
Extending the Calculus of Looping Sequences to

Model Protein Interaction at the Domain Level

Roberto Barbuti, Andrea Maggiolo–Schettini, and
Paolo Milazzo

Dipartimento di Informatica, Università di Pisa
Largo B. Pontecorvo 3, 56127 - Pisa, Italy
{barbuti,maggiolo,milazzo}@di.unipi.it

Abstract. In previous papers we introduced a formalism, called Calcu-
lus of Looping Sequences (CLS), for describing biological systems and
their evolution. CLS is based on term rewriting. Terms can be con-
structed by composing symbols of a given alphabet in sequences, which
could be closed (looping) and contain other terms. In this paper we ex-
tend CLS to represent protein interaction at the domain level. Such an
extension, called Calculus of Linked Looping Sequences (LCLS), is ob-
tained by labeling alphabet symbols used in terms. Two symbols with
the same label are considered to be linked. We introduce a type system
to express a concept of well–formedness of LCLS terms, we give an op-
erational semantics of the new calculus, and we show the application of
LCLS to the description of a biological system.

1 Introduction

Among the formalisms that either have been applied to or have been inspired
by biological systems there are automata–based models [1, 8], rewrite systems
[5, 9], and process calculi [11, 10, 4]. Automata have the advantage of allowing
the direct use of many verification tools such as model checkers. Rewrite sys-
tems usually allow describing biological systems with a notation that can be
easily understood by biologists. On the other hand, automata–like models and
rewrite systems present, in general, problems of compositionality. Composition-
ality allows studying the behavior of a system componentwise, and it is in general
ensured by process calculi, included those used to describe biological systems.

In [2, 3] we introduced a new formalism, called Calculus of Looping Sequences
(CLS for short), for describing biological systems and their evolution. CLS is
based on term rewriting with some features, such as a commutative parallel
composition operator, and some semantic means, such as bisimulations, that are
common in process calculi. This permits to combine the simplicity of notation
of rewriting systems with the advantage of a form of compositionality. Actually,
in [3] we have defined bisimulation relations which are congruences with respect
to the operators. This is ensured by the assumption that the same set of rewrite
rules is used for terms that are composed.

CLS terms are constructed by starting from basic constituent elements and
composing them by means of operators of sequencing, looping, containment and
parallel composition. Sequences may represent DNA fragments and proteins,
looping sequences may represent membranes, and parallel composition may rep-
resent juxtaposition.

A formalism for modelling protein interactions was developed in the seminal
paper by Danos and Laneve [5], and extended in [6]. This formalism allows ex-
pressing proteins by a node with a fixed number of domains; binding between
domains allows complexating proteins. In this work we extend CLS to repre-
sent protein interaction at the domain level. Such an extension, called Calculus
of Linked Looping Sequences (LCLS), is obtained by labelling elements of se-
quences. Two elements with the same label are considered to be linked.

We introduce a type system to express a concept of well–formedness of LCLS
terms, we give an operational semantics of the new calculus, and, finally, we show
the application of LCLS to the description of a biological system.

2 The Calculus of Looping Sequences

In this section we recall the Calculus of Looping Sequences (CLS). It is essentially
based on term rewriting, hence a CLS model consists of a term and a set of
rewrite rules. The term is intended to represent the structure of the modeled
system, and the rewrite rules the events that may cause the system to evolve.

We start with defining the syntax of terms. We assume a possibly infinite
alphabet E of symbols ranged over by a, b, c,

Definition 1 (Terms). Terms T and Sequences S of CLS are given by the
following grammar:

T ::= S
˛̨ `

S
´L

⌋ T
˛̨

T | T

S ::= ǫ
˛̨

a
˛̨

S · S

where a is a generic element of E, and ǫ represents the empty sequence. We
denote with T the infinite set of terms, and with S the infinite set of sequences.

In CLS we have a sequencing operator · , a looping operator
()L

, a parallel
composition operator | and a containment operator ⌋ . Sequencing can be
used to concatenate elements of the alphabet E . The empty sequence ǫ denotes
the concatenation of zero symbols. A term can be either a sequence, or a looping
sequence (that is the application of the looping operator to a sequence) contain-
ing another term, or the parallel composition of two terms. By definition, looping
and containment are always applied together, hence we can consider them as a

single binary operator
()L

⌋ which applies to one sequence and one term.
The biological interpretation of the operators is the following: the main enti-

ties which occurs in cells are DNA and RNA strands, proteins, membranes, and
other macro–molecules. DNA strands (and similarly RNA strands) are sequences
of nucleic acids, but they can be seen also at a higher level of abstraction as se-
quences of genes. Proteins are sequence of amino acids which usually have a very

(i)

b

ca

b

ca

d e(ii)

b

ca

d e

f g

(iii)

Fig. 1. (i) represents
`
a · b · c

´L
; (ii) represents

`
a · b · c

´L
⌋

`
d · e

´L
; (iii) represents`

a · b · c
´L

⌋ (
`
d · e

´L
| f · g).

complex three–dimensional structure. In a protein there are usually (relatively)
few subsequences, called domains, which actually are able to interact with other
entities by means of chemical reactions. CLS sequences can model DNA/RNA
strands and proteins by describing each gene or each domain with a symbol of
the alphabet. Membranes are closed surfaces, often interspersed with proteins,
which may contain something. A closed surface can be modeled by a looping
sequence. The elements (or the subsequences) of the looping sequence may rep-
resent the proteins on the membrane, and by the containment operator it is
possible to specify the content of the membrane. Other macro–molecules can be
modeled as single alphabet symbols, or as short sequences. Finally, juxtaposition
of entities can be described by the parallel composition of their representations.

Brackets can be used to indicate the order of application of the operators,

and we assume
()L

⌋ to have precedence over | . In Figure 1 we show some
examples of CLS terms and their visual representation.

In CLS we may have syntactically different terms representing the same struc-
ture. We now introduce a structural congruence relation to identify such terms.

Definition 2 (Structural Congruence). The structural congruence relations
≡S and ≡T are the least congruence relations on sequences and on terms, re-
spectively, satisfying the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ǫ ≡S ǫ · S ≡S S

S1 ≡S S2 implies S1 ≡T S2 and
`
S1

´L
⌋ T ≡T

`
S2

´L
⌋ T

T1 | T2 ≡T T2 | T1 T1 | (T2 | T3) ≡T (T1 | T2) | T3 T | ǫ ≡T T
`
ǫ
´L

⌋ ǫ ≡T ǫ
`
S1 · S2

´L
⌋ T ≡T

`
S2 · S1

´L
⌋ T

Rules of the structural congruence state the associativity of · and | , the
commutativity of the latter and the neutral role of ǫ. Moreover, axiom

(
S1 ·

S2

)L
⌋ T ≡T

(
S2 · S1

)L
⌋ T says that looping sequences can rotate. In the

following, for simplicity, we will use ≡ in place of ≡T .
Rewrite rules will be defined essentially as pairs of terms, in which the first

term describes the portion of the system in which the event modeled by the
rule may occur, and the second term describes how that portion of the system
changes when the event occurs. In the terms of a rewrite rule we allow the use of
variables. As a consequence, a rule will be applicable to all terms which can be

obtained by properly instantiating its variables. Variables can be of three kinds:
two of these are associated with the two different syntactic categories of terms
and sequences, and one is associated with single alphabet elements. We assume
a set of term variables TV ranged over by X, Y, Z, . . ., a set of sequence variables
SV ranged over by x̃, ỹ, z̃, . . ., and a set of element variables X ranged over by
x, y, z, All these sets are possibly infinite and pairwise disjoint. We denote
by V the set of all variables, V = TV ∪SV ∪X , and with ρ a generic variable of
V . Hence, a pattern is a term which may include variables.

Definition 3 (Patterns). Patterns P and sequence patterns SP of CLS are
given by the following grammar:

P ::= SP
˛̨ `

SP
´L

⌋ P
˛̨

P | P
˛̨

X

SP ::= ǫ
˛̨

a
˛̨

SP · SP
˛̨

ex
˛̨

x

where a is a generic element of E, and X, x̃ and x are generic elements of TV, SV

and X , respectively. We denote with P the infinite set of patterns.

We assume the structural congruence relation to be trivially extended to
patterns. An instantiation is a partial function σ : V → T . An instantiation
must preserve the type of variables, thus for X ∈ TV, x̃ ∈ SV and x ∈ X we
have σ(X) ∈ T , σ(x̃) ∈ S and σ(x) ∈ E , respectively. Given P ∈ P , with Pσ we
denote the term obtained by replacing each occurrence of each variable ρ ∈ V
appearing in P with the corresponding term σ(ρ). With Σ we denote the set of
all the possible instantiations and, given P ∈ P , with V ar(P) we denote the set
of variables appearing in P . Now we define rewrite rules.

Definition 4 (Rewrite Rules). A rewrite rule is a pair of patterns (P1, P2),
denoted with P1 7→ P2, where P1, P2 ∈ P, P1 6≡ ǫ and such that V ar(P2) ⊆
V ar(P1). We denote with ℜ the infinite set of all the possible rewrite rules.

A rewrite rule P1 7→ P2 states that a term P1σ, obtained by instantiating
variables in P1 by some instantiation function σ, can be transformed into the
term P2σ. We define the semantics of CLS as a transition system, in which states
correspond to terms, and transitions correspond to rule applications.

Definition 5 (Semantics). Given a set of rewrite rules R ⊆ ℜ, the semantics
of CLS is the least transition relation → on terms closed under ≡, and satisfying
the following inference rules:

P1 7→P2 ∈ R P1σ 6≡ ǫ σ ∈ Σ

P1σ → P2σ

T1 → T2

T | T1 → T | T2

T1 → T2`
S

´L
⌋ T1 →

`
S

´L
⌋ T2

where the symmetric rule for the parallel composition is omitted.

A model in CLS is given by a term describing the initial state of the system
and by a set of rewrite rules describing all the events that may occur.

3 The Calculus of Linked Looping Sequences

To model a protein at the domain level in CLS it would be natural to use a
sequence with one symbol for each domain. However, the binding between two
domains of two different proteins, that is the linking between two elements of two
different sequences, cannot be expressed in CLS. To represent this, we extend
CLS by labels on basic symbols. If in a term two symbols have the same label,
we intend that they represent domains that are bound to each other. If in a term
there is a single symbol with a certain label, we intend that the term represents
only a part of a system we model, and that the symbol will be linked to another
symbol in another part of the term representing the full model.

As membranes create compartments, elements inside a looping sequence can-
not be linked to elements outside. Elements inside a membrane can be linked
either to other elements inside the membrane or to elements of the membrane
itself. An element can be linked at most to another element. The partner to
which an element is bound can be different at different times, and a domain able
to bind to multiple partners simultaneously could be described by using more
elements instead of a single one.

The syntax of terms of the Calculus of Linked Looping Sequences (LCLS) is
defined as follows. We use as labels natural numbers.

Definition 6 (Terms). Terms T and Sequences S of LCLS are given by the
following grammar:

T ::= S
˛̨ `

S
´L

⌋ T
˛̨

T | T

S ::= ǫ
˛̨

a
˛̨

an
˛̨

S · S

where a is a generic element of E, and n is a natural number. We denote with
T the infinite set of terms, and with S the infinite set of sequences.

The structural congruence relation is the same as for CLS. Patterns of LCLS
are similar to those of CLS, with the addition of the labels.

Definition 7 (Patterns). Patterns P and sequence patterns SP of LCLS are
given by the following grammar:

P ::= SP
˛̨ `

SP
´L

⌋ P
˛̨

P | P
˛̨

X

SP ::= ǫ
˛̨

a
˛̨

an
˛̨

SP · SP
˛̨

ex
˛̨

x
˛̨

xn

where a is an element of E, n is a natural number and X, x̃ and x are elements
of TV, SV and X , respectively. We denote with P the infinite set of patterns.

Note that an LCLS term is also an LCLS pattern; everything we define
for patterns will be immediately defined also for terms. Moreover, in what fol-
lows, we will often use the notions of compartment and of top–level compartment
of a pattern. A compartment is a subpattern that is the content of a looping
sequence and in which the contents of inner looping sequences are not consid-
ered. The top–level compartment is the portion of the pattern that is not inside

any looping sequence. For instance, the top–level compartment of a pattern

P = a |
(
b
)L

⌋ c |
(
d
)L

⌋ (X |
(
e
)L

⌋ f) is a |
(
b
)L

⌋ ǫ |
(
d
)L

⌋ ǫ. Other

compartments in P are c, X |
(
e
)L

⌋ ǫ, and f .
An LCLS pattern is well–formed if and only if a label occurs no more than

twice, and two occurrences of a label are always in the same compartment. The
following type system will be used for deriving the well–formedness of patterns.

In each inference rule the conclusion has the form (N, N ′) |= P , where N

and N ′ are sets of natural numbers with N the set of labels used twice and N ′

the set of labels used only once in the top–level compartment of P .

Definition 8 (Type System). The typing algorithm for LCLS patterns is de-
fined by the following inference rules:

1.
`
∅, ∅

´
|= ǫ 2.

`
∅, ∅

´
|= a 3.

`
∅, {n}

´
|= an

4.
`
∅,∅

´
|= x 5.

`
∅, {n}

´
|= xn 6.

`
∅, ∅

´
|= ex 7.

`
∅, ∅

´
|= X

8.

`
N1, N

′

1

´
|= SP1

`
N2, N

′

2

´
|= SP2 N1 ∩ N2 = N ′

1 ∩ N2 = N1 ∩ N ′

2 = ∅`
N1 ∪ N2 ∪ (N ′

1 ∩ N ′

2), (N
′

1 ∪ N ′

2) \ (N ′

1 ∩ N ′

2)
´
|= SP1 · SP2

9.

`
N1, N

′

1

´
|= P1

`
N2, N

′

2

´
|= P2 N1 ∩ N2 = N ′

1 ∩ N2 = N1 ∩ N ′

2 = ∅`
N1 ∪ N2 ∪ (N ′

1 ∩ N ′

2), (N
′

1 ∪ N ′

2) \ (N ′

1 ∩ N ′

2)
´
|= P1 | P2

10.

`
N1, N

′

1

´
|= SP

`
N2, N

′

2

´
|= P N1 ∩ N2 = N ′

1 ∩ N2 = N1 ∩ N ′

2 = ∅ N ′

2 ⊆ N ′

1`
N1 ∪ N ′

2, N
′

1 \ N ′

2

´
|=

`
SP

´L
⌋ P

where a is a generic element of E, n is a natural number, and X, x̃ and x are
generic elements of TV, SV and X , respectively. We write |= P if there exist
N, N ′ ⊂ IN such that (N, N ′) |= P , and 6|= P otherwise.

Rules 1–7 are self explanatory. Rule 8 states that a sequence pattern SP1 ·SP2

is well–typed if there are no variables occurring either four times (N1 ∩N2 = ∅)
or three times (N ′

1
∩N2 = N1 ∩N ′

2
= ∅). Variables occurring twice in SP1 ·SP2

are those which occur twice either in SP1 or in SP2 together with variables
occurring once both in SP1 and in SP2. Rule 9 for the parallel composition is
analogous to rule 8. Rule 10 states that the only labels which can be used for

typing
(
SP

)L
⌋ P must be different from those used for typing P . Moreover the

labels used once in P must be used once in SP , that is these labels are used to
bind elements inside the membrane to elements on the membrane itself.

The following lemma states some simple properties of the type system.

Lemma 1. Given N, N ′ ⊂ IN, and P ∈ P, then (N, N ′) |= P implies:
(i) both N and N ′ are finite; (ii) N ∩ N ′ = ∅.

Definition 9 (Well–Formedness of Patterns). A pattern P is well–formed
if and only if |= P holds.

Now we give two lemmas. The first relates the well–formedness of a pat-
tern with the well–formedness of its subpatterns. The second states that well–
formedness is preserved by structural congruence.

Lemma 2. Given P ∈ P and P ′ a subpattern of P , then |= P implies |= P ′.

Lemma 3. Given P1, P2 ∈ P, |= P1 and P1 ≡ P2 imply |= P2.

The use of labels to represent links is not new. In [5] well–formedness of terms
is given by a concept of graph–likeness. We notice that in our case membranes,
which are not present in the formalism of [5], make the treatment more compli-
cated. In [6], where the concept of membrane is introduced, well–formedness of
terms is given intuitively and not formally defined.

We say that a well–formed pattern P is closed if and only if (N, ∅) |= P

for some N ⊂ IN, and that it is open otherwise. Moreover, we say that P is
link–free if and only if (∅, ∅) |= P . Since patterns include terms, we use the
same terminology also for terms. For example, a ·b ·c | d ·x is a link–free pattern,
a · b1 · c | d · x1 is a closed pattern, and a · b1 · c2 | d · x1 is an open pattern.

In the following we shall use a notion of set of links of a pattern, namely the
set of labels that occur twice in the top–level compartment of the pattern.

Definition 10. The set of links of a pattern P is L(P) = {n|#(n, LM (P)) = 2},
where LM (P) is the multiset of labels of P , recursively defined as follows:

LM (ǫ) = ∅ LM (ν) = ∅ LM (νn) = {n} LM (ex) = ∅

LM (SP1 · SP2) = LM (SP1) ∪ LM (SP2) LM (P1 | P2) = LM (P1) ∪ LM (P2)

LM (
`
SP

´L
⌋ P) = LM (SP) ∪ (LM (SP) ∩ LM (P)) LM (X) = ∅

where ν ∈ E ∪ EV , n ∈ IN, P1, P2 are any pattern, SP is any sequence pattern.

If P is a well–formed pattern, there exists N ⊂ IN such that (L(P), N) |= P .
Let A be the set of all total injective functions α : IN → IN. Given α ∈ A,

the α–renaming of an LCLS pattern P is the pattern Pα obtained by replacing
every label n in P by α(n). It holds that α–renaming preserves well–formedness.

Lemma 4. Given P ∈ P, ∀α ∈ A it holds |= P ⇐⇒ |= Pα.

Links in a term are placeholders: the natural number used in the two labels
of a link has not a particular meaning. Hence, we can consider as equivalent
patterns which differ only in the values of their links.

Definition 11 (α–equivalence). The α–equivalence relation =α on LCLS pat-
terns is the least equivalence relation which satisfies the following rules:

νn1 | µn1 =α νn2 | µn2 P1 | P2 =α P3

P2 | P1 =α P3

SP1 | SP2 =α P3

SP1 · SP2 =α P3

P1 =α P2 P3 =α P4 L(P1) ∩ L(P3) = L(P2) ∩ L(P4) = ∅

P1 | P3 =α P2 | P4

SP1 =α SP2 P1 =α P2 L(SP1) ∩ L(SP2) = L(P1) ∩ L(P2) = ∅

`
SP1

´L
⌋ P1 =α

`
SP2

´L
⌋ P2

`
SP1 · SP ′

1

´L
⌋ P1 =α

`
SP2 · SP ′

2

´L
⌋ P2 ni 6∈ LM (SPi · SP ′

i) ∪ LM (Pi)
`
SP1 · νn1 · SP ′

1

´L
⌋ (µn1 | P1) =α

`
SP2 · νn2 · SP ′

2

´L
⌋ (µn2 | P2)

`
SP1 · SP ′

1

´L
⌋ P1 =α

`
SP2 · SP ′

2

´L
⌋ P2 ni 6∈ LM (SPi · SP ′

i) ∪ LM (Pi)

νn1 |
`
SP1 · µn1 · SP ′

1

´L
⌋ P1 =α νn2 |

`
SP2 · µn2 · SP ′

2

´L
⌋ P2

where ν, µ ∈ E ∪EV , n1, n2 ∈ IN, P1, P2, P3, P4 are any pattern, SP1, SP2, SP3,
SP4 are any sequence pattern.

It is easy to see that α–equivalence preserves well–formedness of patterns.

Lemma 5. Given P1, P2 ∈ P, |= P1 and P1 =α P2 imply |= P2.

Note that the labels occurring only once in a pattern P are not renamed by
the α–equivalence relation. Instead, the application of an α–renaming function
to P may change these labels. Moreover, labels which occur twice in more than
one compartment of the pattern can be renamed differently in each compartment
by the α–equivalence relation, while they are all renamed by the same value by
applying some α–renaming function.

We say that an instantiation function σ is well–formed if it maps variables
into well–formed closed terms and sequences. We denote with Σwf the set of all
well–formed instantiation functions. Differently from CLS, the application of an
instantiation function to a pattern does not correspond to the substitution of
every variable in the pattern with the corresponding term given by the instanti-
ation function, because this could lead to not well–formed terms. As an example,
consider the well-formed pattern P = a · x̃ | X and a well–formed instantiation
function σ such that σ(x̃) = b1 · c1 and σ(X) = d1 | e1. The application of σ to
P would produce the term Pσ = a · b1 · c1 | d1 | e1, which is not well–formed.
Similarly, consider the well–formed pattern P = a·x̃·x̃ and the same well-formed
instantiation function. We obtain Pσ = a ·b1 ·c1 ·b1 ·c1, which is not well–formed.
To avoid these situations, we define the application of an instantiation function
to an LCLS pattern in a way such that the links in the instantiations of all
occurrences of all variables are renamed, if necessary.

Definition 12 (Pattern Instantiation). Given a pattern P ∈ P and an in-
stantiation function σ ∈ Σ, the application of σ to P is an LCLS term Pσ given
by the following inductive definition:

ǫσ = ǫ aσ = a anσ = an exσ = σ(ex) xσ = σ(x) xnσ = σ(x)n Xσ = σ(X)

SPiσ =α Si L(S1) ∩ L(S2) = ∅

SP1 · SP2 σ = S1 · S2

Piσ =α Ti L(T1) ∩ L(T2) = ∅

P1 | P2 σ = T1 | T2

SPσ =α S Pσ =α T L(S) ∩ L(T) = ∅

`
SP

´L
⌋ P σ =

`
S

´L
⌋ T

where P1, P2, P are any pattern, SP1, SP2, SP are any sequence pattern.

Now, by applying a well–formed instantiation function to a well–formed pat-
tern, we obtain a well–formed term.

Lemma 6. Given P ∈ P , σ ∈ Σwf , it holds that |= P implies |= Pσ.

As in CLS, rewrite rules in LCLS are pairs of patterns.

Definition 13 (Rewrite Rules). A rewrite rule is a pair of patterns (P1, P2),
denoted with P1 7→ P2, where P1, P2 ∈ P, P1 6≡ ǫ and such that V ar(P2) ⊆
V ar(P1). We denote with ℜ the infinite set of all the possible rewrite rules.

Our aim is to show that the application of a rewrite rule composed by well–
formed patterns to a well–formed term produces another well–formed term. It
is easy to see that, as a consequence of Lemma 6, this holds if variables of the
rewrite rule are instantiated by a well–formed instantiation function. However,
sometimes we would like to relax this constraint and allow a variable to be
instantiated with an open term. For instance, we would permit the application
of a rewrite rule x̃ · a 7→ x̃ · b to the term c1 | d1 · a (so to obtain c1 | d1 · b),
which requires that σ(x̃) = d1. Relaxing this constraint causes the introduction
of constraints on the two patterns of the rewrite rules: they must not add or
remove occurrences of variables, they cannot move variables from a compartment
to another one, and they cannot add single occurrences of labels. To check these
constraints we introduce a notion of compartment safety.

Definition 14 (Compartment Safety). The compartment safety relation cs
on pairs of patterns is the least equivalence relation satisfying the following rules:

cs(ǫ, ǫ) cs(ǫ, ν) cs(νn, µn) cs(ǫ, νn|µn) cs(ex, ex) cs(X, X)

cs(P1, P2) cs(P3, P4)

cs(P1|P3, P2|P4)

cs(P1|P2, P3)

cs(P2|P1, P3)

cs(SP1|SP2, P3)

cs(SP1 · SP2, P3)

cs(SP1, SP2) cs(P1, P2)

cs(
`
SP1

´L
⌋ P1,

`
SP2

´L
⌋ P2)

cs(
`
SP1 · SP2

´L
⌋ P1,

`
SP3

´L
⌋ P2)

cs(
`
SP2 · SP1

´L
⌋ P1,

`
SP3

´L
⌋ P2)

cs(
`
SP1

´L
⌋ P1,

`
SP2

´L
⌋ P2)

cs(
`
SP1

´L
⌋ P1,

`
SP2 · νn

´L
⌋ (µn | P2))

cs(
`
SP1

´L
⌋ P1,

`
SP2

´L
⌋ P2)

cs(
`
SP1

´L
⌋ P1, νn |

`
SP2 · µn

´L
⌋ P2)

where ν, µ ∈ E ∪ EV , n ∈ IN, P1, P2, P3, P4 are any pattern, SP1, SP2, SP3 are
any sequence pattern.

Definition 15 (Compartment Safe Rewrite Rule). A rewrite rule P1 7→P2

is compartment safe (CS) if cs(P1, P2) holds. It is compartment unsafe (CU)
otherwise. We denote with ℜCS ⊂ ℜ the infinite set of CS rewrite rules, and
with ℜCU ⊂ ℜ the infinite set of CU rewrite rules.

Now, we can introduce well–formedness also for rewrite rules.

Definition 16 (Well–Formedness of Rewrite Rules). Given a rewrite rule
P1 7→ P2 ∈ ℜ, it is well–formed if P1 and P2 are well–formed patterns, and
either P1 7→ P2 ∈ ℜCS or both P1 and P2 are closed patterns.

The application of a well–formed rule satisfying compartment safety to a
well–formed term preserves the well–formedness of the term even if variables are
instantiated by a non well–formed instantiation function.

Lemma 7. Given σ ∈ Σ and a well–formed rewrite rule P1 7→ P2 such that
P1 7→P2 ∈ ℜCS, it holds that |= P1σ implies |= P2σ.

Now, we can define the semantics of LCLS.

Definition 17 (Semantics). Given a set of rewrite rules R ⊆ ℜ, such that
R = RCS ∪RCU with RCS ⊂ ℜCS and RCU ⊂ ℜCU , the semantics of LCLS is
the least transition relation → on terms closed under ≡ and =α, and satisfying
the following inference rules:

(appCS)
P1 7→ P2 ∈ RCS P1σ 6≡ ǫ σ ∈ Σ α ∈ A

P1ασ → P2ασ

(appCU)
P1 7→ P2 ∈ RCU P1σ 6≡ ǫ σ ∈ Σwf α ∈ A

P1ασ → P2ασ

(par)
T1 → T ′

1 L(T1) ∩ L(T2) = {n1, . . . , nM} n′

1, . . . , n
′

M fresh

T1 | T2 → T ′

1{
n′

1, . . . , n
′

M/n1, . . . , nM} | T2

(cont)
T → T ′ L(S) ∩ L(T ′) = {n1, . . . , nM} n′

1, . . . , n
′

M fresh
`
S

´L
⌋ T →

`
S

´L
⌋ T ′{n

′

1, . . . , n
′

M/n1, . . . , nM}

where the symmetric rule for the parallel composition is omitted.

Rules (appCS) and (appCU) describe the application of compartment safe
and compartment unsafe rewrite rules, respectively. In the latter case we require
that the instantiation function used to apply the rule is well–formed. In both
cases, an α–renaming function is used to rename the labels in the pattern, in
particular those appearing only once in the top–level compartment. The (par)
and (cont) rules propagate the effect of a rewrite rule application to contexts by
resolving conflicts in the use of labels.

Finally, we can give a theorem which states that the application of well–
formed rewrite rules to well–formed terms produces new well–formed terms.

Theorem 1 (Subject Reduction). Given a set of well–formed rewrite rules
R and T ∈ T , it holds that |= T and T → T ′ imply |= T ′.

4 An Example: The EGF Signalling Pathway

A cell recognizes the EGF signal from the environment because it has on its mem-
brane some EGF receptor proteins (EGFR), which are transmembrane proteins
(they have some intra–cellular and some extra–cellular domains). One of the
extra–cellular domains binds to one EGF protein in the environment, forming a
signal–receptor complex on the membrane. This causes a conformational change

on the receptor protein that enables it to bind to another one signal–receptor
complex. The formation of the binding of the two signal–receptor complexes
(called dimerization) causes the phosphorylation of some intra–cellular domains
of the dimer. This causes the internal domains of the dimer to be recognized by
a protein that is in the cytoplasm, called SHC. The protein SHC binds to the
dimer, enabling a chain of protein–protein interactions inside the cell.

We model in LCLS the steps of the EGF pathway up to the binding of
the protein SHC to the dimer. We model the EGFR protein as the sequence
RE1 · RE2 · RI1 · RI2, where RE1 and RE2 are two extra–cellular domains and
RI1 and RI2 are two intra–cellular domains. The membrane of the cell is modeled
as a looping sequence which could contain EGFR proteins. Outside the looping
sequence (i.e. in the environment) there could be EGF proteins, and inside (i.e.
in the cytoplasm) there could be SHC proteins. The rewrite rules modeling the
pathway are the following:

EGF |
`
RE1 ·ex

´L
⌋ X 7→

`
SRE1 ·ex

´L
⌋ X (R1)

`
SRE1 ·RE2 ·RI1 ·RI2 ·ex·SRE1 ·RE2 ·RI1 ·RI2 ·ey

´L
⌋ X 7→

`
SRE1 ·R

1
E2 ·RI1 ·RI2 ·SRE1 ·R

1
E2 ·RI1 ·RI2 ·ex·ey

´L
⌋ X (R2)

`
R1

E2 ·RI1 ·ex·R1
E2 ·RI1 ·ey

´L
⌋ X 7→

`
R1

E2 ·PRI1 ·ex·R1
E2 ·RI1 ·ey

´L
⌋ X (R3)

`
R1

E2 ·PRI1 ·ex·R1
E2 ·RI1 ·ey

´L
⌋ X 7→

`
R1

E2 ·PRI1 ·ex·R1
E2 ·PRI1 ·ey

´L
⌋ X (R4)

`
R1

E2 ·PRI1 ·RI2 ·ex·R1
E2 ·PRI1 ·RI2 ·ey

´L
⌋ (SHC | X) 7→

`
R1

E2 ·PRI1 ·R
2
I2 ·ex·R1

E2 ·PRI1 ·RI2 ·ey
´L

⌋ (SHC2 | X) (R5)

Rule R1 represents the binding of the EGF protein to the receptor domain
RE1 with SRE1 as a result. Rule R2 represents that when two EGFR proteins
activated by proteins EGF occur on the membrane, they may bind to each other
to form a dimer (shown by the link 1). Rule R3 represents the phosphorylation
of one of the internal domains RI1 of the dimer, and rule R4 represents the
phosphorylation of the other internal domain RI1 of the dimer. The result of
each phosphorylation is PRI1. Rule R5 represents the binding of the protein
SHC in the cytoplasm to an internal domain RI2 of the dimer. Remark that the
binding of SHC to the dimer is represented by the link 2, allowing the protein
SHC to continue the interactions to stimulate cell proliferation.

Let us denote the RE1 ·RE2 ·RI1 ·RI2 by EGFR. By starting from a cell with
some EGFR proteins on its membrane, some SHC proteins in the cytoplasm and
some EGF proteins in the environment, a possible evolution is the following (we
write on each transition the name of the rewrite rule applied):

EGF | EGF |
`
EGFR·EGFR·EGFR·EGFR

´L
⌋ (SHC | SHC)

(R1)
−−−→ EGF |

`
SRE1 ·RE2 ·RI1 ·RI2 ·EGFR·EGFR·EGFR

´L
⌋ (SHC | SHC)

(R1)
−−−→

`
SRE1 ·RE2 ·RI1 ·RI2 ·EGFR·SRE1·RE2 ·RI1 ·RI2 ·EGFR

´L
⌋ (SHC | SHC)

(R2)
−−−→

`
SRE1 ·R

1
E2 ·RI1 ·RI2 ·SRE1 ·R

1
E2 ·RI1 ·RI2 ·EGFR·EGFR

´L
⌋ (SHC | SHC)

(R3)
−−−→

`
SRE1 ·R

1
E2 ·PRI1 ·RI2 ·SRE1 ·R

1
E2 ·RI1 ·RI2 ·EGFR·EGFR

´L
⌋ (SHC | SHC)

(R4)
−−−→

`
SRE1 ·R

1
E2 ·PRI1 ·RI2 ·SRE1 ·R

1
E2 ·PRI1 ·RI2 ·EGFR·EGFR

´L
⌋ (SHC | SHC)

(R5)
−−−→

`
SRE1 ·R

1
E2 ·PRI1 ·R

2
I2 ·SRE1 ·R

1
E2 ·PRI1 ·RI2 ·EGFR·EGFR

´L
⌋ (SHC2 | SHC)

5 Conclusions

In previous papers we introduced the formalism Calculus of Looping Sequences
(CLS) suitable to describe biological systems and their evolution.

In the present paper we have presented LCLS, an extension of CLS suitable to
describe protein interaction at the domain level. A type system allows expressing
well–formedness of terms and rewrite rules of the calculus, and an operational
semantics is given which preserves well–formedness. We have shown an example
of application of the calculus to the description of a classical biological system,
namely the protein interactions of the EGF signalling pathway.

The relationship between CLS/LCLS and similar formalisms are studied in
detail in [7]. Further work includes developing concepts of bisimulations for the
new calculus in the line of what done for CLS.

References

1. R. Alur, C. Belta, F. Ivancic, V. Kumar, M. Mintz, G.J. Pappas, H. Rubin, and
J. Schug. “Hybrid Modeling and Simulation of Biomolecular Networks”. Hybrid
Systems: Computation and Control, LNCS 2034, pages 19–32, Springer, 2001.

2. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. “A Calculus of
Looping Sequences for Modelling Microbiological Systems”. Fundamenta Infor-
maticae, volume 72, number 1–3, pages 21–35, 2006.

3. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. “Bisimulation
Congruences in the Calculus of Looping Sequences”. Proc. of ICTAC’06, LNCS
4281, pages 93–107, 2006.

4. L. Cardelli. “Brane Calculi. Interactions of Biological Membranes”. Proc. of
CMSB’04, LNCS 3082, pages 257–280, Springer, 2005.

5. V. Danos and C. Laneve. “Formal Molecular Biology”. Theoretical Computer
Science, volume 325, number 1, pages 69–110, 2004.

6. C. Laneve and F. Tarissan. “A Simple Calculus for Proteins and Cells”. Proc. of
MeCBIC’06, ENTCS, to appear.

7. P. Milazzo. “Qualitative and Quantitative Formal Modeling of Biological Sys-
tems”. PhD Thesis, University of Pisa, 2007.

8. H. Matsuno, A. Doi, M. Nagasaki, and S. Miyano.“Hybrid Petri Net Representa-
tion of Gene Regulatory Network”. Proc. of PSB’00,World Scientific Press, pages
341–352, 2000.

9. G. Păun. “Membrane Computing. An Introduction”. Springer, 2002.
10. A. Regev, E.M. Panina, W. Silverman, L. Cardelli, and E. Shapiro. “BioAm-

bients: An Abstraction for Biological Compartments”. Theoretical Computer
Science, volume 325, number 1, pages 141–167, 2004.

11. A. Regev, W. Silverman, and E.Y. Shapiro. “Representation and Simulation of
Biochemical Processes Using the Pi-Calculus Process Algebra”. Proc. of PSB’01,
World Scientific Press, pages 459–470, 2001.

