
DelaySim

A Java library to simulate stochastic systems with delays

Giulio Caravagna
caravagn@di.unipi.it

Dipartimento di Informatica, Università di Pisa

Largo Bruno Pontecorvo 3, 56127 Pisa, Italy

January 10, 2011

Abstract

DelaySim is a library, written in Java, allowing easy coding of Java reaction-
based models of biological systems with delays. Such models can be simu-
lated by two different Delay Stochastic Simulation Algorithms: the DDA
and the PDA. DelaySim is released under the terms of the GNU GPL
license.

Preamble

Along the line of other simulation tools, DelaySim is a library which provides
the programmer the required data structures and methods to easily describe
and simulate reaction-based models of biological systems with delays.

DelaySim has been used to perform stochastic simulations of such systems,
as discussed in the Ph.D. thesis

“Formal Modeling and Simulation of Biological Systems With Delays”

by Giulio Caravagna. Nomenclature and notation used in the following are
taken directly from such a thesis, which can be found at

http://www.di.unipi.it/∼caravagn/

or can be directly asked to the author. Accordingly to this, the Delay Stochastic
Simulation Algorithms algorithms implemented in the library are the DDA and
the PDA, as discussed in Chapters 4 and 5, respectively. In the former reactions
with delay follow the delay-as-duration approach whereas in the latter follow a
purely delayed approach.

DelaySim is written in Java 1.6 and is released under the terms of the GNU
GPL license.

1



Packages

DelaySim is a pretty simple library consisting of only 2 packages: a package
DelaySim containing the core of the library, and package DelaySim.examples
containing some programming examples.

The main package DelaySim contains the definition of the following Java
types: Reaction, Entry, DDA, and PDA.

• Reaction is a class representing a generic reaction happening in the mod-
eled system. The reaction is represented as a 5-tuple

(s, νr, νp, k, σ)

where

– s is the name of the reaction;

– νr ∈ Nn is the stoichiometry vector for reactants;

– νp ∈ Nn is the stoichiometry vector for products;

– k ∈ R with k > 0 is the kinetic constant of the reaction;

– σ ∈ R with σ ≥ 0 is the delay of the reaction.

Notice that νr must contain negative entries since it represents only con-
sumed reactants.

• DDA is a class representing a generic algebraic reaction-based system
which can be simulated by the DDA. Such a system is represented as
a pair

(R,x)

where

– R is a set of reactions

R = {R1, . . . , Rm}

which can happen in the system, these objects are typed Reaction;

– x ∈ Nn is the state-vector representing initial state of the system to
be simulated.

Notice that the consistency of the system as defined by the size of the
state-vector and the vectors used by the reaction is to be checked by the
programmer. On consistent systems DDA stochastic simulation can be
performed starting from an initial time t0 ∈ R up to a maximum time
T ∈ R, which can be chosen by the programmer.

• PDA is a class representing a generic reaction-based system which can be
simulated by the PDA. This class is defined similarly to the DDA one.

2



• Entry is a class describing a generic entry in the scheduling lists of both
the algorithms. This class should be of no interest for the library user.

Detailed information about the methods and variables used in the classes
can be found in the attached Javadoc documentation.

Examples

DelaySim comes with two three examples of programmed models to clarify
the use of the library. The first two examples are single reaction and reversible-
reaction models, respectively. The third example is the model of the cell cycle
with a delay presented in Chapters 4 and 5. Examples are contained in the
package DelaySim.examples.

Example I [SingleReactionExample.java]
In this model we consider a population of two species A and B, hence the

system state is described by a two-dimensional vector. We consider a single
reaction

R1 : A
k,σ7−−→ B

with kinetic constant k and delay σ. Default values are k = 10.0 and σ = 3.0,
we write the following code

int [] v1_R = {-1, 0};
int [] v1_P = {0, 1};
Reaction r1 = new Reaction("R1", v1_R, v1_P, 10.0, 3.0);

The state is coded as

int [] x0 = {INITAL_A_MOLECULES, 0};

where INITAL A MOLECULES is a variable whose value is the initial number of
molecules A in the system. Such a state represents a two-dimensional vector

X(t0) = x0.

with x0 =x0. Initial time t0 can be specified once a simulation is started.
A whole DDA system can be coded as

Reaction [] reactions = {r1};
DDA DDA_system = new DDA(reactions, x0);

and it can be simulated from t0 = 0 to T = 10 by executing method simulate
from class DDA

DDA_system.simulate(0, 10);

With a very similar coding style the same system can be simulated by the
PDA.

3



PDA PDA_system = new PDA(reactions, x0);
PDA_system.simulate(0, 10);

When executed such a method the output is of the form

1.3517503200690113 12 4
1.5342960570253148 12 4
1.6365428550462302 11 4
1.6644229295208675 10 4
1.6860151782990693 9 4
....

where the first column represents the system clock, and column i-th represent
the value of the i-th component of the state vector.

Example II [TwoReactionsExample.java]
This is the same of Example I where the reaction is reversible

R1 : A
10.0,3.07−−−−−→ B R2 : A

1.0,5.07−−−−→ B

Reactions are coded as

int [] v1_R = {-1, 0};
int [] v1_P = {0, 1};
Reaction r1 = new Reaction("R1", v1_R, v1_P, 10.0, 3.0);

int [] v2_R = {0, -1};
int [] v2_P = {1, 0};
Reaction r2 = new Reaction("R2", v2_R, v2_P, 1.0, 5.0);

and systems as

int [] x0 = {INITAL_A_MOLECULES, INITAL_B_MOLECULES};
Reaction [] reactions = {r1, r2};

DDA DDA_system = new DDA(reactions, x0);
PDA PDA_system = new PDA(reactions, x0);

so that systems can be simulated as in Example I.

Example III [CellCycleModel.java]
This is the model of the cell cycle with a delay in the passage of a cell from

the interphase to the mitotic phase. Such a model is discussed in Chapters 3, 4
and 5, where both DDA and PDA simulations of the model are presented.

4


