =" Ndom(¥) =0} U{T < ¥’}
FSP:O;(®,V);= FP:0; (0 v
T (Iloop)
- (SP)" | P:OUO; (®Udom(¥), ¥\ ¥); ="
whereZ" =ZUE U{®N®" = dnNdom(¥') = Ndom(¥) =0} u{¥ C ¥}

Figure 5. Inference rules

A type schemes a pair(®, V), where® ranges over unions of sets of untyped numbers and t-type
variables, andl ranges over unions of sets of typed numbers and o-type lesiab

A typing conditionis either a set theoretic or a compatibility condition irwing unions of sets of
untyped numbers and t-type variables, and unions of seygpetitnumbers and o-type variables.

The inference rules use judgements of the shape:

FP:O;(®,0);=

where® is theprincipal basis schemia which P is well formed,(®, ¥) is theprincipal type schemef
P, andz is theprincipal set of typing conditiong/hich should be satisfied when building &b

Figure[® gives these inference rules, derived from the typies in Figuré&4.

Rules (¢), (Ia) and (a™) directly derive from rulesd), (a) and @™). The rules for typing variables
(rules ((x), (Iz™) and ((n)) put the variable with its type in the basis. In rulésdq), (I par) and (loop),
the principal type is derived as iBdg), (par) and (oop) rules, respectively. The set of constraints is
the union between the constraints in the premise of the ts#df iand the constraints in the premise of
(seq), (par) and (oop) rules, respectively. The principal basis is the union efphincipal bases of the
composing patterns, without renaming, because each lanab™ or » is associated to a unique e-type
variable or to a unique pair of t-type and o-type variablespectively.
The key difference between inference rules, in Fidlire 5,tgpithg rules, in Figurgl4, is that the condi-
tions are not premises, but conclusions. In this way, at titead inference all these conditions create a
set of constraints, that must be checked to decide the apjlity of the rules.

Since the inference rules follow the structure of pattetns easy to verify that the complexity of
inference is linear in the number of symbols occurring irtgrat.
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Soundness and completeness of our inference rules cantbd atusual. Aype mappingnaps
e-type variables to basic types, t-type variables to setsiofbers and o-type variables to sets of typed
numbers. A type mapping satisfiesa set of constraints if all constraints inm(=) hold true.

Theorem 4.3. (Soundness of Type Inference)
If +P:0;(P,¥);=Zandm is a type mapping which satisfi&s thenm(0) - P : (m(®), m(¥)).

Proof:
By induction on derivations, and by cases on the last applikd

e Forrules(Ie), (Ia), (Ia™), (Iz), (Iz™), and(In) the result is trivial.

e Rule (Iseq). In this case the conclusion of the rule is= SP, - SP» : ©;(®,¥); = where
O =0,UBy, & = &; Uy U (dom(\lfl) N dom(\Ifg)), UV =V gU,, = == U= U
{®1 NPy = &1 Ndom(T¥a) = Py Ndom (V) = 0} U {¥; 1 ¥y} and the assumptions are

FSP @1;((1)1,\1’1);51 and F SP : @2;(@2,‘?2);52. Sincem satisfies=; and =, by
induction hypothesis, and weakening, we derive thé®; U ©3) - SP; : (m(®1), m(¥;)) and
m(©; U By) - SPy : (m(®2),m(¥2)). Moreover, sincen satisfies=, we have tham(®,) N
m(®3) = m(®1) Ndom(m(¥3)) = m(P2) Ndom(m(¥y)) = @ andm(¥y) xi m(¥s). So rule
(seq) can be applied, aneh(©; UO2) F SP; - SPy : (m(P), m(¥)).

e Forrules(Ipar), and(Iloop) the result can be proved like for ruléseq).

Theorem 4.4. (Completeness of Type Inference)
If "' P: (T,0),then F P : ©;(P,V);= for someO, &, ¥, = and there is a type mapping that
satisfies2 and such thal' > m(0), T = m(®), 0 = m(¥).

Proof:
By induction on the derivation df - P : (T, 0).

e If the last rule of the derivation i&), (a), (a™), (x), (™), or () the result is obvious.

e Rule (seq). In this caseP = SP, - SP,, T =T UTy U (dom(Ol) N dom(Dg)), 0 = 07 W09,
'SP (Tl,Ul), 'SP (TQ,OQ), TiNTy =T N dom(Dg) = To N dom(Dl) = () and
0 <11 0o. By induction hypothesis, there af®, &, ¥, =y, Oy, $o, Uy, Z5 such that +
SP;:©1;(P1,V1);Z1and F SPsy : Og; (Do, Uy); Z2. These are the assumptions of raleeq),
whose conclusion isk- SP; - SPy : ©1 U Og; (1 U Py U (dom(V¥1) Ndom(Vsa)), ¥y W We); Z,
wherez = =Z; U Zy U {@1 Nd, = & N dom(\Ifg) = dy N dom(\Ill) = (Z)} U {\Ill D>
Uy }. Moreover, by induction there is a type mappimg satisfying=; such thatl’ O m;(0),
Ty = my(®P;) and0; = my(¥y), and there is a type mapping, satisfying =, such that
' O my(03), To = ma(P2) and0y = my(Vy). Therefore, we deriv€ 2 m1(01) U m2(02),
T = m1(<I>1) U m2(<I>2) U (dom(ml(\lfl)) N dom(mg(\lfg))) and0 = ml(\Ifl) (] mg(\I’g). Since
the basian; (©1) andmy(©,) are both subsets of the same bdsishen for all the (e-type, t-type
or o-type) variableg such that, € dom(my) N dom(mz) we getm;(¢) = mz(¢). Therefore the



22

R.Barbuti et al./ Types in a Formalism for Protein Interactiat the Domain Level

mappingm

if d
m(¢) = m1(C) itce om(my)
ma(¢) if ¢ € dom(mg)
is well defined.
Moreover, sincem satisfies=;, Z3, &1 N Py = &1 N dom(¥y) = Py N dom (V) = 0, and
¥, 1 Wy, thenm satisfies also all the constraints of the conclusion of the (iseq).

o If the last rule is(par) or (loop) the proof is similar.

Now, we put our inference rules at work in order to decide {h@ieability of I'-safe rules.

Lemma 4.5. (Characterization ofl'-safe rules)
Arule P, — P, is al'-safe rule if and only if the type mapping defined by

1. m(py)=t if TI'(z)=t
2. m(gy) =T i ()= (T,0)

3. m(,) =0 if ()= (T,0)

satisfies the set of constrairly U = U {¥; = Wy}, where - Py : ©1;(®1,¥y);E; and + P :
O2; (P2, Vy); Eo.

Proof:

(<) Since F Py : O1;(P1,V1); 51, F Py: Og;(Py, ¥sy); E9 andm satisfiess; and=,, by applying

TheorenZB we deriven(01) - P, : (m(®1),m(¥1)), andm(©2) E Py : (m(P2), m(¥s)).
From the definition ofn, we have thatn(05) C I"andm(0©,) C T', and by weakening we derive
thatT' - P : (m(®q),m(¥y)) andl F P, : (m(P2), m(¥3)). Moreover, from the fact thah
satisfiesV; = W5, we have thain (V) = m(¥s). Therefore,P, — P, is al’-safe rule.

(=) SinceP, — P,is al'-safe rule, we have that+ P, : (T,0) andT' + P, : (T,0). From Theorem

E4, applied tol' = P, : (T,0), we derive that + P, : ©y;(®,¥;);=; and there is a type
mappingm; satisfying=; such thaf” O m;(©1), T = m1(®;),0 = m;(¥;). Applying Theorem
B4 tol' - P, : (T,0) we derive that - P, : Oy; (®y, ¥y); =5 and there is a type mapping,
satisfying=, such thafl® O m3(0s3), T = my(P2), 0 = my(V¥;). Since the basim;(0;) and
mo(©4) are both subsets af, then, (let¢ is an e-type, t-type, or o-type variable) the mappimng
defined by

) — m’(¢) if ¢ € dom(my)
©) { m”(¢) if ¢ € dom(my)

is well defined. Moreovemn satisfies=; U Z9, and sincem;(¥;) = 0 = my(¥3), thenm also
satisfieslV| = W,
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Theorem 4.5. (Applicability of rewrite rules)
Let

FP O (P, W) 21, F PO (D, 05);5,

and Pyo # €. Then the ruleP; — P, can be applied to the teri o (i.e. Pio ELR Pyo) if and only if
the type mappingn defined by

1. m(p,) =tifo(x):t ey,
2. m(¢y) =T ifFo(n): (T,0),
3. m(yy,) =0"if - o(n) : (T, 0),

satisfies the set of constrairils U Z, U {¥; = Us}.

Proof:
We define the basik as follows:

ez:tel if o(x):telyand
e n:(T,0)el if Fo(n):(T,0).
In this way we get that € >r and the type mapping is such that:
1L m(pg)=tiffz:tel
2. m(¢,) =Tiff n:(T,0) el

3. m(yy) =0"1iff n: (T,0) €T

(<) If the mappingm satisfies the the set of constraifsU =, U {¥; = U5y}, then by Lemm&4l5 the
rule P, — P isI'-safe and we geP;o 15, Pyo by applying rule (appTS).

(=) If Po ELN Pyo by applying rule (appTS), then the rulg¢ — P, is I'-safe and then the mapping
m satisfies the the set of constrai@s U =, U {¥; = U5} by LemmdZb.
0

Notably the inference for a fixed set of rewrite rules can beedonce for all. As already said, the
complexity is linear in the number of symbols occurring ie tlules. The set of typing conditions so
generated is also linear in the number of symbols occurrirtge rules. Therefore the applicability of a
rewrite rule can be decided in linear time with respect torthiber of symbols occurring in the rule.
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4.3. Compartment safety versus typed safety

Since the type system of Sectibnl4.2 only allows links betwalements of the same type, this compar-
ison is sensible only by assuming thiat associates the same basic type with all atomic element§ and
associates the same basic type to all element variablesriimd assumption we can show:

Theorem 4.6. Each compartment safe rulelissafe too, i.e. ifwf(P;) andcs(Py, P), thenT' - P -
(T,0) andl' - P, : (T',0) for somel’, T, T’, 0.

Proof:
Easy by induction on the definition o§. O

The opposite implication is not true, since for example thea! | 7 +— a' | a! is not compartment
safe, butitis'-safe forl' = {z : (0,{1:t})} whenl'y = {a: t}.

As a consequence of Theoréml4.6 we have fhat> 7 implies T’ L5, 7 while the opposite
implication fails again by the above counter-example.

5. An Application

In this section we compare the notions of compartment saifedytyped safety proposed in the previous
section under the viewpoint of their applicability to thesdeption of biological systems. In Sectibn¥.3
we have shown that every compartment safe rule is Bisafe, and that the vice versa does not hold.
Hence, the class of biological systems that can be modelladdans ofi*-safe rules is for sure richer
than the class of systems that can be modelled by using comgar safe rules only. On the other
hand, the semantics of compartment safety can be computesl effwiently than the one of the typed
safety. In fact, the latter asks the checking that the mappidefined in Theorel 45 satisfies the set of
constraints required by the same theorem.

The existence of a trade-off between biological expresgigs and efficiency in the computation
(and analysis) of the semantics makes the characterizafitime two considered classes of biological
systems very important. In fact, the two proposed notionsaféty are both of some interest only if (i)
the class of systems that can be modelled with compartméatrsies includes a relevant part of the
biological systems of interest, and (ii) there is a releyaant of the biological systems of interest that
can be modelled only if-safe rules are used.

As regards (i), we have already described in Sedfioh 4.1ldws of biological systems that can be
modelled with compartment safe rules. Itincludes essgnal of the most common biochemical forms
of interaction such as protein/protein and protein/dnalibigs (and unbindings), dna transcription and
translation, complexation/decomplexation of molecuégsymatic activities, and so on. An example of
biological system in this class is the EGF signallig pathwesydescribed in Sectidd 2. The rules of the
LCLS model of such a pathway we have given in Seclibn 3, nameégs (R1')-(R9’), are indeed all
compartment safe.

As regards (ii), we consider another biological processlinig EGFR proteins in cells, namely the
internalization and degradation of such proteins. Thisverg important process that is also a target of
some oncogenic viruses, such as vCBL and the human papilanoe which interfere the process by
causing EGFR proteins recycling, with the result of incireggheir presence on the cellular membrane
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and consequently stimulating cell proliferation as anafté the EGF singalling pathwal/ [21]. We shall
see that in order to suitably model the internalization aegradation process in LCLS, compartment
safe rules are not enough, wheréasafe are.

Late endosome

CELL MEMBRANE

Endosome

Figure 6. The EGF signaling pathway.

The internalization and degradation process is as followfter the activation of some effector
proteins, ligand-receptor dimers are internalized in endwes. An endosome consists of a portion of the
cellular membrane which forms a vesicle bringing a numbdrigaind-receptor dimers (but also some
individual receptors) inside the cell. Several vesiclés jogether and form a so called late endosome.
Then, a ubiquitin ligase, known as Cbl, binds an ubiquitiot@in to a dimer or to a receptor in the late
endosome. The ubiquitin protein targets dimers and recefiio degradation in the lysosome. Another
vesicle is formed to transport the ubiquinated proteinsnfithe late endosome to the lysosome (see

Figurel®).

The following rules describe internalization and degremtadf signal-receptor complexes:

X|(m-%-BRp1-§-Ra-2)" Y = (m-7-2)" | (Y| (endo-Rp -5 Rp2)" | X)  (R10))
(endo - EE)L ] X | (late - g)L 1Y — (late- 5517)L (X ]Y) (R11)
EFF'| (Rk,-%)" | X — EFFp|(Rp-%)" | X (R12")

CBL| (late-F- Ry2-§)" | X — CBL| (late %+ Ry -5)" | X (R13)
(late-Z - - Riguy - @-2)" | (X |Y) ~ (late-F-2)" | X | (endoub-§- Risuy- @)~ | Y (R14)
(endoub - E)L | X | (lyso)L 1Y — (lyso)L 1 (@] X]Y) (R15")
(lyso)LJ (X1Y) — (lyso)LJ X (R16)

Rule (R10%) models a portion of the cellular membrane fogranvesicle and bringing a number of
ligand-receptor dimers inside the cell in the form of aniinédized endosome. Rule (R11’) describes an
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endosome vesicle joining a late endosome. By rule (R128) effector protein bound to the dimer gets

phosphorylated and released. Rule (R13") describes tlypitibiation of the late endosome performed

by the Cbl enzyme which transforms tlig> domain into theR;5,;. A late ubiquanted endosome may

form some new vesicle in the form of a ubiquinated endosomeule (R14’), parts of the late endosome

membrane and content are used to generate an ubiquinatesoemel Ubiquinated endosomes can be
encapsulated within lysosomes by rule (R15’). Rule (R16dels how lysosomes may digest parts of
their content.

If we consider the limited EGF pathway model seen in Sefistating from a well-formed term,
we can statically check that all the terms reached by applgifes (R1")-(R9’) are still well formed. In
fact, as already mentioned, rules (R1')-(R9’) satisfy thlation of compartment safety.

However, the new rules (R10')-(R16’) are not compartmefd;saxcept for rules (R12") and (R13").
Hence, we cannot statically guarantee the well-formedoktse terms reached via the reductions driven
by these new rules. In the cases of rules (R11’) and (R1416(Rwe can resort to the notion of typed
safety. Just as an example, starting from the initial waltrfed term:

T = EGF | EGF | (m)"(RIBO | EFF | CBL | (n)" | (POLY | DN A))
by applying the compartment safe rules (R1')-(R9’) we cartige well-formed term:

T' = EGF'| EGF?| (m- Ry, - Rby- RyI1- Rpa- Ry, - Ry, RyI1- Rya)” |
(RIBO | EFF, | CBL| (n)" | (POLY | DN A))

Now, in order to apply rule (R10’) and engulf the endosomé&mshe cell, we need to resort to the
typed semantics. We leave it to the reader to find the cometamtiations allowing to reducel” via
(R10) in aI'-safe way.

6. Related Work and Conclusions

In this paper we have presented an extension of the Calcd@ilusaping Sequences (CLS) suitable
to describe protein interaction at the domain level. Themxéd calculus, called Linked Calculus of
Looping Sequences (LCLS) is obtained by allowing elemehtsequences to be connected by links
(denoted as pairs of labels) which can represent bindintygele® protein domains.

In order to correctly denote links, labels appearing in a&@rm should occur exactly twice and
in a single compartment, with the exception of labels in ty@level compartment of the term which
are also allowed to occur only once (thus denoting a link witomponent from the environment). We
have formalised these requirements on the occurrencebaislan an LCLS term as a well-formedness
relation, and we have proposed two approaches (compartpagety and typed safety) to ensure that
well-formedness is preserved by rewrite rule applicatidie have also shown by means of examples of
biological applications, that both the approaches are ingain.

It is very important to compare our work with thecalculus [TL[15]. Actually, the idea of us-
ing labels to denote links representing bindings betweetepr domains is taken from such a calculus.
However, LCLS is aimed at describing a much more generat aabiological phenomena than that
describable by the-calculus, with the consequence that the handling of linksGLS is more compli-
cated.
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Let us shortly recall the definition of the-calculus as given i [11]. As LCLS, the-calculus is a
formalism based on term rewriting. Terms dengtaphs-with-sitesnamely graphs in which each node
(representing a protein) is enriched with a finite numberitess The number of sites could be different
for different nodes. Edges connect two sites of differertasoand represent protein bindings.

Given a countable set girotein namesP ranged over byA, B, C, ..., and a countable set efige
namesE ranged over bye,y, z, ..., @ hode of a graph-with-sites (protein) is represented in the-
calculus as a protein name associated with a partial mappfrgm IN to £ U {h,v}. The mapping
is defined only for values from to the number of sites of the node. The meaning@j = x is that
sitei is connected to a site of another protein by edgetherwise we have that sitds not connected
and it is eithethidden namely not available for connection,fi) = h, or visible namely available for
connection, ifp(i) = v.

A whole graph-with-sites (osolution) is represented by a multiset of proteins, denoted as a comma
separated list. Edges are hence denoted by pairs of edge mamering in the solution. Binders can be
used to define the scope of a edge name, and reuse the sameraggnete several edges. In order for a
solution to be well formed (agraph-like edge names not in the scope of any binder must occur at most
twice, and binders must bind either zero or two occurrenta@seoge name.

For the sake of simplicity, let us forget about binders. Aaraple ofx-calculus term is the following
solution

S = A(1*+2+3),B(1+2%),0(1Y+2)

where we have an edge namebdetween the first site of proteith and the second site of protei®, and
(a part of) an edge connected to the first site of proteirf a line is present over a number it means that
the corresponding site is hidden. The site is visible otlmrw

The dynamics of the-calculus is driven by the application of rewrite rules. Avrige rule is a pair
L, R, written L — R, of pre-solutions namely solutions in which only a part of the protein sites ar
mentioned. This allows rules to address only the parts optbeeins that are changed or checked during
the modelled reaction. An example of rewrite rule is

Rule = A(2+3),0(2) — A2* +3),0(2%)

that, when applied t8, creates an edge between the second sittarid the second site 6f and makes
the third site ofA visible. In other words, it transformS into

S = A(1®+2°+3),B(1+2%),0(1Y +27).

Two main classes of rewrite rules are considered i [11],elgmmonotonicand anti-monotonicrules.
Monotonic and anti-monotonic rules, apart from changing idden/visible state of sites, either only
add edges or only remove edges, respectively. Both kindsle$,rwhen applied to a graph-like term,
are proved to preserve graph-likeness.

Now, an encoding:nc of the k-calculus into LCLS can be given which translates, for examp
solution S into the following LCLS term:

enc(S) = A-1'.2.3|B-1-2'|C-1%2.2
and the previously giver-calculus rewrite rule into the following LCLS rewrite rule

enc(Rule) = A-%-2-3|C-y-2—A-7-21.3|C-5-2 .
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The rather simple form of-calculus rules, in particular of monotonic and anti-mamit ones, can be
exploited to prove that the translation of such rules givaagartment safe LCLS rules. This implies
that graph-likeness in the-calculus is a special case of well-formedness of LCLS terms

Summing up, LCLS combines the advantages of a formalismbdajed describing a rather general
class of biological phenomena with the advantages of theettiog of protein interaction at the domain
level. Further extensions could be defined to describe alsmtgative and stochastic aspects of bio-
logical systems by following approaches already availdbteCLS [5]. Possible further work aimed
at facing the size and complexity of real biological systemay consist in the development of static
analysis techniques for LCLS.
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