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Abstract. Communicating Hierarchical Transaction-based Timed Au-
tomata have been introduced to model systems performing long–running
transactions. Here, for these automata a security concept is introduced,
which is based on a notion of opacity and on the assumption that an
attacker can not only observe public system activities, but also cause
abortion of some of them. Different intruder capabilities as well as dif-
ferent kinds of opacity are defined and the resulting security properties
are investigated. Security of long–running transactions is defined by the
mentioned notion of opacity and conditions for compositionality are es-
tablished.

1 Introduction

Opacity is one of the strongest security concepts as, with its help, many other se-
curity properties can be expressed (see [3]). Its origin can be traced to a concept
of non-interference (see [7]), which assumes the absence of any information flow
between private and public system activities. More precisely, systems are con-
sidered to be secure if from observations of their public activities no information
about private activities can be deduced. This approach has found many reformu-
lations for different formalisms, computational models and nature or “quality”
of observations. All reformulations try to capture important aspects of system
behaviour with respect to possible attacks against systems security, and often
are tailored to some types of attacks.

Timing attacks have a particular position among attacks against systems
security. They represent a powerful tool for “breaking” “unbreakable” systems,
algorithms, protocols, etc. For example, by carefully measuring the amount of
time required to perform private key operations, attackers may be able to find
fixed Diffie-Hellman exponents, factor RSA keys, and break other cryptosystems
(see [10]). This idea was developed in [5] where a timing attack against smart
card implementation of RSA was conducted. In [9], a timing attack on the RC5
block encryption algorithm, in [13] the one against the popular SSH protocol
and in [6] the one against web privacy are described.

To perform different kinds of timing attacks attackers might exploit differ-
ent capabilities. For example, for some attacks it is enough if an attacker can
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only observe the system to be attacked. For other attacks an attacker has to
communicate with the system via public actions, either directly or by means
of an embedded auxiliary system. Some attacks exploit the brute force of an
attacker who can interrupt some system activities (by resetting system compo-
nents, breaking communication links, etc). Particularly sensitive to such type
of attacks are systems performing so called long–running transactions (LRTs).
A LRT is composed by atomic activities that should be executed completely.
Atomicity means that they are either successfully executed or no effect is ob-
served if their execution fails. Partial executions of a LRT are not desirable, and,
if they occur, they must be compensated for. Therefore, all the activities Ai in
a LRT have a compensating activity Bi that can be invoked to recover from the
effects of a successful execution of Ai if some failure occurs later. Hence from
the computational point of view the system is robust with respect to abortion
of some of its activities. However these abortions may lead to some information
flow between classified and public system activities.

In [11] we have introduced Communicating Hierarchical Transaction–based
Timed Automata (CHTTAs) to model LRTs. In this paper we investigate in-
formation flow based attacks for systems described with CHTTAs and attackers
that can not only passively observe public system activities but also actively
cause abortion of system activities. We model information flow by the notion
of opacity for which we give different definition depending on the assumed ca-
pabilities of attackers. The introduced concepts are used to investigate security
of LRTs. We study under which conditions opacity of LRTs can be established
compositionally.

In Section 2 we recall CHTTAs. In Section 3 we study opacity of CHTTAs,
reformulating it for intruders who can also abort system activities. In Section 4
we discuss the application to LRTs. In Section 5 we conclude.

2 Communicating Hierarchical Timed Automata

Let us assume a finite set of communication channels C partitioned into a set
CPub of public channel and a set C \CPub of private channels. As usual, we denote
with a! the action of sending a signal on channel a and with a? the action of
receiving a signal on a. Let ΣC denote the set of all possible sending and receiving
actions on channels in C ⊆ C.

Let us assume a finite set X of positive real variables called clocks. A valuation
over X is a mapping v : X → IR≥0 assigning real values to clocks. Let VX denote
the set of all valuations over X . For a valuation v and a time value t ∈ IR≥0, let
v + t denote the valuation such that (v + t)(x) = v(x) + t, for each clock x ∈ X .

The set of constraints over X , denoted Φ(X), is defined by the following
grammar, where φ ranges over Φ(X), x ∈ X , c ∈ Q and ∼∈ {<,≤, =, 6=, >,≥}:

φ ::= x ∼ c |φ ∧ φ | ¬φ |φ ∨ φ | true

We write v |= φ when the valuation v satisfies the constraint φ. Formally, v |=
x ∼ c iff v(x) ∼ c, v |= φ1 ∧ φ2 iff v |= φ1 and v |= φ2, v |= ¬φ iff v 6|= φ,
v |= φ1 ∨ φ2 iff v |= φ1 or v |= φ2, and v |= true.



Let B ⊆ X ; with v[B] we denote the valuation resulting after resetting all
clocks in B. More precisely, v[B](x) = 0 if x ∈ B, v[B](x) = v(x), otherwise.
Finally, with 0 we denote the valuation such that 0(x) = 0 for all x ∈ X .

Definition 1. A Transaction-based Timed Automaton (TTA) is a tuple A =
(Σ, X, S, Q, q0, δ), where:

– Σ ⊆ ΣC is a finite set of labels;
– X is a finite set of clocks;
– S is a finite set of superstates;
– Q = L ∪ S ∪ {⊙,⊗}, where L is a finite set of basic states and ⊙ and ⊗

represent the special states commit and abort, respectively;
– q0 ∈ L is the initial state;
– δ ⊆ (L×Σ∪{τ}×Φ(X)×2X×Q)∪(S×{⊡, ⊠}×Q) is the set of transitions.

A TTA is said to be flat when S = ∅.

Superstates are states that can be refined to automata (hierarchical compo-
sition). Note that from superstates in S only transitions with labels in {⊡, ⊠}
can be taken. We assume that ⊙ and ⊗ are the final states of a TTA.

We now introduce CHTTAs as an extension of TTAs allowing superstate
refinement and parallelism.

Definition 2. Let ΣPub = {a!, a? | a ∈ CPub} and A = {A1, . . . , An} be a
finite set of TTAs, with Ai = (Σi, X i, Si, Qi, qi

0, δ
i) and such that there exists m

(m < n) such that Aj is flat if and only if j ≥ m. A Communicating Hierarchical

Transaction-based Timed Automaton (CHTTAΣPub

A ) is given by:

CHTTA
ΣP ub

A
::= 〈Ai

, µ〉
˛

˛ CHTTA
ΣP ub

A
||CHTTA

ΣP ub

A

where µ is a hierarchical composition function µ : Si → CHTTAΣPub

{Ai+1,...,An}.

Parallelism allows concurrent execution of automata. Hierarchical composi-
tion allows refining superstates. Automata executed in parallel may communicate
by synchronizing transitions labeled with a sending and a receiving action on
the same channel. The set ΣPub contains sending and receiving actions on public
channels. These actions may belong to the alphabets of TTAs in A. Communica-
tions performed using non public channels are only allowed between components
inside the same superstate or at top–level. Communication performed by using
public channels have no restrictions.

Note that, by definition of A and µ, cyclic nesting is avoided. In the fol-
lowing, if it does not give rise to ambiguity, we may write CHTTA instead of
CHTTAΣP ub

A . Finally, if A is a flat TTA, in 〈A, µ〉 µ is an empty function.

Example 1. In Figure 1 we show an example of CHTTA. Superstates of the
CHTTA are depicted as boxes and basic states as circles; initial states are rep-
resented as vertical segments. Transitions are labeled arrows in which labels τ

and constraints true are omitted. Containment in boxes represents hierarchical
composition, while parallel composition is represented by juxtapositions. The
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Fig. 1. Example of CHTTA.

CHTTA in the figure is formally defined as 〈(∅, ∅, {s1}, {q0, s1,⊙,⊗}, q0, δ), µ〉,
where δ = {(q0, τ, true, ∅, s1), (s1, ⊡,⊙), (s1, ⊠,⊗)}, and µ(s1) = A1||A2. A1

and A2 are defined as A1 = 〈({a!, b?}, {x}, ∅, {q0, q1,⊙,⊗}, q0, δ1) and A2 =
〈({a?, b!}, ∅, ∅, {q0, q2,⊙,⊗}, q0, δ2), with δ1 = {(q0, a!, true, {x}, q1), (q1, b?, x <

5, ∅,⊙), (q1, τ, x ≥ 5, ∅,⊗)} and δ2 = {(q0, a?, true, ∅, q2), (q2, b!, true, ∅,⊙)}.

Configurations of CHTTAs are pairs tc = (c, ν) where c, the untimed con-
figuration, represents the currently active states, and ν, the composed valuation,
represents the current clock valuations. The configuration of a CHTTA without
parallel components, when the currently active state is a basic state, is a pair
(q, v) with q the currently active state, and v the automaton clock valuation. We
represent with q.c the configuration where q is a superstate and c is the untimed
configuration of µ(q), and with v.ν the composed valuation where v is the clock
valuation of the automaton having q as superstate and ν is the composed valua-
tion of the clocks of µ(q). We denote with c1; c2 the untimed configuration of the
parallel composition of two CHTTAs having c1 and c2 as untimed configurations.
Analogously, we denote with ν1; ν2 the composed valuation of the parallel com-
position of two CHTTAs having ν1 and ν2 as composed valuations. Formally, the
set of configurations Conf(A) of a CHTTA A is inductively defined as follows:

– if A = 〈(Σ, X, S, Q, q0, δ), µ〉, then Conf(A) = {(Q\S)×VX} ∪ {(q.c, v.ν) | q ∈
S ∧ v ∈ Vx ∧ (c, ν) ∈ Conf(µ(q))};

– if A = A1||A2 then Conf(A) = {(c1; c2, ν1; ν2) | (c1, ν1) ∈ Conf(A1) ∧
(c2, ν2) ∈ Conf(A2)}.

For a composed valuation ν and a time value t ∈ IR≥0, let ν + t denote the
composed valuation such that (v + t)(x) = v(x) + t, for each valuation v in ν.

The initial configuration of A, denoted Init(A) ∈ Conf(A), is the config-
uration (c, ν) such that each state occurring in c is an initial state and each
valuation occurring in ν is 0.

We give a semantics of CHTTAs as a labeled transition system where states
are pairs (A, tc) with A ∈ CHTTAΣP ub

A and tc ∈ Conf(A), and labels are in
IR>0 ∪

⋃

i Σi ∪ {τ}. In order to simplify the semantics we introduce a notion
of structural equivalence for pairs (A, tc), accounting for commutativity and
associativity of parallelism. The relation ≈ is the least equivalence relation sat-
isfying (A1||A2, tc1; tc2) ≈ (A2||A1, tc2; tc1) and (A1||(A2||A3), tc1; (tc2; tc3)) ≈
((A1||A2)||A3, (tc1; tc2); tc3). Moreover, given an untimed parallel configuration



c = c1; . . . ; cn we use the following notations: c ≈ ⊙ if ∀i.ci = ⊙, and c ≈ ⊗ if
∃i.ci = ⊗ ∧ ∀i 6= j.cj ∈ {⊙,⊗}.

Definition 3 (Semantics of CHTTAs). Given A ∈ CHTTAΣPub

A , the seman-

tics of a A is the least labeled transition relation
α

−→ over {A}×Conf(A) closed
with respect to structural equivalence and satisfying the following rules:

t ∈ IR>0

(A, (c, ν))
t

−→ (A, (c, ν + t))

(q, α, φ, B, q′) ∈ δ v |= φ q′ 6∈ S

(〈A, µ〉, (q, v))
α

−→ (〈A, µ〉, (q′, v[B]))
(T,C1)

(q, α, φ, B, q′) ∈ δ v |= φ q′ ∈ S Init(µ(q′)) = (c, ν)

(〈A, µ〉, (q, v))
α

−→ (〈A, µ〉, (q′.c, v[B].ν))
(C2)

(µ(q), (c, ν))
α

−→ (µ(q), (c′, ν′)) α ∈ ΣPub ∪ {τ}

(〈A, µ〉, (q.c, v.ν))
α

−→ (〈A, µ〉, (q.c′, v.ν′))
(C3)

(A1, (c1, v))
α

−→ (A1, (c′1, v′)) α ∈ ΣP ub ∪ {τ}

(A1||A2, (c1; c2, v))
α

−→ (A1||A2, (c′1; c2, v′))
(P1)

(A1, (c1, v))
a!
−→ (A1, (c′1, v′)) (A2, (c2, v′))

a?
−→ (A2, (c′2, v′′))

(A1||A2, (c1; c2, v))
τ

−→ (A1||A2, (c′1; c′2, v′′))
(P2)

c ≈ ⊙ (q, ⊡, q′) ∈ δ q′ 6∈ S

(〈A, µ〉, (q.c, v.ν))
τ

−→ (〈A, µ〉, (q′, v))

c ≈ ⊙ (q, ⊡, q′) ∈ δ q′ ∈ S Init(µ(q′)) = (c′, ν′)

(〈A, µ〉, (q.c, v.ν))
τ

−→ (〈A, µ〉, (q′.c′, v.ν′))
(Com1,2)

c ≈ ⊗ (q, ⊠, q′) ∈ δ q′ 6∈ S

(〈A, µ〉, (q.c, v.ν))
τ

−→ (〈A, µ〉, (q′, v))

c ≈ ⊗ (q, ⊠, q′) ∈ δ q′ ∈ S Init(µ(q′)) = (c′, ν′)

(〈A, µ〉, (q.c, v.ν))
τ

−→ (〈A, µ〉, (q′.c′, v.ν′))
(Ab1,2)

where A = (Σ, X, S, Q, q0, δ) except for rule (T) where A is any CHTTA.

Rule (T) allows the elapsing of time for a generic CHTTA A. We note that
the time t is the same for any TTA composing A. Rules (C1) and (C2) describe
the behavior of a flat TTA. From a configuration (q, v), the step is performed
due to a transition (q, α, φ, B, q′) such that the condition φ is satisfied by v. After
the step, the flat TTA is in the configuration composed by state q′ and where
clocks in B are reset. If q′ is a superstate (rule (C2) ), then the CHTTA µ(q′)
becomes active inside q′. The synchronization step is described by rule (P2). The
relation ≈ allows CHTTAs that are not neighbors in the parallel composition to
communicate. Rules (C3) and (P1) allow expanding the step of a TTA which is a
component of a CHTTA. Rule (C3) deals with the hierarchical composition and
rule (P1) deals with the parallel composition. The label of the step is either τ

or a public channel. Hence, thanks to rule (P2), communication between TTAs
in parallel is allowed both for private and public channels, while for TTAs in
different superstates the communication is allowed only if the channel is public.
Moreover, we note that the step we are expanding cannot be a time step. Hence,
since time steps can be performed only by the root, the time elapsed is the same
for each TTA composing the CHTTA we are considering.

Each execution of a superstate terminates with either a commit or an abort
state. Rules (Com1) and (Com2) deal with the case in which the commit of the
superstate takes the TTA to a basic state or to a superstate, respectively, and



rules (Ab1) and (Ab2) deal with the case in which the abort of the superstate
takes the TTA to a basic state or to a superstate, respectively.

Given a string w = α1 . . . αm, we will write (A, (c, ν))
w

=⇒ (A, (c′, ν′)) to

denote the existence of a sequence of steps (A, (c, ν))
α1−→ . . .

αm−→ (A, (c′, ν′)).
We denote with Λ = IR>0 ∪ΣPub ∪{τ} the set of labels of the transition system
that does not include communcations on private channels. The set Λ is the
alphabet of the language accepted by a CHTTA.

Definition 4 (Accepted Language). Let A be a CHTTA, L(A)⊙ = {w ∈

Λ⋆ | (A, Init(A))
w

=⇒ (A, (⊙, ν′))} and L(A)⊗ = {w ∈ Λ⋆ | (A, Init(A))
w

=⇒
(A, (⊗, ν′))}. The language accepted by A is L(A) = L(A)⊙ ∪ L(A)⊗.

We denote with Lp(A) the set of all prefixes of elements in L(A), namely
Lp(A) = {w | w.w′ ∈ L(A) for some w′}. Moreover, we denote with L(A, ΣV )
and Lp(A, ΣV )′ the subsets of L(A) and Lp(A), respectively, whose elements are
string composed only by symbols in IR>0 ∪ ΣV ∪ {τ}.

3 Information Flow in CHTTAs

In this section we will formalize a notion of attacks on system security that are
based on an information flow between invisible (private) and visible (public)
system activities. We assume that an attacker is just an eavesdropper who can
see a part of the system behaviour and tries to deduce from this observation
some classified information. In the case of timing attacks, time of occurrences
of observed events plays a crucial role, namely, timing of actions represents a
fundamental information.

To formalize the attacks we do not divide actions into public and private
ones at the system description level, as it is done for example in [8, 4], but we
use a more general concept of observation. This concept was recently exploited
in [2] and [3] in a framework of Petri Nets and transition systems, respectively,
where opacity is defined with the help of observations. First we reformulate a
notion of observation function.

Definition 5 (Observation). Let Θ be as set of channels and ΛΘ = IR>0∪ΣΘ

be a set of elements called observables. Any function obs : Λ⋆ → Λ⋆
Θ is an

observation function. It is called static/dynamic/orwellian/m-orwellian (m ≥ 1)
if the following conditions hold respectively (below we assume w = x1 . . . xn):

– static if there is a mapping obs′ : Λ → ΛΘ ∪ {ǫ} such that for every w ∈ Λ⋆

it holds obs(w) = obs′(x1) . . . obs′(xn),
– dynamic if there is a mapping obs′ : Λ⋆ → ΛΘ ∪ {ǫ} such that for every

w ∈ Λ⋆ it holds obs(w) = obs′(x1).obs
′(x1.x2) . . . obs′(x1 . . . xn),

– orwellian if there is a mapping obs′ : Λ×Λ⋆ → ΛΘ ∪ {ǫ} such that for every
w ∈ Λ⋆ it holds obs(w) = obs′(x1, w).obs′(x2, w) . . . obs′(xn, w),

– m-orwellian if there is a mapping obs′ : Λ × Λ⋆ → ΛΘ ∪ {ǫ} such that
for every w ∈ Λ⋆ it holds obs(w) = obs′(x1, w1).obs

′(x2, w2) . . . obs′(xn, wn)
where wi = xmax{1,i−m+1}.xmax{1,i−m+1}+1 . . . xmin{n,i+m−1}.



In the case of the static observation function each action is observed in-
dependently from its context. In case of the dynamic observation function an
observation of an action depends on the previous ones, in case of the orwellian
and m-orwellian observation function an observation of an action depends on the
all and m−1 previous and subsequent actions in the sequence, respectively. The
static observation function is the special case of m-orwellian one for m = 1. Note
that from the practical point of view the m-orwellian observation functions are
the most interesting ones. An observation expresses what an observer - eaves-
dropper can see from a system behaviour and we will alternatively use both the
terms observation and observer with the same meaning.

Now suppose that we have some security property. This might be an execution
of one or more classified actions, an execution of actions in a particular classified
order which should be kept hidden, etc. Suppose that this property is expressed
by a predicate φ over sequences. We would like to know whether the observer
can deduce the validity of the property φ just by observing a sequence from
Lp(A). The observer cannot deduce the validity of φ if there are two sequences
w, w′ ∈ Lp(A) such that φ(w),¬φ(w′) and the sequences cannot be distinguished
by the observer i.e. obs(w) = obs(w′). We formalize this concept by the notion
of opacity.

Definition 6 (Opacity). Given a CHTTA A, a predicate φ over Lp(A) is
opaque w.r.t. the observation function obs if for every sequence w, w ∈ Lp(A)
such that φ(w) holds, there exists a sequence w′, w′ ∈ Lp(A) such that ¬φ(w′)
holds and obs(w) = obs(w′). The set of CHTTAs for which the predicate φ is

opaque with respect to obs will be denoted by Op
φ
obs.

The notion of opacity is rather general. With its help many other security
properties can be defined (anonymity, non-interference etc.) [3]. On the other
side opacity, is undecidable even for the simplest possible observation function,
namely for the constant one, and for finite state processes.

Theorem 1. Opacity for CHTTA is undecidable.

Proof. Let us consider an instance of the Post Correspondence Problem with
(ui, vi) for i = 1, . . . , n. Let us assume that {1, . . . , n} ⊆ CPub. Let A be a
CHTTA consisting of a flat TTA with Σ = {1!, . . . , n!}, two states q0 and ⊙, and
a set of transitions δ = {(q0, τ, true, ∅,⊙)} ∪ {(q0, i!, true, ∅, q0) | i ∈ 1, . . . , n}.
Let obs(w) = ǫ for every w ∈ Lp(A). We define φ(i1! . . . im!) with ij , 1 ≤ j ≤ m,
in {1, . . . , n} to be true iff ui1 . . . uim

6= vi1 . . . vim
. Now, the opacity of φ with

respect to obs would mean that there exists another sequence j1! . . . jk! such
that ¬φ(j1! . . . jk!) holds, but this would imply uj1 . . . ujk

= uj1 . . . ujk
, namely

a solution of the Post Correspondence Problem. ⊓⊔

Hence there is the need of formalizing a variant of opacity which is decidable
but still practically useful, i.e. such that with its help basic security notions could
be still expressed.

The undecidability of opacity has two main causes: the first is that the no-
tions of observation functions are very powerful (both dynamic and orwellian



ones consider a potentially infinite memory to store actions and subsequently
to compute observations), the second is that the predicate φ might be difficult
to compute. We overcome these obstacles by expressing both an opacity func-
tion and predicate φ by CHTTAs. First we start with predicate φ. We say that
the predicate is expressible by an automaton if there exists an automaton such
that for every sequence w, φ(w) holds whenever sequence w is accepted by the
automaton. The formal definition is the following.

Definition 7. A predicate φ over Λ⋆ is expressible by automaton Aφ if φ(w)
holds iff w ∈ L(Aφ). A predicate is a-expressible if such an automaton exists.

Example 2. Many security concepts are based on an information flow between
private and public system activities. Roughly speaking, there is not an informa-
tion flow if for every sequence of system actions which contains a private action
there exists a sequence of actions which does not contain any private action and
the both sequences cannot be distinguished by an observer. These concepts can
be formalized by opacity when we consider predicate φ such that φ(w) = true iff
w contains a privates action. It is easy to see that such the predicate is express-
ible by the simple automaton Aφ which after any action from the set of private
actions can reach only states which are final.

Note that the class of a-expressible predicates is very rich and covers more
types of predicates that the simple ones mentioned in Example 2. By a-expressible
predicates we can express rather sophisticated properties which take into account
not only a presence of a single private action but also order of actions, their public
context, their timing, and so on.

Now we explain how observation function obs can be expressed by an au-
tomaton. We assume that sets ΣC and ΣΘ (the set of observable actions) have
no common elements, and that τ cannot be observed, namely obs(τ) = ǫ. We
will say that the observation function is expressible by automaton if there exists
an automaton A such that every sequence accepted by A is obtained from w and
o such that obs(w) = o. The formal definition is the following, where x|y denotes
the restriction of the sequence x to the set of symbols y.

Definition 8. Let Θ ∩ C = ∅. An observation function obs : Λ⋆ → Λ⋆
Θ is

expressible by automaton Aobs if for every w ∈ Λ⋆ we have obs(w) = o iff
there exists wo ∈ L(Aobs) such that wo|Λ = w and wo|ΛΘ

= o. We say that an
observation function is a-expressible if there exists such an automaton.

This definition assumes that an observer (defined by observation function)
can always see elapsing of time what is a natural restriction. On the other side a-
expressible observation functions cover both static and m-orwellian ones, which
represent the most important class of observation functions from the practical
point of view.

Now we explain how we define a restricted version of opacity. We assume
that predicates φ and ¬φ, and that the observation function obs are expressible
by Aφ, A¬φ and Aobs, respectively. Moreover, given a CHTTA A, we denote with



Af the CHTTA such that L(Af ) = Lp(A). The idea is to compose Af , Aobs and
Aphi in parallel in order to simultaneously test whether a string w belongs to
L(Af ), assess whether φ(w) holds and obtain the corresponding observation. If
φ(w) holds, we can replace Aφ with A¬φ in the parallel composition and test
whether there exists w′ such that ¬φ(w′) holds with the same observation. In
order to allow the three automata of the parallel composition to be executed
autonomously (without communicating each other) and in a synchronized man-
ner (in order to ensure that they are working on the same string) we rename
all the actions of Aφ, A¬φ and Aobs with different sets of actions and include an
additional automaton G to the parallel composition which accepts the language
(α.αφ.αobs)

⋆ where αφ and αobs are the actions of Aφ and Aobs corresponding
to action α of Af .

Now let us consider automaton AA,φ,obs = (((G||Af )||Aφ)||Aobs). From its
construction we have that if o belongs to L(AA,φ,obs, ΣΘ) then o|ΛΘ

is an obser-
vation of some word w for which φ(w) holds.

Theorem 2. Let o ∈ L(AA,φ,obs, ΣΘ) then there exists w ∈ Lp(A) such that
φ(w) holds and obs(w) = o|ΛΘ

.

Proof. Let o ∈ L(AA,φ,obs, ΣΘ). From the construction of AA,φ,obs we know that
for a sequence of type (α.αφ.αobs)

⋆ generated by G, all automata Af , Aφ, Aobs

reached final states and hence the corresponding sequence of type (α)⋆ was
accepted by Af (i.e. it belongs to Lp(A)), the corresponding sequence of type
(αφ)⋆ was accepted by Aφ (i.e. φ holds) and the corresponding sequence from
(αobs)

⋆ was accepted by Aobs. Sequence o contains also actions τ resulting from
the communications among G, Af , Aφ, Aobs but they are not taken into account.
The proof follows immediately from the definition of Aobs. ⊓⊔

Now we define the reduced opacity (r-opacity) property.

Definition 9. Let A be a CHTTA. We say that A is r-opaque with respect to
predicate φ expressible by Aφ and predicate ¬φ expressible by A¬φ, respectively
and with respect to observation function obs expressible by Aobs iff

L((AA,φ,obs, ΣΘ)|ΛΘ
⊆ L(AA,¬φ,obs, ΣΘ)|ΛΘ

.

We denote the set of CHTTAs r-opaque with respect to φ,¬φ, obs as r-Op
φ
obs.

Theorem 3. r-Op
φ
obs ⊂ Op

φ
obs.

Proof. Let A ∈ r-Op
φ
obs and let w ∈ Lp(A) such that φ(w) holds. Then, since

L((AA,φ,obs, ΣΘ)|ΛΘ
⊆ L(AA,¬φ,obs, ΣΘ)|ΛΘ

we have by Def. 9 and Th. 2 that

there exists w′ ∈ Lp(A) s.t. ¬φ(w) holds and obs(w) = obs(w), i.e. A ∈ Op
φ
obs.

Property r–Op
φ
obs can be reduced to the language inclusion problem of Timed

Automata. First we recall from [11] the following theorem which states that for
any CHTTA there is a flat automaton which can perform the same sequences
of actions. As a consequence we have that the class of CHTTAs is equivalent to
the class of Timed Automata.



Theorem 4. Let A be a CHTTA. it holds that (A, (c0, v0))
w

=⇒ (A, (cn, vn)) iff

(A′, (c0, v
′
0))

w
=⇒ (A′, (cn, v′n)) where A′ = Flat(A).

Moreover, for every Timed Automaton A we can construct automaton Aτ

such that A accepts word w iff A′ accepts word w′ which is obtained from w by
removing all actions τ . Now, since it is easy to see that the restrictions in Def. 9
remove only occurrences of τ , from Th. 4 we get the following property.

Theorem 5. The property r-opacity can be reduced to the language inclusion
problem for automata Aτ

A,φ,obs and Aτ
A,¬φ,obs, i.e to the problem L((Aτ

A,φ,obs, ΣΘ) ⊆
L(Aτ

A,¬φ,obs, ΣΘ).

In general, the language inclusion problem for Timed Automata is not de-
cidable [1]. However, it is decidable for many interesting classes of automata.

Theorem 6. The property r-opacity is decidable if automaton Aτ
A,¬φ,obs is de-

terministic or if automaton Aτ
A,φ,obs has at most one clock or if 0 is the only

constant appearing among its clock constraints.

Proof. According to Th. 5, r-opacity can be reduced to the language inclusion
problem L((Aτ

A,φ,obs, ΣΘ) ⊆ L(Aτ
A,¬φ,obs, ΣΘ). This problem is decidable if au-

tomaton Aτ
A,¬φ,obs is deterministic (see [1]) or if automaton Aτ

A,φ,obs has at most
one clock (see [12]) or if 0 is the only constant appearing among its clock con-
straints of automaton Aτ

A,φ,obs (see [12]). ⊓⊔

Till now we have omitted the discussion about abortions as a tool for per-
forming timing attacks. Suppose that some abortion could be provoked by an
intruder. This means that ⊠ becomes an input non-public action and to distin-
guish different occurrences of such actions we will use indexes. More precisely,
we assume that there might be actions that cannot be aborted by the intruder
and actions that can be aborted. It is a task of a designer of system A to identify
those ”weak” places and replace ⊠ by ⊠i?. We will call such resulting automaton
an abortion-opened automaton and we will denote it by Aa. The intruder forces
an abortion of a corresponding activity by performing ⊠i!. Note that for actions
⊠i?, ⊠i! only the rule P2 from Definition 3 will be applied. Hence we model every
intruder as an automaton I that can perform only transitions labeled by ⊠i!. We
will call an intruder trivial either if it cannot abort any action or it can always
abort any action. Now we can define r-opacity with respect to some intruder I.

Definition 10. Let A be a CHTTA. We say that A is r-opaque with respect to
observation automaton Aobs, intruder I and automata Aφ and A¬φ iff (Aa||I) is
r-opaque with respect to observation automaton Aobs and automata Aφ and A¬φ

for every abortion-opened CHTTA Aa obtained from A.
The set of CHTTAs which are r-opaque with respect to Aobs, I, Aφ, A¬φ will

be denoted by r-Op
φ
Iobs.

The relationship between r-Op
φ
obs and r-Op

φ
Iobs is in the following theorem.
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Fig. 2. Examples of abortion–opened CHTTAs.

Theorem 7. r-Op
φ
Iobs ⊆ r-Op

φ
obs.

Proof. Let A ∈ r-Op
φ
Iobs. That means that (Aa||I) is r-opaque for every abortion-

opened CHTTA Aa obtained from A. Hence (Aa||I) ∈ r-Op
φ
obs for any Aa and

hence also for such Aa that intruder I cannot abort any action of Aa, i.e. (Aa||I)

and A perform the same sequences of actions, and therefore we get A ∈ r-Op
φ
obs

what proves that r-Op
φ
Iobs ⊆ r-Op

φ
obs. ⊓⊔

Note that the inclusion from Theorem 7 is proper if the intruder is non-trivial
and predicate φ expresses, for example, the property that a sequence contains
the private action h (see Fig. 2a).

Note that for r-Op
φ
Iobs we have similar property as the one holding for r-

opacity (see Theorem 6). As an extreme case we might consider a situation when
at any time any activity can be aborted. This might be modeled by replacing
every ⊠ by ⊠? and by automaton which can at any time perform ⊠!. Instead
of this we can model this type of attacks simply by putting ⊠ among public
and visible actions. We say that action x is visible with respect to observation
function iff obs(u.x.v) 6= obs(u.v).

Definition 11. Let A be a CHTTA. We say that A is ar-opaque with respect to
observation automaton Aobs for which ⊠ is visible and automata Aφ and A¬φ iff

L((AA,φ,obs, ΣΘ ∪ ⊠)|ΣΘ∪IR>0 ⊆ L(AA,¬φ,obs, ΣΘ ∪ ⊠)|ΣΘ∪IR>0 .

We denote the set of CHTTAs ar-opaque with respect to Aobs, Aφ, A¬φ as ar-Op
φ
obs.

Theorem 8. ar-Op
φ
obs ⊆ r-Op

φ
Iobs.

Proof. If A ∈ ar-Op
φ
obs all possible abortions are visible but there is no informa-

tion flow. Hence, A ∈ r-Op
φ
Iobs as only some of abortions are visible by I. ⊓⊔

The inclusion in Theorem 8 is proper for nontrivial intruders (see Fig. 2b).
As regards timing of actions it is not clear from the above mentioned security

concepts whether possible information flow is due to time information contained
in observations or not, namely whether there is a danger of timing attack or not.
To formalize this concept, let us assume an untimed version obst of observation
obs i.e. obst(w) = obst(wt) = obs(wt), where wt is obtained from w by removing
all timing information x ∈ IR>0. By Lp(A)t we will denote sequences from Lp(A)
from which timing information is removed.

Now we can formalize a notion of being opened to timing attacks.



Definition 12 (Opening for Timing Attacks). Let A be CHTTA. We say
that A is opened to timing attacks with respect to predicate φ over Lp(A) and
the observation function obs if for every sequence w, w ∈ Lp(A) such that φ(w)
holds, there exists a sequence w′ ∈ Lp(A) such that ¬φ(w′) holds and obst(w) =
obst(w

′) and there exists a sequence w ∈ Lp(A) such that φ(w) holds, but there
is not a sequence w′ ∈ Lp(A) such that ¬φ(w′) holds and obs(w) = obs(w′).

In order to define a restricted version of the above notion we consider opacity
for the case when elapsing of time is not observed (tr-opacity). It is denoted by

tr-Op
φ
obs and it is formally defined as r-opacity (see Def. 9) but with both the lan-

guages restricted only to Θ∪IR>0. Decidability of tr-opacity follows immediately
from decidability of the language inclusion for untimed languages [1].

Now we can define the property “Restricted Opening for Timing Attacks”.

Definition 13 (Restricted Opening for Timing Attacks). Let A be a
CHTTA. We say that A is opened to timing attacks with respect to observation
automaton Aobs and automata Aφ and A¬φ iff A ∈ tr-Op

φ
obs and A 6∈ r-Op

φ
obs.

The decidability of this property follows from Th. 6 and the decidability of
tr-opacity.

4 Opacity of Long–Running Transactions

A long–running transaction (LRT) is a composition of atomic activities that
are either successfully executed (committed) or no effect is observed if their
execution fails (aborted). Partial executions of an LRT are not desirable, and, if
they occur, they must be compensated for. Hence, all activities Ai in an LRT
have a compensating activity Bi that can be invoked to repair from the effects
of a successful execution of Ai if some failure occurs later. Compensations are
assumed to always complete their execution successfully (they never abort).

Transactional activities (including compensations) can be composed sequen-
tially and in parallel. Given activities A1, . . . , An ∈ CHTTAΣPub

A and compensa-

tions B1, . . . , Bn ∈ CHTTAΣP ub

A , we can define a language for LRTs as follows:

T ::= Ai�Bi

∣

∣ T · T
∣

∣ T ||T .

The LRT A�B denotes the association of the atomic activity A with the com-
pensation B. Given two LRTs T1 and T2, with T1 ·T2 we denote their sequential
composition and with T1||T2 their parallel composition.

In the sequential composition of n transactional activities A1�B1 · . . .·An�Bn,
either the entire sequence A1, . . . , An is executed or the compensated sequence
A1, . . . , Ai, Bi, . . . , B1 is executed for i < n. The first case means that all activ-
ities in the sequence completed successfully, and the second one stands for the
abort of activity Ai+1; hence, all the already completed activities A1, . . . , Ai are
recovered by executing the compensations Bi, . . . , B1. The sequential composi-
tion is associated with a overall compensation to be used for further composition.
Such a compensation prescribes the execution of Bn, . . . , B1 in the order.



In the parallel composition of n transactional activities A1 �B1|| . . . ||An �

Bn, all the atomic activities are assumed to be executed concurrently, and the
whole transaction terminates when all of them complete. If some Ai aborts,
then compensation activities should be invoked for the activities that completed
successfully. In this latter case, the result of the whole transaction is “abort”.
The overall compensation of a parallel composition prescribes the concurrent
execution of all the compensations B1, . . . , Bn.

In [11] we have defined the function [[·]] which maps any LRT into an LRT of
the form A�B. Such a function transforms sequential and parallel compositions
of LRTs into suitable composition of the CHTTAs of their components. As a
consequence, A and B describe the overall behaviour and the overall compensa-
tion, respectively, of the considered LRT. Assessing opacity of a predicate on the
execution of an LRT can be reduced to assessing opacity of the same predicate
on the CHTTAs A and B given by the function [[·]].

Definition 14 (φ–opacity). Given an LRT T such that [[T ]] = A�B and a
predicate φ over Lp(A) ∪ Lp(B), T is φ–opaque with respect to an observation
function obs if and only if both φ restricted to Lp(A) and φ restricted to Lp(B)
are opaque with respect to obs.

Now, we want to study under which conditions φ–opacity may be established
compositionally, namely may be deduced by the φ–opacity of components.

Given two LRTs T1 and T2 such that [[T1]] = A1 �B1, [[T2]] = A2 �B2 and
[[T1 · T2]] = A�B as defined in [11], it is easy to see that the languages accepted
by A and B can be constructed by those accepted by A1, A2, B1 and B2, namely
L(A) = L(A)⊙ ∪ L(A)⊗ and L(B) = L(B)⊙ ∪ L(B)⊗, where

L(A)⊙ = L(A1)⊙ · L(A2)⊙ L(A)⊗ = L(A1)⊗ ∪ L(A1)⊙ · L(A2)⊗ · L(B1)

L(B)⊙ = L(B2)⊙ · L(B1)⊙ L(B)⊗ = ∅

with · the usual concatenation of languages. Similarly, if [[T1||T2]] = A′
�B′, it is

easy to see that L(A′) = L(A′)⊙∪L(A′)⊗ and L(B′) = L(B′)⊙∪L(B′)⊗, where

L(A′)⊙ = L(A1)⊙ ⊕ L(A2)⊙

L(A′)⊗ = L(A1)⊗ ⊕ L(A2)⊗ ∪ (L(Ai)⊙ ⊕ L(Aj)⊗) · L(Bi)

L(B′)⊙ = L(B2)⊙ ⊕ L(B1)⊙ L(B′)⊗ = ∅

with i, j ∈ {1, 2}, i 6= j, · the concatenation and ⊕ the usual shuffle operator.
We say that a predicate φ over the language L(A) is decomposable if and

only if ∀w1, w2 ∈ L(A).φ(w1 ⊕ w2) =⇒ φ(w1) ∨ φ(w2), where w1 ⊕ w2 denotes
any possible shuffling of w1 and w2 (including w1.w2), and we say that φ is
compositional if and only if ∀w1, w2 ∈ L(A).φ(w1) ∧ φ(w2) =⇒ φ(w1 ⊕ w2).

We show some examples of LRTs whose opacity cannot be established by
composition. Let us consider an LRT T = A�B such that L(A)⊙ = {a!, b!}∪IR>0

and L(A)⊗ = L(B) = IR>0. Assume that φ(w) = true if and only if w contains
exactly two occurrences of a!, and obs(x) = x for any x ∈ {a!, b!} ∪ IR>0. It



is easy to see that T is φ-opaque with respect to obs, but φ-opacity does not
hold for T · T . Assume now φ′(w) = true if and only if w contains at least one
occurrence of a!, and obs′ mapping each pair of consecutive symbols x, y of w

to c! if x = y = a! and to ǫ otherwise (for example, obs′(a!a!b!a!a!a!) = c!c!c!).
Also in this case T is φ′-opaque with respect to obs′, but φ′-opacity does not
hold for T · T . We note that obs′ could be expressed either as a dynamic, or as
an orwellian, or as an m-orwellian (m > 1) observation. Finally, let us consider
LRTs T1 = A1�B1 and T2 = A2�B2 such that L(A1)⊙ = {a!, b!}∪IR>0,L(A1)⊗ =
{b!}∪IR>0,L(A2)⊙ = {b!}∪IR>0 and L(A2)⊗ = L(B1) = L(B2) = IR>0. Assume
φ′ as above and obs′′ such that obs′′(a!) = ǫ and obs′′(b!) = b!. Both T1 and T2

are φ′-opaque with respect to obs′′, but φ′-opacity does not hold for T1 · T2.
The examples show that we cannot expect that φ-opacity is compositional

when the predicate φ is not decomposable (as in the first example), or the obser-
vation function is not static (as in the second example), or one of the CHTTAs
of the components, say A, is opaque because it accepts two strings w and w′ such
that φ(w) and ¬φ(w′) hold with obs(w) = obs(w′), but with w ∈ L(A)⊙ and
w′ ∈ L(A)⊗ (as in the third example). Similar examples can be given to consider
the parallel composition of LRTs and LRTs with non–trivial compensations.

We shall show that by restricting predicates, observations and LRTs as the
above examples suggest, we are able to prove compositionality of φ-opacity. We
first need a new concept and two lemmata.

Definition 15 (cφ-opacity). Given an LRT T with [[T ]] = A�B, T is coher-
ently φ-opaque (cφ-opaque) with respect to obs if and only if for all w ∈ L(A) ∪
L(B) such that φ(w) holds, there exists w′ ∈ L(A)∪L(B) with obs(w) = obs(w′)
and w, w′ are both either in L(A)⊙, or in L(A)⊗, or in L(B)⊙, or in L(B)⊗.

Lemma 1. Given a predicate φ over a language L(A), if φ is decomposable,
then ¬φ is compositional.

Proof. φ is decomposable means ∀w1, w2 ∈ L(A).φ(w1⊕w2) =⇒ φ(w1)∨φ(w2).
Now, assume that ¬φ is not compositional, namely there exist w′

1 and w′
2 such

that ¬φ(w′
1)∧¬φ(w′

2) holds but ¬φ(w′
1⊕w′

2) does not. This means that φ(w′
1⊕w′

2)
holds, and by the decomposability of φ we obtain that φ(w′

1)∨φ(w′
1) holds, which

is a contradiction.

Lemma 2. If an observation obs is static, obs(w1 ⊕ w2) = obs(w1) ⊕ obs(w2).

Proof. By definition of static observation.

Theorem 9. If φ is a decomposable predicate, obs is static observation function
and T1, T2 are cφ-opaque, then both T1 · T2 and T1||T2 are cφ-opaque.

Proof. Let us assume [[T1]] = A1�B1, [[T2]] = A2�B2 and either [[T1 ·T2]] = A�B or
[[T1||T2]] = A�B. The decomposability of φ implies that for all w ∈ Lp(A) such
that φ(w) holds w results from the composition of strings w1, . . . , wn(1 ≤ n ≤ 3)
such that w1 ∈ Lp(A1) ∪ Lp(A1) ∪ Lp(B1) ∪ Lp(B2) and φ(w2) holds for some
i, 1 ≤ i ≤ n. The cφ-opacity of T1 and T2 ensures that for each string wi such



that φ(wi) holds there exists w′
i accepted by the same CHTTA and such that

¬φ(w′
i) holds with obs(wi) = obs(w′

i). Now we can reconstruct a string w′ by
choosing either element wi or w′

i, for each i ∈ {1, . . . , n}, depending whether
¬φ(wi) or ¬φ(w′

i) holds, respectively. By Lemma 1 we have that ¬φ(w′) holds,
and by Lemma 2 we have that obs(w) = obs(w′). We can reason analogously as
regards Lp(B). Hence, we have the cφ-opacity of the composition of T1 and T2.

5 Conclusions

In a previous paper we have introduced Communicating Hierarchical Transaction-
based Timed Automata (CHTTAs) to model systems performing long–running
transactions. In this paper we have introduced for these systems a concept of
security which is based on the notion of opacity of CHTTAs. We have given var-
ious definitions of opacity and compared their expressiveness. We have studied
under which conditions security of long–running transactions can be established
compositionally.
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