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Abstract. We present an abstraction of the probabilistic semantics
of Multiset Rewriting to formally express systems of reactions with
uncertain kinetic rates. This allows biological systems modelling when
the exact rates are not known, but are supposed to lie in some intervals.
On these (abstract) models we perform probabilistic model checking
obtaining lower and upper bounds for the probabilities of reaching
states satisfying given properties. These bounds are under- and over-
approximations, respectively, of the probabilities one would obtain by
verifying the models with exact kinetic rates belonging to the intervals.
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1 Introduction

When modelling biological systems, the rates of the reactions involved in the
evolution of the systems are often not precisely known. Thus, it is necessary to
model such systems with some level of approximation. However, approximations
should be significant, namely they should preserve, although not precisely, the
overall behaviour of the systems.

In this paper we present a formalisation of biological systems based on
Multiset Rewriting (MSR) [1], and we investigate the use of abstract interpreta-
tion [2] on its probabilistic semantics. In particular, we use an Interval Markov
Chain (IMC) [3, 4] to abstract the Discrete Time Markov Chain (DTMC)
probabilistic semantics of a set of MSR models. The abstraction is able to model
the semantics of a biological system for which the exact kinetic rates are not
precisely known, but are supposed to lie in some intervals.

We start defining MSR as the formalism used to construct concrete models,
namely models with exact kinetic rates (Section 2). We give a Labelled Transition
System (LTS) semantics to MSR and show how to derive, in standard way, a
probabilistic semantics from it, in terms of a DTMC. On the DTMC it is possible
to perform probabilistic model checking.

In order to deal with uncertainty we define abstract models in which the
kinetic rates are given as intervals (Section 3). We give an abstract LTS semantics
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Fig. 1: Schematics of the the defined theory; with ◦ we indicate abstract structures,
with α abstraction functions.

and a method to derive an abstract probabilistic semantics from it, in terms of
IMC. On the IMC it is possible to perform probabilistic model checking (that
gives lower and upper bounds for the probability of reaching states satisfying
given properties) by following the approach of [5].

We relate the concrete probabilistic semantics with the abstract one by means
of concepts of abstract interpretation (see Figure 1). We prove the soundness of
the abstract semantics with respect to the concrete one. This implies that the
lower and upper bounds obtained by model checking an abstract model are valid
for all the models with exact kinetic rates belonging to the specified intervals.

In Section 4, we apply probabilistic model checking to verify reachability
properties in an abstract model of tumor growth [6]. We review related work
in Section 5 and we conclude with a summary and further research ideas with
Section 6.

2 Probabilistic Model Checking of Biological Systems

To model biological systems we adopt Multiset Rewriting (MSR) where the
rewriting rules are enriched with non negative real kinetic constants. Multisets
are states of computation and transitions between states are performed by ap-
plying rewriting rules with a probability proportional to their kinetic constants.

Let Σ be a finite set of species names with cardinality n. A multiset is a
function s : Σ → IN and S(Σ) is the universe of multisets over Σ. We assume
multiset sum ⊕ and difference ⊖, to be defined as follows: given s′, s′′ ∈ S(Σ)
we have s′ ⊕ s′′(x) = s′(x) + s′′(x) and s′ ⊖ s′′(x) = max(s′(x) − s′′(x), 0). In
what follows we shall often assume Σ to be given.

A multiset represents the configuration of a biological system model, whereas
the description of the possible events is given by rewriting rules. A rewriting rule
is a pair (l, r) where l and r, called reactants and products, are multisets. Each
rule is associated with a kinetic constant that is, roughly, an indication of the
likelihood of the represented event.

Definition 1 (Concrete Model). A concrete model M is a triple (R,K, s0):

– R = {R1, . . . , Rm}, with Ri ∈ S(Σ) × S(Σ), is a set of rewriting rules;

– K = {k1, . . . , km}, with ki ∈ IR>0, is a set of kinetic constants;

– s0 ∈ S(Σ) is the starting state.
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We denote the universe of concrete models as M. When the model M =
(R,K, s0) is clear, for i ∈ [1, m], we use li and ri to denote the multisets of rule

Ri and K[i] for ki. We use the notation (l
k
−→ r) for (l, r) ∈ R and k ∈ K. Finally

we use R(M), K(M), S0(M) to denote R,K, s0 respectively.
Two concrete models Mi, i ∈ {1, 2}, are isomorphic (M1 ∼ M2) if and only

if R(M1) = R(M2) ∧ S0(M1) = S0(M2).

2.1 Labelled Transition System Semantics

To describe the semantics of a concrete model we adopt a Labelled Transition

System (LTS) with a transition relation of the form s′
η , β
−−→ s′′ where η is the

number of the applied rule, and β ∈ IR>0 is the transition rate.
The application of a rule Rη to a state s′ is modelled by the inference rule

(lη
kη

−→ rη) l ⊆ s′ β = rate(lη, s′, kη) s′′ = ((s′ ⊖ lη) ⊕ rη)

s′
η , β
−−→ s′′

(1)

where rate(lη, s′, kη) = kin(lη, s
′) × kη and kin(lη, s

′) =
∏

x∈Σ

(

s′(x)
lη(x)

)

.

To compute kin(lη, s′) we take into account the number of possible distinct
applications of the rule Rη to the state s′. Actually, this requires to compute
the number of distinct combinations of the reactants lη into the multiset s′.
To compute rate(lη, s′, kη) we multiply the value of kin(lη, s′) by the kinetic
constant associated with Rη, namely kη.

Given a concrete model M = (R,K, s0) ∈ M, we define the function
LTS : M 7→ LT S, such that LTS(M) = (S,→, s0) is the LTS, obtained
as usual by transitive closure of (1) starting from s0. In the following, we use
LT S to denote the universe of LTSs. Moreover, we use Next(s) for the set of

transitions from the state s; in addition, we use TS(s′, s′′) = {s′
η , β
−−→ s′′ for

some η , β} for describing the set of transitions from s′ to s′′. Given a transition

t = s′
η , β
−−→ s′′, we also use rate(t) = β. Note that, ∀s ∈ S, Rη ∈ R, there is at

most one transition s
η , β
−−→ s′ ∈ Next(s) corresponding to Rη.

2.2 Derivation of Probabilistic Semantics

We present the probabilistic semantics of a concrete model by means of a
translation from LTS into Discrete Time Markov Chain (DTMC).

Given a countable set S we denote with Distr(S) = { ρ | ρ : S → [0, 1] ∧
∑

s∈S ρ(s) = 1} the set of probability distributions and with PDistr(S) = { ρ | ρ :
S → [0, 1]} the set of probability pseudo–distributions. Given a finite set S, a
function P : S × S 7→ IR and s ∈ S, we denote with P (s, S) =

∑

s′∈S P (s, s′).

Definition 2 (Discrete Time Markov Chain). A DTMC is a tuple (S, P, s0),
where: S is the set of states, s0 ∈ S is the starting state and P : S 7→ Distr(S)
is the transition probability function.
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In the following, we restrict our attention to finitely branching DTMC,
meaning that for each s ∈ S, the set {s′ |P (s)(s′′) > 0} is finite. Since our models
have m–sized set of rules from each state we have at most m exit transitions.
Moreover, we use MC to denote the universe of (finitely branching) DTMCs.

To derive a DTMC from the LTS, we have to calculate, for each multiset s′

and s′′, the probability of moving from s′ to s′′, by exploiting transition rates.
Thus, we introduce two functions R : S × S 7→ IR>0 and E : S 7→ IR>0, such
that R(s′, s′′) =

∑

t∈TS(s′,s′′) rate(t) and E(s′) =
∑

s′′∈S R(s′, s′′). Intuitively

R(s′, s′′) gives the rate of the transition from s′ to s′′, while E(s′) computes the
exit rate of the state. The probability of moving from s′ to s′′ is derived from
R(s′, s′′) and E(s′) in standard way.

Definition 3 (Probabilistic Translation Function). We define H : LT S →
MC as H((S,→, s0)) = (S, P, s0), where P : S → Distr(S) is the probability
transition function, s.t. , ∀s′, s′′ 6= s′ ∈ S : if E(s′) = 0, then P (s′)(s′′) = 0, and
P (s′)(s′) = 1; P (s′)(s′′) = R(s′, s′′)/E(s′) otherwise.

2.3 Probabilistic Model Checking

In the context of probabilistic model checking [7, 8] we focus our attention on
a fragment of the Probabilistic CTL (PCTL) [9] able to express reachability
properties. Formally, we have to evaluate the probability of a set of paths.

Let (S, P, s0) be a DTMC. A path π is a non–empty (finite or infinite) ordered
succession of states s0, s1, . . . of S. We denote the ith state of the path π by π[i],
starting from 1, and the length of π by |π|, where |π| = ∞ if π is infinite. The set
of paths over S is denoted by Paths(S) and its subset of finite paths is denoted
as FPaths(S). The cylinder corresponding to a path π is the set of all paths
prefixed by π. Formally, for π ∈ Paths(s), C(π) = {ππ′ |π′ ∈ Paths(S)} and
C(s) denotes the set of paths starting from the state s.

Definition 4 (Probability of Paths). Let (S, P, s0) be a DTMC. Let Π =
⋃

π∈FPaths(s) C(π) be the set of all cylinder, B be the smallest σ–algebra

containing Π, and s ∈ S a state. The tuple (Paths(S),B, Ps) is a probability
space, where Ps is the unique measure satisfying, for all path s0 . . . sn,

Ps(C(s0 . . . sn)) =











1 if s0 = s ∧ n = 0

P (s0, s1) × . . . × P (sn−1, sn) if s0 = s ∧ n > 0

0 otherwise.

Our reachability properties are parametric w.r.t. a set AP of propositional
symbols (ranged over by {A, B, . . .}). A symbol A ∈ AP denotes a set
of conditions on multisets that are evaluated by a corresponding notion of
satisfaction � : S(Σ) × AP 7→ {true , false}. As usual, given s ∈ S(Σ) and
A ∈ AP , s � A says that s satisfies A.
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Definition 5 (Reachability Probability). Let mc = (S, P, s0) be a DTMC.
The probability of reaching a state satisfying A ∈ AP , starting from s ∈ S, is
ReachA,mc(s) = Ps({π ∈ C(s) |π[i] � A for some i ≥ 0}) .

We use Reach(A) to denote ReachA,mc(s0) where mc = H(LTS(M)), for a
model M clear from the context.

Example 1. We consider a chemical reactions system where molecules X and Y
may bind to form complex XY and molecule X may be degraded by molecule W .
With Σ = {X, Y, W, XY }, the system is modelled by s0 = {(X, 2), (Y, 2), (W, 10)},

R = {(R1 = {X, Y }
k1−→ {XY }), (R2 = {X, W}

k2−→ {W})} and K = {k1 = 3, k2 = 1}.

Notice that we assume that the complexation is three times faster than the
degradation. Figure 1 shows the derived LTS(M) and H(LTS(M)) where

S = { s0 = {(X, 2), (Y, 2), (W, 10), (XY, 0)} s1 = {(X, 1), (Y, 1), (W, 10), (XY, 1)}

s2 = {(X, 1), (Y, 2), (W, 10), (XY, 0)} s3 = {(X, 0), (Y, 0), (W, 10), (XY, 2)}

s4 = {(X, 0), (Y, 1), (W, 10), (XY, 1)} s5 = {(X, 0), (Y, 2), (W, 10), (XY, 0)} }.

Fig. 2: LTS(M), and H(LTS(M)).

The probability of obtaining at least two complexes XY is given by the
probability to reach s3. Therefore we obtain 3/8 × 3/13 = 9/104. This shows
that, even if the rate of the complexation is (three times) greater that the one
of the degradation, the concentration of reagent W makes the degradation more
likely to happen than the binding of reagent X and Y .

3 Abstract Modelling and Model Checking

In order to approximate the information related to the kinetic rates of the
reaction rules we adopt the domain of intervals of (non negative) reals I (the
real valued version of intervals of integers [2, 10, 11]).

Definition 6 (Intervals). I = { [m, n] |m ∈ R≥0, n ∈ R≥0 ∪ {∞} ∧ m ≤ n}.
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Over intervals of reals I we use the operations and the order defined as follows.

∀ I,J ∈ I, I = [a , b], J = [c , d] :

I ×I J = [ a × c , b × d ] , I ∪I J = [ min(a , c) , max(b , d) ] ,

I +I J = [ a + c , b + d ] , I ⊑I J iff (I ∪I J = J ) .

We consider both ∪I and ⊑I extended component-wise to m–sized vectors of
intervals, and we use the same symbols. For x ∈ IR>0 we use x• = [x, x] ∈ I for
its best abstraction as interval, and we consider • extended to vector of reals.

In abstract models each reaction rule does not have associated a precise
kinetic constant (∈ R) but instead an interval of reals (∈ I).

Definition 7 (Abstract Model). An abstract model M is a triple (R,K◦, s0)
with R and s0 as in the concrete case, while K◦ = {k◦

1 , . . . , k
◦
m}, k◦

i ∈ I, is a set
of interval values.

We denote the universe of abstract models as M◦. We assume the notation used
for concrete models extended in the oblivious way to concrete models. The order
⊑I over intervals introduces a corresponding order ⊑M◦ over abstract models.

Definition 8 (Order on Abstract Models). Given M◦
i , i ∈ {1, 2} :

M◦
1 ⊑M◦ M◦

2 iff M◦
1 ∼ M◦

2 ∧ K(M◦
1 ) ⊑I K(M◦

2 ).

3.1 Abstraction and Concretization

To formalise the relation between concrete and abstract models we introduce
the concepts of abstraction function and concretization function [2].
Let C = {X ∈ P(M) | ∀Mi, Mj ∈ X , Mi ∼ Mj} the domain of isomorphic
concrete models. Given X ∈ C we denote with R(X) and S0(X) the shared rule
set and the shared starting state respectively.

Definition 9 (Order on Set of Isomorphic Concrete Models).
Given two set of isomorphic concrete models Xi ∈ C, i ∈ {1, 2} :
X1 ⊑C X2 iff K1 ⊑I K2 where Ki = ∪I

M∈Xi
(K(M))•.

Definition 10 (Abstraction and Concretization Functions).
We define α : C 7→ M◦ and γ : M◦ 7→ C s.t. ∀X ∈ C , ∀M◦ ∈ M◦ :

– α(X) = (R(X) , K◦ , S0(X) ) where K◦ ≡
⋃

I

M∈X(K(M))• ;
– γ(M◦) = {M |α(M) ⊑M◦ M◦} .

Theorem 1.
The pair (α, γ) is a Galois connection between (C,⊑C) and (M◦,⊑M◦).

This formalisation shows that an abstract model M◦ represents a (infinite)
set of concrete models with the same set of rules (same multiset of reactants and
products) with kinetic rates in the specified interval.
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3.2 Abstract LTS Semantics

We introduce the LTS semantics associated with abstract models, adopting an

abstract transition relation s′
η,β◦

−−−→◦ s′′, where η is as in the concrete case, while
β◦ ∈ I. The application of a rule Rη to a state s′ is modelled by the rule

(lη
k◦

η

−→ rη) lη ⊆ s′ β◦ = rate◦(lη, s′, k◦
η, ) s′′ = ((s′ ⊖ lη) ⊕ rη)

s′
η , β◦

−−−→◦ s′′
(2)

where rate◦(lη, s′, k◦
η) = kin(lη, s′) ×I k◦

η.

We define the function LTS◦ : M◦ 7→ LTS◦ such that LTS◦((R,K◦, s0)) =
(S,→◦, s0) is obtained by transitive closure of (2) starting from s0. As in the
concrete case the outgoing transitions from a state have distinct labels. In the
following we use LT S◦ to denote the universe of abstract LTSs and we assume
the notation defined for LTSs adapted in the obvious way to the abstract case.

To relate an LTS to its abstract counterpart we introduce the concept of best
abstraction of an LTS. The most precise abstract LTS can be obviously obtained
by replacing the rate β of each transition with β• = [β, β].

Definition 11 (Best Abstraction of LTS). We define αLT S : LT S 7→ LT S◦

s.t. αLT S((S,→, s0)) = ((S,→α, s0)) with →α= {s′
η , β•

−−−→◦ s′′|s′
η , β
−−→ s′′ ∈→}.

Notice that αLTS does not effectively introduce any approximation. For
expressing the correctness of an abstract LTS with respect to a concrete one, we
need an approximation order ⊑LT S◦ . In this way, we can say that lts◦ ∈ LT S◦

is a sound approximation of lts ∈ LT S provided that αLT S◦(lts) ⊑LT S◦ lts◦.

Definition 12 (Abstract LTS Order.). Let lts◦i = (Si,→
i
◦, s0,i), i ∈ {1, 2},

two abstract LTS. For s1 ∈ S1 and s2 ∈ S2, s1 4LT S◦ s2 (s2 simulates s1) iff

1. s1 = s2 ;

2. ∀t◦1 = (s1
η , β◦

1−−−→◦ s′) ∈→1
◦, ∃ t◦2 = (s2

η , β◦

2−−−→◦ s′) ∈→2
◦ such that β◦

1 ⊑I β◦
2 .

We say that lts◦1 ⊑LT S◦ lts◦2 iff s0,1 4LT S◦ s0,2.

The definition of order for abstract LTS is based on a notion of simulation
between states. Intuitively, a state s′ simulates another state s′′ if they represents
the same system configuration and if each outcoming transition from s′ is
matched by a transition from s′′ to the same arrival configuration, with a coarser
transition rate interval.

The following theorem states that the abstract LTS of an abstract model is
a correct approximation of the LTS, of all the corresponding concrete models.

Theorem 2. ∀M◦ ∈ M◦, ∀M ∈ γ(M◦) : αLT S(LTS(M)) ⊑LT S◦ LTS◦(M◦) .



8 Roberto Barbuti, Francesca Levi, Paolo Milazzo, and Guido Scatena

3.3 Abstract Probabilistic Semantics

We use the Interval Discrete-Time Markov Chain [3, 4] to define the probabilistic
semantics of an abstract model.

Definition 13 (IMC). An IMC is a tuple (S, P−, P+, s), where: S ⊆ S(Σ)
and s ∈ S are a countable set of states and the initial state; P−, P+ : S →
PDistr(S) are the lower and upper probability transition function s.t. ∀s′, s′′ ∈
S, P−(s′)(s′′) ≤ P+(s′)(s′′) and P−(s, S) ≤ 1 ≤ P+(s, S) .

Here, P (s′)(s′′) and P+(s′)(s′′) define intervals of probabilities, that repre-
sent lower and upper bounds for the transition probabilities of moving from s′ to
s′′. In the following we use MC◦ to denote the universe of IMCs.

On a IMC, for any state s, there is a choice for an admissible distribution
yielding the probabilities to reach successor states. A distribution is admissible
for an IMC mc◦ = (S, P−, P+, s0) and a state s ∈ S, iff, ∀ s′ ∈ S :
P−(s)(s′) ≤ ρ(s′) ≤ P+(s)(s′). We use ADistrmc◦(s) for the admissible
distributions for s and mc◦.

The notion of path for IMC is analogous to that presented for DTMC and
we use therefore the same notation.

Definition 14 (Scheduler). Let mc◦ = (S, P−, P+, s0) be an IMC. A sched-
uler is a function S : FPaths(S) 7→ ADistrmc◦(πlast) for each path π ∈
FPaths(S). We use Adv(mc◦) for the set of schedulers on mc◦.

Given a scheduler S ∈ Adv(mc◦) the probability space over paths can be
defined analogously as for DTMC (see Definition 4). Thus, P S

s stands for the
probability on an IMC starting from the state s w.r.t. the scheduler S.

To relate a DTMC to its abstract counterpart IMC we introduce the concept
of best abstraction of a DTMC. As for LTS, the derived probabilities are exact.

Definition 15 (Best Abstraction of DTMC).
Let αMC : MC 7→ MC◦ s.t. αMC((S, P, s0)) = ((S, P−

α , P+
α , s0)) where,

∀ s′, s′′ ∈ S, P−
α (s′, s′′) = P+

α (s′, s′′) = P (s′, s′′).

In the style of [12, 13], we introduce an approximation order ⊑MC◦ .

Definition 16 (Order on IMC). Let mc◦i = (Si, P
−
i , P+

i s0,i), i ∈ {1, 2}, two
IMC. Given two states si ∈ Si, i ∈ {1, 2}, s1 4MC◦ s2 (s2 simulates s1) iff
(i) s1 = s2 and (ii) ADistrmc◦

1
(s1) ⊆ ADistrmc◦

2
(s2).

We say that mc◦1 4MC◦ mc◦2 iff s0,1 4MC◦ s0,2.

3.4 Derivation of Abstract Markov Chain Semantics

We define the abstract probabilistic translation function H◦ : LT S◦ → MC◦.
The abstract LTS reports on transitions the number of the rule which is applied
and the interval representing a possible range for its rate. From this kind of
information, both lower and upper bounds for the probabilities of moving from
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a state to another can be calculated. Following the guidelines of the derivation of
the DTMC from the concrete LTS, we introduce R◦ : S×S 7→ I, and E◦ : S 7→ I

s.t. R◦(s′, s′′) =
∑

I

t∈TS(s′,s′′) rate◦(t) and E◦(s′) =
∑

I

s′′∈S R◦(s′, s′′).

Intuitively, R◦(s′)(s′′) reports the interval of rates corresponding to the move
from s′ to s′′, while E◦(s′) is the abstract exit rate. Both lower and upper bounds
of the probability of moving from s′ to s′′ can be determined by R◦(s′)(s′′) and
by E◦(s′). For these purposes we need to consider the worst case and best case
scenario, respectively. That is, the transition to be maximised (minimised) takes
as rate value its upper (lower) bound and all the others take their lower (upper)
bound. This reasoning has to be properly combined with the special cases when
max(E◦(s′)) = 0 (the state s′ is stable) or min(E◦(s′)) = 0 (the state s′ is
stable for some values of kinetic constant of some rules).

Definition 17 (Abstract Probabilistic Translation Function). We define
H◦ : LT S◦ → MC◦ such that H◦((S,→◦, s0)) = (S, P−, P+, s0), where
P−, P+ : S → PDistr(S) are computed, for each s′ ∈ S, as follows:

– if max(E◦(s′)) = 0, then P+(s′)(s′′) = P−(s′)(s′′) = 0, for each s′ 6= s′′

and P+(s′)(s′) = P−(s′)(s′) = 1;
– if max(E◦(s′)) > 0, then

(a) if min(E◦(s′)) = 0, then P+(s′)(s′) = 1 and P−(s′)(s′) = 0
(b) for each s′′, if min(R◦(s′, s′′)) = 0, then P−(s′)(s′′) = 0 else

P−(s′)(s′′) = min(R◦(s′, s′′))/max(E◦(s′))−max(R◦(s′, s′′))+min(R◦(s′, s′′))
(c) for each s′′, if max(R◦(s′, s′′)) = 0, then P+(s′)(s′′) = 0 else

P+(s′)(s′′) = max(R◦(s′, s′′))/min(E◦(s′))−min(R◦(s′, s′′))+max(R◦(s′, s′′)).

The following theorems states the soundness of H◦ w.r.t. the approximation
order ⊑MC◦ , and that αMC ◦ H = H◦ ◦ αLT S .

Theorem 3. Let lts◦i = (Si,→◦
i, s0,i), i ∈ {1, 2}, two abstract LTS.

If lts◦1 ⊑LT S◦ lts◦2 then H◦(lts◦1) ⊑MC◦ H◦(lts◦2).

Theorem 4. Let M ∈ M , αMC(H(LTS(M))) = H◦(αLT S(LTS(M))) .

3.5 Probabilistic Model Checking of Interval Markov Chains

By realizing probabilistic model checking on an abstract model we compute lower
and upper bounds for the concrete reachability probability of all the abstracted
models. On IMCs the computation of reachability probabilities considers the
minimum and maximum probabilities w.r.t. all the schedulers, giving under and
over approximations (for details see [5]).

Definition 18 (Reachability Probability). Let mc◦ = (S, P−, P+, s0) be an
IMC. The lower and upper bound of the probability of reaching a state satisfying
a propositional symbol A ∈ AP , starting from s ∈ S, are defined as follows:
Reach−

A,mc◦(s) = inf S∈Adv(mc◦)P
S
s ({π ∈ C(s) |π[i] � A for some i ≥ 0}) ;

Reach+
A,mc◦(s) = supS∈Adv(mc◦) P S

s ({π ∈ C(s) |π[i] � A for some i ≥ 0}) .
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Theorem 5. Let mc◦i = (Si, P
−
i , P+

i , s0,i), i ∈ {1, 2}, two IMC and si ∈ Si,
i ∈ {1, 2}, two states. If s1 4MC◦ s2 then ∀A ∈ AP :

Reach−
A,mc◦

2

(s2) ≤ Reach−
A,mc◦

1

(s1) ≤ Reach+
A,mc◦

1

(s1) ≤ Reach+
A,mc◦

2

(s2).

The Theorems 3, 4 and 5 show that the IMC, derived from the abstract LTS,
gives conservative bounds for probabilistic reachability properties.

Example 2. We consider the model of Example 1 but, in this case, we assume
that we are not sure about the kinetic rate of each rule, but we only estimate the
interval in which they lie in. For instance, we consider M◦ = (R,K◦, s0) where
R and s0 are the same of Example 1, while K◦ = {k◦

1 = [1, 5], k◦
2 = [1, 5]}.

Figure 2 shows the derived LTS◦(M◦) and H◦(LTS◦(M◦)), where the state
space S is the same of Example 1. By computing the probability of obtaining at
least two complexes XY , we obtain [4/104, 1/2] ×I [1/51, 1/3] = [1/1326, 1/6].
This result shows that, even if the rates of the reactions are not precise, we have
the same behaviour of Example 1. The concentration of reagent W makes the
degradation more likely to happen than the binding of reagent X and Y .

Fig. 3: LTS◦(M◦) and H◦(LTS◦(M◦)).

4 Case Study

We briefly present the application of the proposed approach to a model of
tumor growth proposed by Villasana and Radunskaya and studied with Delay
Differential Equations (DDEs) in [6].

Tumor growth is based on cell divisions (or mitosis). The cell cycle is the
process between two mitosis, and it consists of four phases: the G1 phase (a
resting phase or gap period) called pre-synthetic phase, the S phase where the
replication of DNA occurs, the G2 gap period, called the post-synthetic phase,
and the mitosis phase M in which the cells segregate the duplicated sets of
chromosomes between daughter cells. The three phases G1, S, and G2 constitute
the pre-mitotic phase, also called interphase.

The simplest model proposed in [6] considers two populations of tumor cells:
the population of tumor cells during cell cycle interphase, and the population of
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tumor cells during mitosis. Such a model can be expressed as the following set
of reactions:

R = {R1 : TI
a1−→ TM , R2 : TM

a4−→ 2TI , R3 : TI
d2−→ , R4 : TM

d3−→ }

where TI and TM are tumor cells in interphase and in mitosis, respectively.
Reaction R1 represents the passage of a tumor cell from the interphase to the
mitosis phase, reaction R2 represents the mitosis, and reactions R3 and R4

represent tumor cell death.
Let d be the rate at which mitotic cells disappear, namely d = d3 + a4.

Figure 4 shows the results of the analytical study of the DDEs model, by setting
the parameters a4 and d2 to 0.5 and 0.3, respectively, and by varying a1 and
d. There are two regions. The region in which the tumor grows is R-I, while
in R-II both kinds of tumor cells disappear. A concrete probabilistic model of

Fig. 4: The regions which describe the different behaviours of the DDEs model by
varying parameters a1 and d.

tumor growth could be trivially obtained from reactions R. We have constructed
three abstract models of tumor growth M◦

1 , M◦
2 and M◦

3 by replacing rates in
the reactions with intervals. Actually, in all the three models we have replaced
a1 with [0.8, 0.9], a4 with 0.5•, d2 with 0.3•. As regards d3, we have replaced
it with [0.05, 0.1], [1, 1.4] and [0.005, 2] in M◦

1 , M◦
2 and M◦

3 , respectively. This
corresponds to consider a region in R-I, a region in R-II and a region across the
line separating R-I and R-II (see Figure 4). Moreover, we have considered an
initial population consisting of 10 tumor cells in interphase and 10 tumor cells
in mitosis.

Formally, M◦
i = (R,K◦

i , s0), with i ∈ {1, 2, 3}, where s0 = {(TI , 10), (TM , 10)},

K◦
i = [[0.8, 0.9]; 0, 5•; 0, 3•; di

3], where d1
3 = [0.05, 0.1], d2

3 = [1, 1.4], d3
3 = [0.005, 2].

In order to perform model checking on the abstract model we have developed
a translator [14] of abstract MSR models into equivalent MDP models (by
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Fig. 5: Model checking results of Reach(TM = x) in, from left to right, M◦
1 , M◦

2 , M◦
3 .

following the extreme distribution approach of [5]) that invokes PRISM [15]
for the verification of the properties of interest on the MDP model. Moreover,
to obtain a finite MDP, we have limited the number of states of the model to
104 by applying standard abstraction techniques.

In Figure 5 we show the results of model checking of property Reach(TM = x)
in M◦

1 , M◦
2 and M◦

3 by varying x. In M◦
1 both the minimum and the maximum

probabilities tend to zero for small values of x while they are both equal to 1
for values greater or equal to 10 (the initial value of TM ). In M◦

2 it holds the
opposite. In M◦

3 we have that both probabilities are equal to 1 when x is 10, but
they tend to the interval [0, 1], namely to complete uncertainty, both for greater
and smaller values of x.

The obtained results agree with the analytic ones. In fact, the results on M◦
1

suggest tumor growth, those on M◦
2 suggest tumor decay while those on M◦

3

leave uncertainty.
Our approach is more precise with respect to analytic studies as it looks

at all possible behaviours of the modeled system, rather than a single average
behaviour. Moreover, a discrete probabilistic semantics is considered, instead of
a continuous deterministic one.

5 Related Work

The abstraction of DTMC probabilistic semantics in terms of IMC is presented
in [5, 16–19]. In the context of formal studies of biological systems, in [20, 21]
abstract interpretation techniques are used to coarse-grain a system model and
to perform static analyses, respectively.

Most of the above techniques differ substantially from our application. In
particular, their goal is to address the state-explosion problem, e.g. to obtain a
smaller abstract model by collapsing sets of concrete states into abstract states.
An abstract model is thus derived from a single concrete model. Instead, we
use abstraction to formalize uncertainty, representing with an abstract model an
infinite set of concrete models.

Different kinds of abstraction of probabilistic semantics are proposed in [22,
23], where abstract interpretation is applied to probabilistic programs and
concurrent constraint programs, respectively.
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Many approaches to uncertain parameter tuning and parameters synthesis
are present in the literature. The problem is examined in [24, 25] and [26] for
deterministic, continuous-state and discrete-state respectively, semantics. In [27]
the problem is approached by statistical model checking, while both, simulation
traces based, parameter tuning and model revision are considered in [28].

The closest approach to ours is presented in [12], where a systematic tech-
nique for abstracting a set of DTMC, each representing a concrete experiment, is
proposed. Their abstraction approximates the information about the multiplicity
of reagents present in a solution by means of intervals of integers.

6 Conclusion

In the paper we consider models of biological systems defined by Multiset
Rewriting where rewriting rules, corresponding to reactions, are enriched by
real valued kinetic constraints. Our framework allows probabilistic systems
with uncertain kinetics to be exhaustively model checked without any artificial
assumption, obtaining conservative probabilistic bounds as result.

The computational complexity of the proposed approach is exponential in
the number of uncertain parameters. The cause of this is the translation of
IMC to MDP that requires for each state the computation of all the extreme
distributions that grow exponentially with the number of uncertain parameters.

We plan to investigate the application of parametric DTMC [29, 30] to
perform parameters tuning, and the extension of our approach to CTMC, by
using the theory presented in [31] where uniform CTMC [32] is used.
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