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Abstract

Long–running transactions consist of tasks which may be executed sequentially
and in parallel, may contain sub–tasks, and may require to be completed before a
deadline. These transactions are not atomic and, in case of executions which cannot
be completed, a compensation mechanism must be provided.

In this paper we develop a model of Communicating Hierarchical Timed Au-
tomata suitable to describe the mentioned aspects in a framework where also time
is taken into account. We develop the patterns for composing long–running transac-
tions sequentially, in parallel or by nesting. The correct compensation of a composed
long–running transaction is preserved by these composition patterns.

The automaton-theoretic approach allows the verification of properties by model
checking. As a case study, we model and analyse an example of e–commerce appli-
cation described in terms of long–running transactions.
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1 Introduction

The term transaction is commonly used in database systems to denote a logical
unit of work designed for short–lived activities, usually lasting under a few
seconds. These transactions are performed either completely or not at all: this
means that if something goes wrong during the execution of the transaction,
a roll–back activity is performed, which re–establishes the state of the system
exactly as it was before the beginning of the transaction.

In order to permit the system to perform the roll–back activity, locks are ac-
quired on the necessary resources at the beginning of a transaction and are
released only at its end (in both the cases of completion and roll–back). The
use of locks, which forbids others to access the resources, is justified by the
short duration of the transaction. These transactions are called ACID transac-
tions, because they satisfy the properties of Atomicity, Consistency, Isolation
and Durability. Recent developments in distributed systems have created the
need of a new notion of transaction in which remote entities (possibly of dif-
ferent companies) may interact by performing complex activities (which may
require also a human–interaction) that may take minutes, days or weeks. This
increased length of time with respect to ACID transactions, forbids the use
of locks on resources, and hence makes roll–back activities impossible. In this
kind of transactions, the alternative to roll-back activities is the use of com-
pensations, which are activities explicitly programmed to remove the effects
of the performed actions, and may require, for instance, the payment of some
kind of penalty. This new kind of transactions are usually called long–running
transactions, but they are also known as sagas [19], web transactions [22], and
extended transactions [20]. Although there is an interest for their support in
distributed object–based middlewares [20], they are studied in particular in
the context of orchestration languages and notations for Web Services (such
as BPEL [11], WSCI [30] and BPMN [12]).

Web Services are technologies that allow distribution and interoperability of
heterogeneous software components providing services over the Internet. Or-
chestration languages permit the definition of complex services in terms of
interactions among simpler services. Most orchestration languages offer sev-
eral primitives for composing and handling services. Since the specifications
of these languages mainly consist in informal textual description of their con-
structors, there is a strong interest in the formalisation of their semantics,
see [5,8–10,6,7,14,15,26,22,28,29,31]. Among these papers, [10,6,7,14,15,22,28]
give theoretical foundations to orchestration languages fragments describing
long–running transactions. In particular, [10] identifies three main composi-
tion patterns for transactional activities with compensations, namely sequen-
tial composition, parallel composition, and nesting, and provides a formal
semantics for them.
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Communicating Hierarchical Machines (CHMs) [3], which are finite state ma-
chines endowed with the ability of refining states and of composing machines
in parallel, seem to be a formalism suitable to describe transactional activities
and their composition patterns. Actually, they allow describing concurrent and
interacting components (such as transactional activities) and facilitate the def-
inition of composition patterns providing hierarchical composition by means
of state refinement. Moreover, time is an important factor in the functioning of
distributed systems, where communication may take time and deadlines may
be used to counteract failure of remote components. Besides, transactions may
have deadlines imposed by the requested QoS. Hence, to describe transactions,
a formalism is needed that also allows the representation of time constraints.

After the seminal paper by Alur and Dill [2], many models of Timed Automata
have been proposed and used to describe systems in which time cannot be ab-
stracted. A model of Hierarchical Timed Automata (HTAs) has been proposed
in [16]. An important advantage of automata based formalisms is that they
are amenable to formal analysis, such as model checking.

In this paper we define the model of Communicating Hierarchical Transaction–
based Timed Automata (CHTTAs). As HTAs, CHTTAs have a notion of
explicit time and take from CHMs the ability of composing machines in parallel
and hierarchically. However, CHTTAs differ from CHMs and HTAs insofar as
they have two different terminal states (to describe the commit or abort of
transactions) and provide different communication mechanisms. We give a
flattening procedure in order to obtain a timed automaton from a CHTTA,
and hence the reachability problem for CHTTAs is decidable and properties of
CHTTAs may be verified by model checkers defined for Timed Automata (e.g.
Kronos [32] and UPPAAL [4]). For instance, one can verify whether a long–
running transaction, or a part of it, terminates correctly or not, by checking
the reachability of the commit state. Moreover, since the analysis is performed
in a timed framework, one may also study how the reachability of a certain
state is affected by the time constraints within the transaction, or check the
upper and lower bounds of its duration.

We propose CHTTAs to describe and analyse transactional activities in a
timed framework and define operations for composing CHTTAs which cor-
respond to composition patterns of transactional activities. We give formal
representations of these patterns in terms of CHTTAs and prove their cor-
rectness. While the design of long–running transactions requires a hierarchical
description, we may flatten the resulting CHTTA by obtaining a timed au-
tomaton on which model checking can be applied. As a case study, we model
with CHTTAs a typical long–running transaction and verify some properties
with the UPPAAL model checker [4].

The remainder of the paper is organised as follows. In Section 2 we introduce
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the syntax and the semantics of CHTTAs. In Section 3 we give a flattening
procedure for translating CHTTAs into Timed Automata. As a consequence,
we prove the decidability of the reachability problem for CHTTAs. In Sec-
tion 4 we show how the patterns of sequential and parallel composition and
nested transactions can be modelled with CHTTAs; long–running transactions
are obtained by combining these patterns. This allows model checking long–
running transactions. As a case study, in Section 5, we model a long–running
transaction describing a client–server double request and we analyse it with
the UPPAAL model checker. Finally, in Section 6 we discuss some related
works, and in Section 7 we draw our conclusions.

2 Communicating Hierarchical Transaction–based Timed Automata

Let us assume a finite set of communication channels C with a subset CPub ⊆ C
of public channels. As usual, we denote with a! the action of sending a signal
on channel a and with a? the action of receiving a signal on a.

Let us assume a finite set X of positive real variables called clocks. A valuation
over X is a mapping v : X → IR≥0 assigning real values to clocks. Let VX

denote the set of all valuations over X. For a valuation v and a time value
t ∈ IR≥0, let v + t denote the valuation such that (v + t)(x) = v(x) + t, for
each clock x ∈ X.

The set of constraints over X, denoted Φ(X), is defined by the following
grammar:

φ ::= x ∼ c |φ ∧ φ | ¬φ |φ ∨ φ | true
where φ ranges over Φ(X), x ∈ X, c ∈ Q and ∼∈ {<,≤,=, 6=, >,≥}.

We write v |= φ when valuation v satisfies constraint φ. More formally:

• v |= x ∼ c ⇔ v(x) ∼ c;
• v |= φ1 ∧ φ2 ⇔ v |= φ1 and v |= φ2;
• v |= ¬φ ⇔ v 6|= φ;
• v |= φ1 ∨ φ2 ⇔ v |= φ1 or v |= φ2;
• v |= true.

Let B ⊆ X; with v[B] we denote the valuation resulting after resetting all
clocks in B. More precisely, v[B](x) = 0 if x ∈ B, v[B](x) = v(x), otherwise.
Finally, with 0 we denote the valuation with all clocks reset to 0, namely
0(x) = 0 for all x ∈ X.

Definition 2.1 A Transaction–based Timed Automaton (TTA) is a tuple A =
(Σ, X, S,Q, q0, Inv, δ), where:
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• Σ ⊆ {a!, a? | a ∈ C} is a finite set of labels;
• X is a finite set of clocks;
• S is a finite set of superstates;
• Q = L ∪ S ∪ {¯,⊗}, where L is a finite set of basic states and ¯ and ⊗

represent the special states commit and abort, respectively;
• q0 ∈ L is the initial state;
• Inv : L ∪ S → Φ(X) is the invariant function assigning to each basic state

and superstate a formula that must hold in any instant in which the state
is enabled;

• δ ⊆ (L × Σ ∪ {τ} × Φ(X) × 2X × Q) ∪ (S × {¡,£} × Q) is the set of
transitions, where ¡ and £ are special labels for transitions of commit and
abort, respectively.

Superstates are states that can be refined to automata (hierarchical composi-
tion). Note that from superstates in S only transitions with labels in {¡,£}
can be taken. We assume that ¯ and ⊗ are the final states of a TTA.

A TTA is said to be flat when it has no refinable states.

Definition 2.2 (Flat TTAs) A TTA A = (Σ, X, S,Q, q0, δ) is flat if S = ∅.

Inspired by the definition of CHMs (see [3]) we now introduce CHTTAs as an
extension of TTAs allowing superstate refinement and parallelism.

Definition 2.3 Let ΣPub = {a!, a? | a ∈ CPub} and A = {A1, . . . , An} be a
finite set of TTAs, with Ai = (Σi, X i, Si, Qi, qi

0, Inv
i, δi) and such that there

exists m (m < n) such that Aj is flat if and only if j ≥ m. A Communicating
Hierarchical Transaction–based Timed Automaton (CHTTAΣPub

A ) is given by
the following grammar:

CHTTAΣPub
A ::= 〈Ai, µ〉

∣∣∣ CHTTAΣPub
A ||CHTTAΣPub

A

where µ is a hierarchical composition function µ : Si → CHTTAΣPub

{Ai+1,...,An}.

Parallelism allows concurrent execution of automata. Hierarchical composition
allows refining superstates. Automata executed in parallel may communicate
by synchronizing transitions labelled with a sending and a receiving action on
the same channel. Communication performed using non public channels are
only allowed between components inside the same superstate or at top–level.
Communication performed by using public channels have no restrictions.

Note that, by definition of A and µ, cyclic nesting is avoided. In the follow-
ing, if it does not give rise to ambiguity, we may write CHTTA instead of
CHTTAΣPub

A . Finally, if A is a flat TTA, in 〈A, µ〉 µ is an empty function; in
this case, we denote the whole CHTTA just with A.
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a !

x : = 0

b ?

x < 5

x > = 5

a ? b !

s 1

q 1

q 2

y < 5

Fig. 1. Example of CHTTA.

Example 2.4 In Figure 1 we show an example of CHTTA. Superstates of
the CHTTA are depicted as boxes and basic states as circles; initial states
are represented as vertical segments. Invariants are written in boldface and
juxtaposed under the state to which they refer. We omit them when they are
equal to the constraint true. Transitions are labelled arrows in which labels τ
and constraints true are omitted. Containment in boxes represents hierarchical
composition, while parallel composition is represented by juxtapositions. With
Invtrue we denote the invariant which assigns true to all states. The CHTTA
in the figure is formally defined as

A = 〈(∅, ∅, {s1}, {q0, s1,¯,⊗}, q0, Invtrue, δ), µ〉

where:
δ = {(q0, τ, true, ∅, s1), (s1,¡,¯), (s1,£,⊗)}

and µ(s1) = A1||A2. A1 and A2 are defined as

A1 = ({a!, b?}, {x}, ∅, {q0, q1,¯,⊗}, q0, Invtrue, δ1)

where δ1 = {(q0, a!, true, {x}, q1), (q1, b?, x < 5, ∅,¯), (q1, τ, x ≥ 5, ∅,⊗)} and

A2 = ({a?, b!}, {y}, ∅, {q0, q2,¯,⊗}, q0, Inv, δ2)

where Inv(q0) = true and Inv(q2) = y < 5. The set of transitions is given by
δ2 = {(q0, a?, true, ∅, q2), (q2, b!, true, ∅,¯)}.

2.1 Semantics of CHTTAs

Configurations of CHTTAs are pairs tc = (c, ν) where c, the untimed configu-
ration, represents the currently active states, and ν, the composed valuation,
represents the current clock valuations.

The configuration of a CHTTA without parallel components, when the cur-
rently active state is a basic state, is a pair (q, v) with q the currently active
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state and v the automaton clock valuation. We represent with q.c the configu-
ration where q is a superstate and c is the untimed configuration of µ(q), and
with v.ν the composed valuation where v is the clock valuation of the automa-
ton having q as superstate and ν is the composed valuation of the clocks of
µ(q). We denote with c1; c2 the untimed configuration of the parallel composi-
tion of two CHTTAs having c1 and c2 as untimed configurations. Analogously,
we denote with ν1; ν2 the composed valuation of the parallel composition of
two CHTTAs having ν1 and ν2 as composed valuations.

Formally, the set of configurations Conf(A) of a CHTTA A is inductively
defined as follows:

• if A = 〈(Σ, X, S,Q, q0, Inv, δ), µ〉, then Conf(A) = {(Q \ S) × VX} ∪
{(q.c, v.ν) | q ∈ S ∧ v ∈ VX ∧ (c, ν) ∈ Conf(µ(q))};

• if A = A1||A2 then Conf(A) = {(c1; c2, ν1; ν2) | (c1, ν1) ∈ Conf(A1) ∧
(c2, ν2) ∈ Conf(A2)}.

For a composed valuation ν and a time value t ∈ IR≥0, let ν + t denote the
composed valuation such that (v + t)(x) = v(x) + t, for each valuation v
occurring in ν.

Given a CHTTA A and a configuration (c, ν) ∈ Conf(A), InvA(c, ν) holds in
the following cases:

• if A = 〈(Σ, X, S,Q, Inv, q0, δ), µ〉 and c 6∈ S∪{¯,⊗}, then ν |= Inv(c) must
hold;

• if A = 〈(Σ, X, S,Q, Inv, q0, δ), µ〉 and (c, ν) = (q.c′, v.ν ′) with q ∈ S, v |=
Inv(q) and Invµ(q)(c

′, ν ′) must hold;
• ifA = A1||A2 and (c, ν) = (c1; c2, ν1; ν2), then InvA1(c1, ν1) and InvA2(c2, ν2)

must hold.

The initial configuration of A, denoted Init(A) ∈ Conf(A), is the configu-
ration (c, ν) such that each state occurring in c is an initial state and each
valuation occurring in ν is 0.

We give a semantics of CHTTAs in SOS style [27] as a labelled transition
system where states are pairs (A, tc) with A ∈ CHTTAΣPub

A and tc ∈ Conf(A),
and labels are in IR>0 ∪ ⋃

i Σ
i ∪ {τ}.

In order to simplify the SOS semantics for CHTTAs we introduce a notion
of structural equivalence for pairs (A, tc), accounting for commutativity and
associativity of parallelism. The relation ≈ is the least equivalence relation sat-
isfying (A1||A2, tc1; tc2) ≈ (A2||A1, tc2; tc1) and (A1||(A2||A3), tc1; (tc2; tc3)) ≈
((A1||A2)||A3, (tc1; tc2); tc3). Moreover, given an untimed parallel configura-
tion c = c1; . . . ; cn we use the following notations: c ≈ ¯ if ci = ¯ for all i;
and c ≈ ⊗ if ci ∈ {¯,⊗} for all i and there exists some j such that cj = ⊗.
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Definition 2.5 (Semantics of CHTTAs) Given A ∈ CHTTAΣPub
A , the se-

mantics of a A is the least labelled transition relation
α−→ over {A}×Conf(A)

closed with respect to structural equivalence and satisfying the rules in Figure 2.

t ∈ IR>0 ∀t′ ∈ [0, t].InvA(c, ν + t′)

(A, (c, ν)) t−→ (A, (c, ν + t))
(T)

(q, α, φ, B, q′) ∈ δ v |= φ q′ 6∈ S InvA(q′, v[B])

(〈A,µ〉, (q, v)) α−→ (〈A,µ〉, (q′, v[B]))
(C1)

(q, α, φ, B, q′) ∈ δ v |= φ q′ ∈ S Init(µ(q′)) = (c, ν) Invµ(q′)(q′.c, v[B].ν)

(〈A,µ〉, (q, v)) α−→ (〈A,µ〉, (q′.c, v[B].ν))
(C2)

(µ(q), (c, ν)) α−→ (µ(q), (c′, ν′)) α ∈ ΣPub ∪ {τ}
(〈A,µ〉, (q.c, v.ν)) α−→ (〈A,µ〉, (q.c′, v.ν ′))

(C3)

(A1, (c1, v)) α−→ (A1, (c′1, v
′)) α ∈ ΣPub ∪ {τ}

(A1||A2, (c1; c2, v)) α−→ (A1||A2, (c′1; c2, v′))
(P1)

(A1, (c1, v)) a!−→ (A1, (c′1, v
′)) (A2, (c2, v

′)) a?−→ (A2, (c′2, v
′′))

(A1||A2, (c1; c2, v)) τ−→ (A1||A2, (c′1; c
′
2, v

′′))
(P2)

c ≈ ¯ (q, ¡, q′) ∈ δ q′ 6∈ S

(〈A,µ〉, (q.c, v.ν)) τ−→ (〈A,µ〉, (q′, v))
(Com1)

c ≈ ¯ (q, ¡, q′) ∈ δ q′ ∈ S Init(µ(q′)) = (c′, ν ′)
(〈A,µ〉, (q.c, v.ν)) τ−→ (〈A,µ〉, (q′.c′, v.ν ′))

(Com2)

c ≈ ⊗ (q, £, q′) ∈ δ q′ 6∈ S

(〈A,µ〉, (q.c, v.ν)) τ−→ (〈A,µ〉, (q′, v))
(Ab1)

c ≈ ⊗ (q,£, q′) ∈ δ q′ ∈ S Init(µ(q′)) = (c′, ν ′)
(〈A,µ〉, (q.c, v.ν)) τ−→ (〈A, µ〉, (q′.c′, v.ν ′))

(Ab2)

where A = (Σ, X, S, Q, Inv, q0, δ) except for rule (T) where A is any CHTTA.

Fig. 2. SOS semantics for CHTTAs.

Rule (T) allows the elapsing of time for a generic CHTTA A. We note that the
time t is the same for any TTA composing A. The invariant condition should
hold in order to allow time to elapse.

Rules (C1) and (C2) describe the behavior of a flat TTA. From a configuration
(q, v), the step is performed due to a transition (q, α, φ,B, q′) such that the
condition φ is satisfied by v. After the step, the flat TTA is in the configuration
composed by state q′ and a new valuation where clocks in B are reset. The
invariant condition should hold, in the reached state, for the new valuation. If
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q′ is a superstate (rule (C2)), then the CHTTA µ(q′) becomes active inside q′.

The synchronisation step is described by rule (P2). By definition of the relation
≈ also CHTTAs that are not neighborhood in the parallel composition can
communicate.

Rules (C3) and (P1) allow expanding the step of a TTA which is a component
of a CHTTA. Rule (C3) deals with the hierarchical composition and rule (P1)
deals with the parallel composition. The label of the step is either τ or a
public channel. Hence, thanks to rule (P2), communication between TTAs
in parallel is allowed both for private and public channels, while for TTAs
in different superstates the communication is allowed only if the channel is
public. Moreover, we note that the step we are expanding cannot be a time
step. Hence, since time steps can be performed only by the root, the time
elapsed is the same for each TTA composing the CHTTA we are considering.

Each execution of a superstate terminates with either a commit or an abort
state. Rules (Com1) and (Com2) deal with the case in which the commit of the
superstate takes the TTA to a basic state or to a superstate, respectively, and
rules (Ab1) and (Ab2) deal with the case in which the abort of the superstate
takes the TTA to a basic state or to a superstate, respectively.

Given a string w = α1 . . . αm, we will write (A, (c, ν))
w

=⇒ (A, (c′, ν ′)) to
denote the existence of a sequence of steps (A, (c, ν))

α1−→ . . .
αm−→ (A, (c′, ν ′)).

We denote with |w| = m the length of w and with w[i] = αi the i−th label.

Definition 2.6 (Accepted Language) We denote with L(A,ΣV ) the lan-
guage accepted by a CHTTA A w.r.t. a set of visible actions ΣV ⊆ ΣPub.
Namely, L(A,ΣV ) = {w ∈ ({τ} ∪ ΣV ∪ IR>0)∗ | (A, Init(A))

w
=⇒ (A, (¯, ν ′))

or (A, Init(A))
w

=⇒ (A, (⊗, ν ′))}.

3 Deciding Reachability for CHTTAs

Reachability is interesting for proving properties. For Timed Automata the
reachability problem is PSPACE–COMPLETE. In our case the problem is
still decidable, but becomes EXPSPACE–COMPLETE.

Firstly, we give an algorithm for flattening a generic CHTTA, hence the reach-
ability problem can be checked on the Timed Automaton resulting by the flat-
tening. Due to the complexity of the flattening, the reachability problem for
CHTTAs is EXPSPACE–COMPLETE. The increase of complexity is caused
by the communication between different superstates.
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3.1 Flattening CHTTAs

Let X = {x1, . . . , xn}, Y = {y1, . . . , yn} and φ be a formula in Φ(X). With
φ[Y := X] we denote the formula obtained by replacing each clock yi appearing
in φ with the clock xi. Moreover, with Xi,j we denote the set of clocks obtained
by renaming each clock x in X with the clock xi,j, more precisely Xi,j =
{xi,j

1 , . . . , x
i,j
n }.

Given a CHTTA A, with w(A) we denote the maximum width of the CHTTAs
composing A. Namely:

w(〈A1, µ1〉‖ . . . ‖〈Am, µm〉) = max{m,w(〈A1, µ1〉), . . . , w(〈Am, µm〉)},

where w(〈A, µ〉) = max{w(µ(q)) | q ∈ S}.

Moreover, d(A) denotes the maximum depth of A. Namely:

d(〈A1, µ1〉‖ . . . ‖〈Am, µm〉) = max{d(〈A1, µ1〉), . . . , d(〈Am, µm〉)},

where d(〈A, µ〉) = 1 +max{d(µ(q)) | q ∈ S}.

Definition 3.1 Let A = {A1, . . . , An}, with Ai = (Σi, X i, Si, Qi, qi
0, Inv

i, δi),
be a set of TTAs, and A ∈ CHTTAΣPub

A . Given ΣV ⊆ ΣPub, with Flat(A,ΣV )
we denote the flat TTA (Σ, X, ∅, Q, q0, Inv, δ) such that:

• Σ = ΣV ;
• X =

⋃
i∈[1,d(A)]

⋃
j∈[1,w(A)]Xi,j;

• Q = {c | (c, ν) ∈ Conf(A)};
• q0 = c0 where (c0, ν) = Init(A) is the initial configuration of A;
• Inv(c) = φ1 ∧ · · · ∧ φm such that:
· for any q ∈ Qh appearing in c at position i, j, Invh(q)[Xh := Xh

i,j] is equal
to φl, for some l.

· for any l, φl is equal to Invh(q)[Xh := Xh
i,j], for some q, h, i, j.

• δ is such that:
· (c, τ, true, ∅, c′) is in δ if there exists a step (A, (c, ν))

τ−→ (A, (c′, ν ′))
triggered by either a commit or an abort transition;

· (c, α, φ,B, c′) is in δ if there exists a step (A, (c, ν))
α−→ (A, (c′, ν ′)), with

α ∈ ΣV triggered by the transition (q, α, φ,B, q′) of a TTA Ai;
· (c, τ, φ, B, c′) is in δ if there exists a step (A, (c, ν))

τ−→ (A, (c′, ν ′)) trig-
gered by the transition (q1, a!, φ1, B1, p1) of the TTA Ai at position i1, j1
and by the transition (q2, a?, φ2, B2, p2) of the TTA Aj at position i2, j2
such that φ = (φ1[X

i := X i
i1,j1

])∧(φ2[X
j := Xj

i2,j2 ]) and B = B1
i1,j1

∪B2
i2,j2

.

By induction on the length of the sequence of steps we have the following
proposition.
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Proposition 3.2 Let A be a CHTTA; it holds that (A, (c0, v0))
α1−→ . . .

αn−→
(A, (cn, vn)) is a sequence of steps of A iff (A′, (c0, v′0))

α1−→ . . .
αn−→ (A′, (cn, v′n))

is a sequence of steps of A′ where A′ = Flat(A,ΣV ).

As a consequence we have that the class of CHTTAs is equivalent to the class
of Timed automata.

Proposition 3.3 Let A = {A1, . . . , An} and A ∈ CHTTAΣPub
A where each

Ai has at most h states and k clocks. The reachability problem for A can be
computed in O(hw(A)d(A) · 2k·d(A)·w(A)).

PROOF Flat(A,ΣV ) has at most hw(A)d(A)
states. Actually, the root is a

parallel composition of at most w(A) CHTTAs. Each of them has depth at

most d(A) − 1 and, by induction, has hw(A)d(A)−1
state configurations, thus

implying that the number of state configurations is hw(A)d(A)
.

Given a Timed Automaton with d states and l clocks, the reachability problem
can be solved in d·2l (see [2]). Hence, since Flat(A,ΣV ) has hw(A)d(A)

states and
at most k · d(A) ·w(A) clocks, the reachability problem for A can be computed

in hw(A)d(A) · 2k·d(A)·w(A). 2

Thus, the reachability problem for a CHTTA A is EXPSPACE–COMPLETE
w.r.t.m, w(A) and d(A). Moreover, as it happens for Timed Automata (see [2]),
the reachability problem for a CHTTA A is PSPACE–COMPLETE w.r.t. the
number of clocks of A.

Proposition 3.4 Let A = {A1, . . . , An} and A ∈ CHTTAΣPub
A , where each

Ai has at most m states. The reachability problem for A is EXPSPACE–
COMPLETE w.r.t. m, w(A) and d(A).

PROOF The reachability problem for CHMs is EXPSPACE–COMPLETE
w.r.t. m, w(A) and d(A) (see [3]). The same holds for untimed CHTTAs. As
a consequence, the reachability problem for CHTTAs is at least EXPSPACE–
COMPLETE w.r.t. m, w(A) and d(A). Therefore, if the reachability prob-
lem is PSPACE–COMPLETE for Flat(A,ΣV ), then the thesis holds. But
Flat(A,ΣV ) has at most k · w(A) · d(A) clocks, that is a polynomial number
of clocks, and hence the thesis holds since the reachability problem for Timed
Automata is PSPACE–COMPLETE (see [2]). 2

4 Compositional Patterns for Long–Running Transactions

A long–running transaction is composed by atomic activities (called subtrans-
actions or simply activities) that should be executed completely. Atomicity
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for activities means that they are either successfully executed (committed) or
no effect is observed if their execution fails (aborted).

Partial executions of a long–running transaction are not desirable, and, if they
occur, they must be compensated for. Therefore, all the activities Ai in a long–
running transaction have a compensating activity Bi that can be invoked to
repair from the effects of a successful execution of Ai if some failure occurs
later. In order to guarantee that after possible failures a state is reached in
which the effects of failing activities are repaired, compensations are assumed
to be transactions that always complete their execution successfully. This as-
sumption is usual in formalisations of long–running transactions [7,22,23]. In
many real cases, we can definitively consider compensations to be atomic ac-
tivities executed in a short time and satisfying the ACID properties. However,
it is not excluded that a compensation may be a complex activity with subac-
tivities which abort. In this case, the compensation should be built in such a
way to guarantee a final successful commit. We denote with AÂB the associ-
ation of compensation B with activity A. To simplify the analysis, we do not
allow compensations to be long–running transactions themselves. In any case,
an extension taking this feature into account could be provided quite easily.

Following the approach introduced in [10], we consider composition patterns
for transactional activities with compensations, namely sequential composi-
tion, parallel composition and nesting. Given two transactional activities with
compensations A1ÂB1 and A2ÂB2, we denote with A1ÂB1 ·A2ÂB2 their sequen-
tial composition and with A1ÂB1||A2ÂB2 their parallel composition. Moreover,
we denote with {AÂB}i the nesting of transaction AÂB, where i is a unique
index labelling the nested transaction. To model these patterns we consider
the semantics proposed in [10], we describe both activities and compensations
as CHTTAs, and we formulate the composition patterns of transactional ac-
tivities as compositions of CHTTAs. For each composition pattern we prove
correct completion and correct compensation, namely we prove that the com-
posed CHTTA representing a pattern always reaches the commit or the abort
state, and activates compensations accordingly to the semantics of the pattern.

4.1 Sequential Transactions

Activities A1, . . . , An composing a sequential transaction are assumed to be
executed sequentially, namely, when activity Ai is committed, activity Ai+1

starts its execution. Compensation activities B1, . . . , Bn are associated with
each activity Ai. Following the semantics in [10], transactions of this kind
must be guaranteed that either the entire sequence A1, . . . , An is executed or
the compensated sequence A1, . . . , Ai, Bi, . . . , B1 is executed for some i < n.
The first case means that all activities in the sequence completed successfully,

12



A1 A2

B 1

B 2

B 1

(b)(a)

Fig. 3. Pattern for Sequential Transactions.

thus representing a successful commit of the whole transaction. The second
case stands for the abort of activity Ai+1; hence, all the activities already
completed (A1, . . . , Ai) are recovered by executing the compensating activities
(Bi, . . . , B1).

In Figure 3 (a) we show the CHTTA A = [[A1ÂB1 · A2ÂB2]]
S modelling the

pattern of sequential transactions. We consider just two activities A1, A2 and
compensations B1, B2. Note that, since the transaction is composed by only
two activities, the compensation B2 is not executed. This is because compen-
sations are invoked only for activities that complete successfully, however, if
activity A2 commits, then the whole transaction successfully commits, and no
compensation needs to be invoked. The compensation B = [[A1ÂB1 · A2ÂB2]]

S
C

of the whole transactional activity A is defined as the sequential execution of
the compensations B2 and B1 (see Figure 3 (b)).

Definition 4.1 (Sequential Pattern) Given A1, A2, B1, B2 ∈ CHTTAΣPub
A ,

the sequential composition of activities A1, A2 with compensations B1, B2 is
the CHTTAΣPub

A A = [[A1ÂB1·A2ÂB2]]
S depicted in Figure 3 (a). The compound

compensation of A is defined as the CHTTAΣPub
A B = [[A1 ÂB1 · A2 ÂB2]]

S
C

depicted in Figure 3 (b).

Formally, the sequential composition A = [[A1ÂB1 · A2ÂB2]]
S is defined as:

A = 〈(∅, ∅, {s1, s2, s3}, {s1, s2, s3, q0,¯,⊗}, q0, Invtrue, δ), µ〉

where

δ = {(q0, τ, true, ∅, s1), (s1,¡, s2), (s1,£,⊗), (s2,¡,¯), (s2,£, s3), (s3,¡,⊗)}

and µ = {(s1, A1), (s2, A2), (s3, B1)}. The compound compensation B = [[A1Â
B1 · A2ÂB2]]

S
C is:

B = 〈(∅, ∅, {s1, s2}, {s1, s2, q0,¯,⊗}, q0, Invtrue, δ
′), µ′〉

with

δ′ = {(q0, τ, true, ∅, s2), (s2,¡, s1), (s1,¡,¯)}

13



A3

A1 A2

B 1

B 2 B 1

Fig. 4. Composing Sequential Transactions.

A

commit_A!

Fig. 5. The wrapped CHTTA AM .

and µ′ = {(s1, B1), (s2, B2)}.

Considering only two activities in the sequential pattern is not a real limita-
tion, since the case of n activities may be reduced by iteratively grouping the
activities in pairs. Intuitively, A = [[A1ÂB1 ·A2ÂB2 ·A3ÂB3]]

S = [[A′ÂB′ ·A3ÂB3]]
S,

where A′ = [[A1ÂB1 ·A2ÂB2]]
S and B′ = [[A1ÂB1 ·A2ÂB2]]

S
C is the compensation

for the whole sequential subtransaction A′ (see Figure 4).

In order to prove the correctness of our definitions of composition patterns,
we introduce the notion of wrapped CHTTAs. Intuitively, given a CHTTA
A, we call A-wrapped the automaton AM which performs the special action
commitA! before reaching the final commit state.

Definition 4.2 (Wrapping) Given a CHTTA A, with AM we denote the
A–wrapped CHTTA depicted in Figure 5. More Formally:

AM = 〈({commitA!}, ∅, {s}, {s, q0, q1,¯,⊗}, q0, Invtrue, δ), µ〉

where δ = {(q0, τ, true, ∅, s), (s,¡, q1), (s,£,⊗), (q1, commitA!, true, ∅,¯)} and
µ(s) = A.

As the reader has noticed, the previous definitions are given in both a pictorial
and a more formal way. For simplicity, we will give the definitions of the
patterns in the next sections only in the pictorial way. Taking Definitions 4.1
and 4.2 as a model, we are confident that the reader can easily deduce how
the formal definitions could be extracted from their graphical representations.

The next lemma derives immediately from the definition of wrapping, stating
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that given a CHTTA A, the wrapped CHTTA AM either commits or aborts,
respectively, whenever the original automaton A commits or aborts.

Lemma 4.3 Given a CHTTA A, (A, (c, ν))
w

=⇒ (A, (c′, ν ′)), with c 6≈ ¯ and

c 6≈ ⊗ and either c′ ≈ ¯ or c′ ≈ ⊗ if and only if (AM , (s · c, ε · ν) w′
=⇒

(AM , (s · ĉ, ε · ν̂)), where (given z̃ ∈ {IR>0}∗):



w′ = z̃ · τ · w · τ · commitA! and ĉ = ¯ if c′ ≈ ¯
w′ = z̃ · τ · w · τ and ĉ = ⊗ if c′ ≈ ⊗

To prove the correct completion of the sequential pattern let us consider the set
of special actions {commitA1 !, commitB1 !, . . . , commitAn !, commitBn !} ⊆ ΣV .
A sequential composition of activities correctly commits if and only if all the
activities composing the pattern correctly commit.

Theorem 4.4 (Correct Completion) Given the sequential composition pat-
tern A = [[AM

1 ÂBM
1 · . . . · AM

n ÂBM
n ]]S, it holds that (A, Init(A))

w
=⇒ (A, (¯, ν))

if and only if w ∈ L(A,ΣV ) and w = x̃1 · commitA1 ! · . . . · x̃n · commitAn ! · x̃n+1

where x̃i ∈ ({τ} ∪ IR>0)∗.

PROOF By Definition 2.6 we have that if w ∈ L(A,ΣV ), then (A, Init(A))
w

=⇒
(A, (¯, ν)). Hence we need to prove only the ⇒ implication.

Given c = c1; . . . ; cn with ci 6≈ ¯, we prove by induction on n that whenever
(A, Init(A))

w
=⇒ (A, (¯, ν)), then w = x̃1 ·commitA1 ! · . . . · x̃n ·commitAn ! · x̃n+1

where x̃i ∈ ({τ} ∪ IR>0)∗.

If n = 1 then the thesis holds by Lemma 4.3.

If n > 1, then AM
1 ÂBM

1 · . . . · AM
n ÂBM

n is synthesised as A′ ÂB′ · AM
n ÂBM

n

where A′ = AM
1 ÂBM

1 · . . . ·AM
n−1ÂBM

n−1 and B is the sequence of compensations

B1, . . . , Bn−1. By induction, if (A′, Init(A))
w′

=⇒ (A′, (¯, ν)), then we have
w′ = ỹ1 · commitA1 ! · . . . · ỹn−1 · commitAn−1 ! · ỹn where ỹi ∈ ({τ}∪ IR>0)∗. Now,

again by Lemma 4.3, if (AM
n , (c, ν))

w′′
=⇒ (AM

n , (¯, ν ′)), then we get the string
w′′ = z̃ ·commitAn !·z̃′. Hence, for a fixed w = w′ ·w′′ where x̃1 = ỹ1, . . . , x̃n−1 =
ỹn−1 and x̃n = ỹ · z̃ and x̃n+1 = z̃′ we have that (A, Init(A))

w
=⇒ (A, (¯, ν ′))

with w = x̃1 ·commitA1 ! · . . . · x̃n ·commitAn ! · x̃n+1 where x̃i ∈ ({τ}∪IR>0)∗. 2

When some activity in the sequential pattern aborts all the activities that
already completed are recovered by executing their compensating activities.
The result for the correct compensation of the sequential composition pattern
can be formalised as follows.

Theorem 4.5 (Correct Compensation) Given the sequential composition
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pattern A = [[AM
1 ÂBM

1 · . . . · AM
n ÂBM

n ]]S, (A, Init(A))
w

=⇒ (A, (⊗, ν)) if and
only if, w ∈ L(A,ΣV ) and, for some k ∈ [1, n], w = x̃1 · commitA1 ! · . . . ·
x̃k−1 · commitAk−1

! · x̃′k−1 · commitBk−1
! · . . . · x̃′1 · commitB1 ! · x̃′ where x̃i, x̃

′
i ∈

({τ} ∪ IR>0)∗.

PROOF By Definition 2.6 we have that if w ∈ L(A,ΣV ), then (A, Init(A))
w

=⇒
(A, (⊗, ν)). Hence we need to prove only the ⇒ implication.

We prove by induction on n that, if(A, Init(A))
w

=⇒ (A, (⊗, ν)), then we have
w ∈ L(A) and, for some k ∈ [1, n], w = x̃1 ·commitA1 ! · . . . · x̃k−1 ·commitAk−1

! ·
x̃′k−1 · commitBk−1

! · . . . · x̃′1 · commitB1 ! · x̃′ where x̃i, x̃
′
i ∈ {{τ} ∪ IR>0}∗.

If n = 1 the thesis holds by Lemma 4.3.

If n > 1, then AM
1 ÂBM

1 · . . . · AM
n ÂBM

n is synthesised as A′ ÂB′ · AM
n ÂBM

n

where A′ = AM
1 ÂBM

1 · . . . ·AM
n−1ÂBM

n−1 and B′ is the sequence of compensations

BM
n−1, . . . , B

M
1 . We have two cases. If (A′, Init(A′)) w′

=⇒ (A′, (⊗, ν)), then the

thesis holds by induction. Otherwise, if (A′, Init(A′)) w′
=⇒ (A′, (¯, ν)), then

by Theorem 4.4, w′ = ỹ1 · commitA1 ! · . . . · ỹn−1 · commitAn−1 ! · ỹn where ỹi ∈
({τ} ∪ IR>0)∗. Now, by Lemma 4.3, if (AM

n , (c, ν))
w′′

=⇒ (AM
n , (⊗, ν ′)), then

w′ = z̃, and, (B′, (Init(B′)) w′′′
=⇒ (B′, (¯, ν ′′)) with w′′′ = ỹ′n−1 · commitBn−1 ! ·

. . . · ỹ′1 · commitB1 ! · ỹ′. Therefore, for a fixed w = w · w′ · w′′ · w′′′; x̃1 =
ỹ1, . . . , x̃n−1 = ỹn−1; x̃

′
1 = ỹ′1, . . . , x̃

′
n−2 = ỹ′n−2 and x̃′n−1 = z̃ · ỹ′n−1 we have that

(A, Init(A))
w

=⇒ (A, (⊗, ν ′)) and w = x̃1 · commitA1 ! · . . . · x̃n−1 · commitAn−1 ! ·
x̃′n−1 · commitBn−1 ! · . . . · x̃′1 · commitB1 ! · x̃′ where x̃i, x̃

′
i ∈ {{τ} ∪ IR>0}∗. 2

4.2 Parallel Transactions

If activities A1, . . . , An composing a parallel transaction are executed concur-
rently, the whole transaction terminates when all the activities Ai complete
their execution. Again, we assume compensation activities B1, . . . Bn. Again,
from the semantics in [10], if all the activities terminate successfully then the
whole transaction reaches a commit state. If some Ai aborts, then compensa-
tion activities should be invoked for the activities that completed successfully.
In this latter case, the final result of the whole transaction is “abort”.

The pattern for parallel transactions is shown in Figure 6. As for sequential
transactions, we consider only two activities A1, A2 with compensations B1, B2

composed in parallel, thus resulting in the CHTTA A = [[A1ÂB1||A2ÂB2]]
P of

Figure 6 (a). We remark that, by the semantics of CHTTAs, the parallel
operator || is assumed to be commutative and associative. In such a pattern,
activities A1 and A2 are executed concurrently together with a controller that
invokes compensations when one of the two activities commits and the other
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Fig. 6. Pattern for Parallel Transactions.

aborts (see the synchronisation on channels abi and comi). We define the
compensation B = [[A1ÂB1||A2ÂB2]]

P
C of A as the concurrent execution of the

compensations B1 and B2 (see Figure 6 (b)).

Definition 4.6 (Parallel Composition) Let A1, A2, B1, B2 ∈ CHTTAΣPub
A ,

we define the parallel composition of activities A1 and A2 with compensations
B1 and B2 as the CHTTAΣPub

A A = [[A1ÂB1||A2ÂB2]]
P depicted in Figure 6 (a).

The compound compensation of A is the CHTTAΣPub
A B = [[A1ÂB1||A2ÂB2]]

P
C

depicted in Figure 6 (b).

As for sequential transactions, considering only two activities in the parallel
pattern is not a limitation, since the case of n activities may be reduced by
iteratively grouping the activities in pairs. For instance, we have that A =
[[A1ÂB1||A2ÂB2||A3ÂB3]]

P = [[A′ÂB′||A3ÂB3]]
P , where the automaton A′ is equal

to [[A1ÂB1||A2ÂB2]]
P and B′ = [[A1ÂB1||A2ÂB2]]

P
C is the compensation for the

whole parallel subtransaction A′.

The parallel composition pattern reaches a commit state if and only if all the
activities composing it terminate successfully.

Theorem 4.7 (Correct Completion) Given the parallel composition A =
[[AM

1 ÂBM
1 || . . . ||AM

n ÂBM
n ]]P , (A, Init(A))

w
=⇒ (A, (¯, ν)) if and only if, w ∈

L(A,ΣV ) and ∀i ∈ [1, n].∃! j ∈ [1, |w|]. w[j] = commitAi
!.

PROOF Since executions of activities Ai and compensations Bi do not inter-
fere, we can assume that all compensations Bi are performed after the commit
of activities Ai that terminate successfully.
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Hence, the theorem can be reformulated as follows.

Given A = [[AM
1 ÂBM

1 || . . . ||AM
n ÂBM

n ]]P , (A, Init(A))
w

=⇒ (A, (¯, ν)) if and only
if w ∈ L(A,ΣV ) and there exists a permutation (i1, . . . , in) of (1, . . . , n) such
that w = x̃1 · commitAi1

! · . . . · x̃n · commitAin
! · x̃n+1 where x̃i ∈ ({τ} ∪ IR>0)∗.

By Definition 2.6, w ∈ L(A,ΣV ) implies (A, Init(A))
w

=⇒ (A, (¯, ν)). Hence,
we need to prove only the ⇒ implication.

Given c = c1; . . . ; cn with ci 6≈ ¯, we can prove by induction on n that whenever
(A, (c, ν))

w
=⇒ (A, (¯, ν ′)), then w ∈ L(A,ΣV ) and there exists a permutation

(i1, . . . , in) of (1, . . . , n) such that w = x̃1 ·commitAi1
!·. . .·x̃n ·commitAin

!·x̃n+1

where x̃i ∈ {{τ} ∪ IR>0}∗.

If n = 1 then the thesis holds by Lemma 4.3.

If n > 1, then, given a sequence (A, (c, ν))
w′

=⇒ (A, (c′1; . . . ; c
′
n, ν

′)) such that
c′k = ¯ for some 1 ≤ k ≤ n, by Lemma 4.3 we have w′ = z̃ · commitAk

· z̃′.
Now, since AM

k+1 has committed and hence it does not participate in communi-

cations, we have that (A, (c′1; . . . ; c
′
n, ν

′)) w′′
=⇒ (A, (¯, ν ′′)) iff (A′, (c′, ν ′)) w′′

=⇒
(A′, (¯, ν ′′)), where A′ = [[AM

1 ÂBM
1 || . . . ||AM

k−1ÂBM
k−1||AM

k+1ÂBM
k+1|| . . . ||AM

n Â
BM

n ]]P and c′ = c′1; . . . ; c
′
k−1; c

′
k+1; . . . ; c

′
n. By induction, if (A′, (c′, ν ′)) w′′

=⇒
(A′, (¯, ν ′′)), then there exists a permutation (j1, . . . , jn−1) of (1, . . . , n) \ {k}
such that w′′ = ỹ1 · commitAj1

! · . . . · ỹn−1 · commitAjn−1
! · ỹn where ỹi ∈

{{τ}∪IR>0}∗. Hence, for a fixed w = w′ ·w′′ and (i1, . . . , in) = (k, j1, . . . , jn−1)
and x̃1 = z̃, x̃2 = z̃′ · ỹ1, x̃3 = ỹ2, . . . , x̃n+1 = ỹn and x̃n = ỹ · z̃ and x̃n+1 = z̃′

we have that (A, (c, ν))
w

=⇒ (A, (¯, ν ′)) and w = x̃1 · commitAi1
! · . . . · x̃n ·

commitAin
! · x̃n+1, where x̃i ∈ ({τ} ∪ IR>0)∗. Since Init(A) = (c1; . . . ; cn)

satisfies the condition ci 6≈ ¯, the thesis holds. 2

If some activity of the parallel composition aborts, then compensation activi-
ties are invoked for the activities that completed successfully.

Theorem 4.8 (Correct Compensation) Given the parallel composition A =
[[AM

1 ÂBM
1 || . . . ||AM

n ÂBM
n ]]P , (A, Init(A))

w
=⇒ (A, (⊗, ν)) if and only if w ∈

L(A) and, there exists Committed ⊂ {A1, . . . , An} such that ∀Ai 6∈ Committed
w[j] 6= commitAi

! and ∀Ai ∈ Committed ∃! j ∈ [1, |w|[ such that w[j] =
commitAi

! ∧ ∃! k ∈]j, |w|] such that w[k] = commitBi
!.

PROOF The theorem can be reformulated as follows.

Given A = [[AM
1 ÂBM

1 || . . . ||AM
n ÂBM

n ]]P , (A, Init(A))
w

=⇒ (A, (⊗, v)) if and
only if w ∈ L(A) and there exists a proper subset D of {1, . . . , n} such that
w = x̃1 · commitX1 ! · . . . · x̃|D| · commitX|D| ! · x̃|D|+1 · commitX|D|+1

! · . . . · x̃2|D| ·
commitX2|D| ! · x̃2|D|+1 where:
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• if Xi = Ai, then i ∈ D;
• for any i ∈ D there exist k and h in [1, 2 · |D|] with k < h and such that
Ai = Xk and Bi = Xh;

• for any i, x̃1, . . . , x̃2·|D|+1 ∈ ({τ} ∪ IR>0)∗.

By Definition 2.6, w ∈ L(A,ΣV ) implies that (A, Init(A))
w

=⇒ (A, (¯, ν)).
Hence, we need to prove only the ⇒ implication.

Let c be a configuration of A; we say that c is well defined if it holds that Ai

is in the state ¯ iff Bi is in a state reachable after reading commAi
. With

commit(c) we denote the sum of the Ai and Bj that have committed.

Given two well defined configurations c1 and c2, we write that c1 < c2 if
commit(c1) > commit(c2).

Given a well defined configuration c, we prove by induction on the relation
< that if (A, (c, ν))

w
=⇒ (A, (¯, ν ′)), then there exists a proper subset D of

{i | Ai in c is not in the state ¯} such that w = x̃1 · commitX1 ! · . . . · x̃m ·
commitXm ! · x̃m+1 where:

• if Xi = Ai, then i ∈ D;
• if Xi = Bi and i 6∈ D, then Ai in c is in the state ¯;
• for any i ∈ D there exist k and h in [1,m] with k < h and such that Ai = Xk

and Bi = Xh;
• for any i, x̃1, . . . , x̃m+1 ∈ ({τ} ∪ IR>0)∗.

The base case c = ¯ is trivial.

We now consider the induction step. Let c′ be a configuration reachable from
A such that (A, (c, ν))

w
=⇒ (A, (c′, ν ′)) and w = z̃ · commitX ! · z̃′ with z̃, z̃′ ∈

({τ} ∪ IR>0)∗. By Lemma 4.3 and since c is well defined, there exists j such
that one of the following two cases holds:

• X = Aj and Aj in c is not in the state ¯;
• X = Bj and Aj in c is in the state ¯.

In both cases we have that c′ is well defined and c′ < c, hence, by induc-
tion, if (A, (c′, ν ′)) w

=⇒ (A, (¯, ν ′′)), then there exists a proper subset D′ of
{i | Ai in c′ is not in the state ¯} such that w = ỹ1 · commitX1 ! · . . . · ỹm ·
commitXm′ ! · ỹm′+1 where:

• if Xi = Ai, then i ∈ D′;
• if Xi = Bi and i 6∈ D′, then Ai in c′ is in the state ¯;
• for any i ∈ D there exist k and h in [1,m′] with k < h and such that
Ai = Xk and Bi = Xh;

• for any i, ỹ1, . . . , ỹm′+1 ∈ ({τ} ∪ IR>0)∗.
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Therefore, for a fixed D = D′ ∪ {j}, and x̃1 = z̃ and x̃2 = z̃′ · ỹ1 and x̃3 =
ỹ2, . . . , x̃m+1 = ỹm′+1 we have that (A, (c, ν))

w
=⇒ (A, (⊗, ν ′)). Now, since

Init(A) is well defined, the thesis holds. 2

4.3 Nested Transactions

A nested transaction is composed by a hierarchy of subtransactions. In such
a scheme, each subtransaction is executed independently and concurrently
with respect to its parent and siblings, and decides autonomously whether
to commit or abort. When a transaction aborts, all its subtransactions which
already committed must be compensated for. On the other hand, a transaction
can commit even if some of its subtransactions have aborted. As we shall
see in Section 5, nested transactions can be used, for instance, to represent
subactivities which are optional and whose failure may be tolerated.

The pattern for nested transactions is shown in Figure 7. We consider a single
activity A with compensation B and with {AÂB}i, where i is used to index
the nested transaction, we denote the fact that activity A is nested within
a transaction. Since the commit or abort of activity A should not affect the
global result of the parent transaction, activity A is encapsulated within a
schema that reaches a commit state even if activity A aborts.

Actually, in order to correctly compensate a nested transaction (either because
the parent transaction aborts, or because the parent transaction, after com-
mitting correctly, needs to be compensated), we must keep track of the nested
transactions that really committed. Thus, for each nested transaction (with
index i), we define a controller automaton that checks whether the transaction
aborts or commits, and stores the final state of the transaction by synchro-
nizing on channels an i or cn i, respectively (see Figure 7 (a) and (c)). The
compensation of the nested activity is encapsulated in the automaton in Fig-
ure 7 (b). If, at some point, the compensation of the nested transaction is
invoked, such an automaton is activated and synchronises on channels con i
or abn i with the controller automaton in order to decide whether to execute
compensation B or not. In the controller automaton, transitions labelled with
stop i? are used to stop the activity of the controller allowing it to reach its fi-
nal commit state at the end of the transaction. Notice that channels an i, cn i,
con i, abn i and stop i are assumed to be public (for each nested transaction
with index i, {a!, a? | a ∈ {an i, cn i, con i, abn i, stop i}} ⊆ ΣV ).

Definition 4.9 (Nesting) Given A ∈ CHTTAΣPub
A we define the nesting of

activity A with compensation B as the CHTTAΣPub
A A′ = [[{AÂB}i]]

N depicted in
Figure 7 (a). The compound compensation of A′ is given by the pair (B′, BT ) =
[[{A ÂB}i]]

N
C ∈ (CHTTAΣPub

A )2, where B′ and BT are the two CHTTAs in
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Fig. 7. Pattern for Nested Transactions.

Figures 7 (b) and 7 (c), respectively.

The independent execution of a nested activity implies that activity A may
abort or commit without affecting the future behaviour of its parent and
siblings. Hence, the pattern of a nested transaction is assumed to end always
in a commit state. The next theorem states, trivially, the correct completion
of the pattern for nested transactions (a nested transaction always reaches a
commit state).

Theorem 4.10 (Correct Completion) Given the nesting A′ = [[{AÂB}i]]
N ,

it holds that (A′, Init(A′)) w
=⇒ (A′, (¯, ν)) for all w ∈ L(A′,ΣV ).

PROOF If activity A reaches the final state ⊗, then the nested transaction
reaches the state ¯ after a £ step followed by an an i! step. Similarly, if
activity A reaches the final state ¯, then the nested transaction reaches the
state ¯ after a ¡ step followed by a cn i! step. 2

The correct compensation for nested transactions is guaranteed by enclosing
the compensation activity B within the CHTTA B′ and by executing the
controller BT in parallel with the nested transaction A′ = [[{AÂB}i]]

N . While
in Theorem 4.10 we did not need to use the wrapped automata AM and BM ,
in the next theorem we again resort to such a construction. Intuitively, the
theorem states that the controller BT correctly drives the execution of the
compensation B if, at some point, the compensation B′ is invoked.

Theorem 4.11 (Correct Compensation) Let A′ = [[{AM ÂBM}i]]
N ||BT ,

where (B′, BT ) = [[{AÂB}i]]
N
C , we have that:

• (A′, Init(A′)) w
=⇒ (A′, (¯; qa, ν)) if and only if commitA! 6∈ w;
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• (A′, Init(A′)) w
=⇒ (A′, (¯; qc, ν)) if and only if commitA! ∈ w.

Moreover, it holds that:

• (A′||B′, ((¯; qa, ν); Init(B
′))) w′

=⇒ (A′||B′, (¯, ν ′)) if and only if commitB! 6∈
w′;

• (A′||B′, ((¯; qc, ν); Init(B
′))) w′

=⇒ (A′||B′, (¯, ν ′)) if and only if commitB! ∈
w.

PROOF By Lemma 4.3, AM reaches the state ¯ if and only if commitA! ∈ w.
Moreover, if AM reaches the final state ¯, then the nested transaction reaches
the state ¯ after a ¡ step and a cn i! step. Hence, BT synchronises on channel
cn i and reaches the state qc if and only if commitA! ∈ w. Similarly, if AM

reaches the final state ⊗ (in this case commitA! 6∈ w), then the nested transac-
tion reaches the state ¯ after a £ step and an an i! step. Hence, BT synchro-
nises on channel an i and reaches the state qa if and only if commitA! 6∈ w.

Now, if BT is in state qc, then A′||B′ can synchronise only on channel con i
and, as a consequence, the compensation B is activated (implying commitB! ∈
w′). Therefore, if BT passes through state qc, then commitB! ∈ w′. Similarly,
if BT is in state qa, then A′||B′ can synchronise only on channel abn i and,
as a consequence, the compensation B is not activated (thus commitB! 6∈ w′).
Therefore,if BT passes through state qa then commitB! 6∈ w′. 2

4.4 Long–Running Transactions

Sequential, parallel and nested transactions may be composed in order to
define complex transactions. Hence, resorting to the patterns defined in the
previous sections, we give the definition of long–running transactions.

Definition 4.12 (Long–Running Transaction) Let A1, . . . , An be activi-
ties in CHTTAΣPub

A with compensations B1, . . . , Bn ∈ CHTTAΣPub
A ; a long–

running transaction is defined by the following grammar:

T ::= AiÂBi

∣∣ T · T ∣∣ T ||T ∣∣ {T}i.

Again, we assume that nested transactions are labelled with an index i ∈
IN. Moreover, given a transaction T , we assume that for any pair of nested
subtransactions {T ′}i, {T ′′}j of T it holds that i 6= j.

Now, we need to introduce an encoding function [[·]] : T → CHTTAΣPub
A ×

CHTTAΣPub
A × P(CHTTAΣPub

A ), such that [[T ]] = (A,B,M), where the CHT-
TAs A is the compound CHTTA modelling the transaction T , B its compen-
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Fig. 8. Top–level CHTTA.

sation and M is the set of CHTTAs modelling the controllers BT
i of the nested

transactions contained within T .

Definition 4.13 (Encoding) We recursively define the encoding function
[[·]] : T → CHTTAΣPub

A × CHTTAΣPub
A ×P(CHTTAΣPub

A ) as follows:

• [[AiÂBi]] = (Ai, Bi, ∅),
• [[T1 · T2]] = ([[A1ÂB1 · A2ÂB2]]

S, [[A1ÂB1 · A2ÂB2]]
S
C ,M1 ∪M2),

where (Ai, Bi,Mi) = [[Ti]] for i ∈ [1, 2],
• [[T1||T2]] = ([[A1ÂB1||A2ÂB2]]

P , [[A1ÂB1||A2ÂB2]]
P
C ,M1 ∪M2),

where (Ai, Bi,Mi) = [[Ti]] for i ∈ [1, 2].
• [[{T}i]] = ([[{AÂB}i]]

N , B′, BT ∪M),
where (A,B,M) = [[T ]] and [[{AÂB}i]]

N
C = (B′, BT ).

The root of the hierarchy of a transaction is usually referred to as top–level.
Here, given the encoding of a transaction T as [[T ]] = (A,B,M), we should pay
attention to the controllers BT

i ∈ M of nested subtransactions. In particular,
each controller BT

i must be put in parallel with the CHTTA A modelling the
whole transaction. Moreover, at the end of the execution of A, we need to send
the stop signals to all these controllers in order to let them reach their final
commit states (see Figure 7 (c)).

Definition 4.14 (Top–Level) Given a long–running transaction T and its
encoding [[T ]] = (A,B,M) with M = {BT

1 , B
T
2 , . . . , B

T
n }, we define the top–

level of T (denoted top(T )) as the CHTTA in Figure 8.

Given a transaction T , since the building blocks of the encoding function are
the patterns of sequential, parallel and nested transactions, the correct com-
pletion and correct compensation of the top–level CHTTA top(T ) is given by
induction on the structure of T and by Theorems 4.4, 4.5, 4.7, 4.8, 4.10, 4.11.

Example 4.15 Given activities A1, A2, A3 ∈ CHTTAΣPub
A and compensations
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Fig. 9. Example of a Top–level CHTTA.

B1, B2, B3 ∈ CHTTAΣPub
A , an example of long–running transaction is:

T = ({A1ÂB1}1||A2ÂB2) · A3ÂB3.

The CHTTA top(T ) modelling the top–level of T is shown in Figure 9.

Modelling long–running transactions with CHTTAs allows verifying properties
by model checking.

In fact, given a long–running transaction T obtained as in Definition 4.12, and
a set of visible actions ΣV , we may flatten the CHTTA top(T ) according to
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Fig. 10. A Double Request.

Definition 3.1, and then verify properties of the transaction by model checking
the timed automaton Flat(top(T ),ΣV ).

5 Case Study: A Double Request

We model a typical all–or–nothing scenario in which a client performs two
concurrent requests to two different servers, waits for replies, and sends back
acknowledgements either to both servers (if it receives both replies) or to
none of them (if it receives at most one reply). A similar scenario in a realistic
context is given in [25], where a typical e–commerce application is described
in which a customer of an on–line shop orders two products which are pro-
vided by two different stores. In that case, acknowledgements are sent (and
products are bought) only if both products are available, instead, in our case,
acknowledgements are sent only if replies are received before given times.

A single request/reply activity performed by the client is described by the
transaction given in Figure 10 (a). We denote the transaction as AiÂBi. The
client sends the request to the server by synchronizing on channel req i and
waits for the reply to be received as a synchronisation on channel rep i. The
time deadline for the reply is Ti. This is expressed as a constraint on the
value of clock xi which is set to zero when the request is sent. If the reply is
received in time, the transaction commits, otherwise a stop message is sent
to the server as a synchronisation on channel end i, and the transaction is
aborted. The compensation of this transaction consists in a synchronisation
on channel cancel i, which corresponds to sending an undo message to the
server.
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A server is modelled by the automaton given in Figure 10 (b). We denote such
an automaton with Si. The server receives a request and sends the reply by
synchronizing on the proper channels, and it spends a time between these two
synchronisations which is greater than Ri. This amount of time models the
time spent by the server to satisfy the request of the client. Then, the server
reaches a state in which it waits for either an acknowledge or an undo message
from the client. These two communications are modelled as synchronisations
on channels ack i and cancel i, and lead to the commit or the abort of the
server activity, respectively.

The activity of sending acknowledgments to two servers S1 and S2 is modelled
by the transaction given in Figure 10 (c). We denote this transaction with
Aack ÂBack. Finally, the whole client transaction in which two requests are
sent to two different servers and the corresponding acknowledgments are sent
if both requests are satisfied, is modelled by the long–running transaction
T = (A1ÂB1||A2ÂB2) ·AackÂBack and the whole system in which both the client
and the two servers are modelled is SY STEM = T ||S1||S2.

To verify properties of this system, we consider the CHTTA top(T ), and
we manually compute the flat TTA T ′ = Flat(top(T ),ΣV ), where ΣV =
{a!, a? | a ∈ {reqi, repi, stopi, canceli, acki}} by following the procedure given
in Section 3.1. Now, since S1 and S2 are both flat, we have that T ′||S1||S2

can be used as an input for the UPPAAL model checker, which is able to
manage parallel composition of flat timed automata. In Figure 11 we show
the UPPAAL model for the two server transactions. In Figure 12 we show
the UPPAAL timed automaton for the client transaction which is obtained
from the flat TTA T ′ and where, in order to reduce the size of the model, we
have removed unnecessary τ transitions. We have also added to this model
the invariant xi ≤ Ti in the state where the client is waiting for the server
reply. This implies that the client will stop its activity as soon as the deadline
Ti is reached. Moreover, we exploited the UPPAAL feature to define some
states as urgent. Intuitively, time is not allowed to pass when the system is
in an urgent state. Note that using urgent states is semantically equivalent to
adding an extra clock z, that is reset on all incoming edges, and having an
invariant z ≤ 0 on the state. Resorting to urgent states allows us to avoid the
execution of paths containing an infinite sequence of timed transitions, and
to deal only with maximal paths ending in the commit or in the abort state.
These maximal paths are exactly the ones which correspond to the strings in
L(top(T ),ΣV ).

In Figure 13 we show the results of the model checking. We have verified eight
properties, and each property has been verified three times: once by setting
both timeouts T1 and T2 greater than R1 and R2, respectively, once by setting
T1 < R1 and T2 > R2, and once by setting both T1 and T2 smaller than R1

and R2, respectively.
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Fig. 12. Timed Automaton Modelling the Client Transaction.

Properties are expressed as logical formulas using the operators accepted by
the UPPAAL model checker. A logical formula may have one of the following
forms: E♦φ,E¤φ,A♦φ,A¤φ and φ Ã ψ, where φ and ψ are state formulas,
namely conditions which could be satisfied by a state. In particular: E♦φ
represents reachability: it asks whether φ is satisfied by some reachable state;
E¤φ says that there should exists a maximal path such that φ is always true;
A♦φ says that φ is eventually satisfied in all paths; A¤φ expresses that φ
should be true in all reachable states; finally, φ Ã ψ means that whenever φ is
satisfied, then eventually (in the continuation of the path) ψ will be satisfied.

Properties 1–3 express the correctness of the encoding of long–running trans-
actions into automata. These properties must be satisfied for any setting of
the parameters. In particular, property 1 says that either the commit or the
abort states of the transaction (denoted T.¯ and T.⊗, respectively) must be
eventually reached. Property 2 requires that if at least one of the abort states
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T1 > R1 T1 < R1 T1 < R1

T2 > R2 T2 > R2 T2 < R2

1. A♦(T.¯ ∨T.⊗) true true true

2. (A1.⊗ ∨A2.⊗) Ã T.⊗ true true true

3. (A1.¯ ∧A2.¯) Ã T.¯ true true true

4. T.¯ Ã (S1.¯ ∧S1.¯) true true true

5. x1 ≥ T1 Ã T.⊗ true true true

6. x2 ≥ T2 Ã T.⊗ true true true

7. E♦T.¯ true false false

8. E♦T.⊗ true true true

Fig. 13. Results of the model checking.

of the parallel activities A1 and A2 is reached, then the whole transaction must
reach its abort state, and property 3 requires that if both parallel activities
A1 and A2 reach their commit states, then the whole transaction must reach
its commit state.

Properties 4–6 express the correctness of the scenario we are modelling. As
before, these properties must be satisfied for any setting of the parameters.
Property 4 says that if the transaction reaches a commit state, then eventually
both servers must reach their commit states. Properties 5 and 6 say that if
one of the two clocks of the parallel activities A1 and A2 becomes greater than
its deadline, then the whole transaction must reach its abort state.

Finally, properties 7 and 8 express that the commit and abort states of the
transaction can be reached, for different settings of the parameters. In par-
ticular, the commit state can be reached only if both the timeouts T1 and T2

are greater than the times R1 and R2 spent by the two servers. The abort
state, instead, can be reached with any setting of the parameters. This is true
because R1 and R2 are lower bounds, hence a server may spend more time
than its minimum time, and may exceed the corresponding deadline in the
transaction.

A variant of this scenario is the one in which one of the two concurrent client
requests should not necessarily be satisfied for the commitment of the whole
transaction. Consider, for instance, a double request in which a client orders
two products, one of the products is fundamental, and the other is optional
(for instance a laptop computer and a mouse). In this case, the client might
accept to buy the former product even if the latter is not available.

Such a scenario can be modelled by nesting the activity requesting the op-
tional product. Thus, if AF ÂBF is the activity modelling the request for
the fundamental product and AO Â BO the activity modelling the request
for the optional product, the client double request may be represented as
T ′ = (AFÂBF ||{AOÂBO}1) ·A′AckÂB′

Ack. Note that the top–level scheme of such
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a transaction is the same as the one in Figure 9 (where A1ÂB1 corresponds to
AOÂBO, A2ÂB2 corresponds to AFÂBF and A3ÂB3 corresponds to A′AckÂB′

Ack).
Again, our flattening procedure may be used to obtain the timed automaton
Flat(top(T ′),ΣV ) and to verify properties of the transaction in this different
scenario.

6 Related Work

The model of CHTTAs is obtained by extending existing models of Commu-
nicating Hierarchical Timed Automata in order to deal with the commit and
abort of transactions, and with a communication mechanism which makes use
of public channels. Among the papers dealing with hierarchical composition
and time we cite the following.

In [16–18] David et al. present a framework, called Hierarchical Timed Au-
tomata (HTAs), for the formal verification of a real-time extension of UML
statecharts. In particular, the authors extend a reasonable subset of the rich
UML statechart model with real–time constructs such as clocks, timed guards,
and invariants. A translation of HTAs into networks of flat timed automata
is given and used to produce the input to the real–time model checking tool
UPPAAL.

Among the papers for the analysis of compositional patterns we cite [10]. In
this paper, Bruni et al. present a family of transactional process calculi with
increasing expressiveness. Starting from a very small language in which ac-
tivities are composed only sequentially, the authors progressively introduce a
parallel composition operator, a nesting operator, programmable compensa-
tions and an exception handling mechanism. We borrow from [10] the patterns
for composing transactions and we describe them by means of CHTTAs.

In [28] a kernel of the orchestration language BPEL containing the constructs
for the description of long–running transactions is considered and endowed
with an operational semantics. In [7] an extension of the π–calculus is intro-
duced with a mechanism to describe long–running transactions which is in-
spired by BPEL. In [6] the asynchronous π–calculus is used to formally model
a compositional protocol in charge of activating compensations of nested long–
running transactions. In [13] the language StAC for describing long–running
transactions is introduced with a notation inspired by the formalisms CSP and
CCS. A formal semantics for StAC is given in [14]. In [15] a model of long–
running transactions in the framework of the CSP process algebra is proposed.
With respect to all the above mentioned papers our formalism allows time to
be described and models that can be translated into Timed Automata on
which automatic verification can be performed.
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Fig. 14. Example of a business process described in BPMN.

In [22] and [23] the π–calculus is extended with a mechanism to handle com-
pensations and with a notion of discrete time. Timers can be associated with
processes and compensations are activated either after abort or after a time–
out. On the contrary, in our model we have continuous time and any activity
may depend on time.

YAWL [1] is a workflow language with a well defined formal semantics that
implements the most common workflow patterns. In [9] a formal semantics
for BPEL is given through a methodology for translating BPEL processes
into YAWL workflows, paving the way for the formal analysis, aggregation
and adaptation of BPEL processes. The approach defines a YAWL pattern
for each BPEL activity and gives suitable instantiations and interconnections
among the patterns.

As regards verification of service orchestration we cite [29] and [21] where
BPEL workflows are expressed by means of process calculi and Timed Au-
tomata, respectively, and are verified by model checking. The papers men-
tioned do not consider the BPEL fragment dealing with long running trans-
actions.

We conclude by showing how an example of business process described by
means of the graphical notation BPMN [12] can be modeled with CHTTAs.
The example in Figure 14 consists of two processes representing an auctioneer
and a bidder. Each process is a flowchart where solid arrows represent sequence
flows and dashed arrows represent message flows. Boxes represent activities,
diamonds represent gateways, and circles represent events. The bidder sends
its credentials to the auctioneer, which verifies them and may send either an
acceptance or a refusal message back to the bidder. Note that the gateway
in the auctioneer process is data–based, whereas the gateway in the bidder
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Fig. 15. Translation into CHTTAs of the business process in Figure 14.

process is event–based, namely in this case the choice depends on the received
message. In case of refusal of the bidder’s credentials both processes terminate.
If the bidder’s credentials are accepted the bidder starts bidding repeatedly
(represented by the symbol ª in the activity) and the auctioneer accepts bids
until a timer event, representing the auction closure, occurs. If a bidder has
won, the auctioneer notifies the win and waits for the payment, otherwise,
it notifies the loss to the bidder. Note that win notification and payment
reception are subactivities of a compound activity; the same happens for the
corresponding activities performed by the bidder.

In Figure 15 we show a translation of the BPMN processes in Figure 14 into
the parallel composition of two CHTTAs. Every BPMN activity is translated
into a superstate, every gateway becomes a state, every sequence flow arrow
becomes a transition, and every message flow arrow becomes a pair of com-
munication actions. Note that event–based gateways are translated into states
whose outgoing transitions are labeled with the first action of each of the ac-
tivities under choice. Activities which can be repeated give rise to loops in the
automata. Timer events are translated into constraints on clocks. The exam-
ple should intuitively suggest how BPMN diagrams could be translated into
CHTTAs also in a more general case.
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7 Conclusions

In this paper we have developed the model of CHTTAs suitable to describe
long–running transactions in a timed setting.

Following the approach in [10], we have identified some composition patterns
for transactional activities with compensations. In [10], a big–step semantics
is given which, assuming that basic activities either commit or abort, gives the
outcome of a long–running transaction. In the present paper, basic activities
are described as CHTTAs, and therefore their behaviour can be modelled in
detail.

The present paper has been particularly focused on the design of compen-
sation handling mechanisms. There are, however, other aspects which could
be considered in the design of long–running transactions. For example, trans-
actions usually support fault tolerance for recovery from both internal faults
(i.e., machine failures or software faults) and external faults (i.e., termination
messages). As already stressed, partial updates within a long–running transac-
tion could not be rolled back automatically, as they are in ACID transactions,
when a failure occurs. However, an exception code block for the long–running
transaction could be invoked when a fault occurs. The exception code block
may contain a set of fault handlers to deal with any of the faults that can arise
during the execution of the transaction. Following an approach similar to the
one used to deal with compensations, we believe that our framework could be
extended with a fault termination handling mechanism. Assuming that the
execution of a long–running transaction is interrupted when a fault occurs,
we may resort to some special transitions (taking a role similar to the one
of ¡ and £) invoking an exception handler at the time an exception occurs.
The exception handler could then activate the activities necessary to manage
the fault. Note that this extension might influence the proven decidability of
reachability for CHTTAs. Actually, the fault handling may require the atomic
interruption of several activities running in parallel, and this may cause the
increase of expressiveness of the formalism, with all possible consequences. We
leave this problem for further investigation.

Our main goal was to lay the foundations for the formal verification of long-
running transactions in a timed setting. This might be eventually done by
constructing a translator from BPMN or BPEL to CHTTAs, and implement-
ing the flattening procedure to obtain the input expected by a model checker
for timed automata, such as UPPAAL.
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