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Università di Pisa, Italy
francesca.levi@unipi.it

Paolo Milazzo
Dipartimento di Informatica,
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Abstract. Gene Regulatory Networks represent the interactions among genes regulating the activa-
tion of specific cell functionalities and they have been successfully modeled using threshold Boolean
networks. In this paper we propose a systematic translation of threshold Boolean networks into Re-
action Systems. Our translation produces a non redundant set of rules with the minimal number of
objects. This translation allows us to simulate the behavior of a Boolean network simply by exe-
cuting the (closed) Reaction System we obtain. This can be very useful for investigating the role
of different genes simply by “playing” with the rules. We developed a tool able to systematically
translate a threshold Boolean network into a Reaction System. We use our tool to translate two well
known Boolean networks modelling biological systems, the Yeast-Cell Cycle and the SOS response
in Escherichia coli. The resulting reaction systems can be used for investigating dynamic causalities
among genes.
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1. Introduction

In the context of molecular biology of cells, Gene Regulatory Networks (GRNs) represent the interactions
among genes regulating the activation of specific cell functionalities. More specifically, genes in a GRN
can be either active (i.e. the corresponding protein is expressed) or not, and each active gene can either
stimulate or inhibit the activation of a number of other genes. Moreover, the activation of some genes is
also usually influenced by other factors such as the availability of some substances in the environment,
or the reception of a signal form neighbor cells. As a consequence, gene regulatory networks can be
seen as the mechanism that allow a cell to react to external stimuli. When a stimulus is received, it
causes a change in the activation state of a few genes, that, in turn, influence other genes, allowing a new
configuration of active genes (corresponding to a new set of active cell functionalities) to be reached.

Several approaches have been proposed to model and analyze GRNs (see [31] for a survey on this
topic). Modeling techniques can either deal only with the qualitative aspects of such networks (treating
them essentially as logic circuits), or can describe also the quantitative aspects, such as the rates of the
interactions. The latter approach is for sure more precise, but requires many additional details of the
network dynamics to be taken into account, such as the rates of transcription and translation of genes’
DNA into proteins, and the rates of protein-protein and protein-DNA interactions. Qualitative models
are often sufficient to reason on the behavior of the regulatory networks, although with some degree of
approximation.

In the qualitative modeling setting, one of the most successful modeling frameworks for gene reg-
ulatory networks are Boolean networks. In this setting, a particular simple form of Boolean networks,
the so called threshold Boolean networks [18, 25, 28], have been widely used to model the dynamics of
quite complex regulatory networks. In threshold Boolean networks, the Boolean function of each node
depends on the sum of its input signals only. This variant of Boolean networks can be easily implemented
and, at the same time, it is well suited for representing gene regulatory networks.

Boolean networks allow dynamical properties of GRNs to be investigated. Starting from an initial
configuration of active genes, the dynamics of a GRNs is expressed as a sequence of steps in which
such a configuration is updated according to the influences among the genes described by the Boolean
network. Dynamical properties can be investigated either by performing simulations, or by constructing
the (finite) graph representing all possible dynamical evolutions. Example of properties that are often
studied on these models are reachability and stability of configurations, and confluence of evolutions
started from different initial configurations into stable configurations (attractors).

Analysis of dynamical properties may become computationally very expensive. In order to reduce the
state space to be analyzed, minimization techniques can be applied. The Boolean function represented by
a Boolean network can be synthesized in any framework of logic minimization. The classical approach
to logic minimization that produces sum of products two level formulas can be used (see e.g., Espresso
[29]).

Other analysis methods for GRNs could be applied by changing the representation of the Boolean
networks describing them. In this paper we propose a systematic translation of threshold Boolean net-
works into Reaction Systems [19, 12]. Reaction systems were introduced by Ehrenfeucht and Rozenberg
as a novel model for the description of biochemical processes driven by the interaction among reactions
in living cells. Reaction systems are based on two opposite mechanisms, namely facilitation and inhi-
bition. Facilitation means that a reaction can occur only if all its reactants are present, while inhibition
means that the reaction cannot occur if any of its inhibitors is present. The state of a Reaction System
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consists of a finite set of objects which can evolve by means of application of reactions. The presence
of an object in a state expresses the fact that the corresponding biological entity, in the real system being
modeled, is present. Quantities (or concentrations) of the entities are not described: Reaction Systems
are hence a qualitative modeling formalism.

In this setting, the dynamic run of the Reaction System simulates the evolution of the Boolean net-
work. This correspondence allows us to “play” with the rules of the Reaction System related to dif-
ferent genes in order to detect dynamic causality dependencies between genes activation/deactivation.
Moreover, we believe that this correspondence will allow us to apply to Boolean networks well-known
techniques to detect causality relationships between objects in biological systems. The understanding of
causality relationships among the events happening in a biological (or bio-inspired) system is an issue
investigated in the context both of systems biology (see e.g. [24, 10, 11, 9]) and of natural computing
(see e.g. [16]).

In [13], Brijder, Ehrenfeucht and Rozenberg initiate an investigation of causalities in Reaction Sys-
tems [19, 12]. Causalities deal with the ways entities of a Reaction System influence each other. In [13],
both static/structural causalities and dynamic causalities are discussed, introducing the idea of predic-
tor. In [4, 3, 5, 7, 6, 8], the idea of predictors was enhanced by defining the notions of formula based
predictor and specialized formula based predictor. These new concepts allow us to study all causal de-
pendencies of one object from all the others. The Reaction System encoding a Boolean network could be
investigated by computing the specialized formula based predictor of a particular activation/deactivation
gene configuration. This would allow us to obtain a logic formula characterizing all alternative acti-
vation/deactivation gene configurations that lead to the requested configuration in a bounded number
of steps. This could be very useful to understand which genes are necessary for reaching a requested
configuration. Moreover, related causality analyses consist in determining whether a configuration of
a Reaction System is a k-ancestor [17, 23] of a given (observed) configuration (i.e. the latter can be
obtained from the former in k steps), counting the number of k-ancestors, and determining whether a
k-ancestor exists at all for a given k. Some of these problems can also be re-formulated in terms of in-
formation flow properties [21], for instance by exploiting the notion of opacity [15, 14], which has been
introduced for Reaction Systems in [23, 22].

The translation we propose in this paper produces a non redundant set of rules with the minimal
number of objects. We developed a tool able to systematically translate a threshold Boolean network
into a Reaction System. We use our tool to translate two well known Boolean networks modelling
biological systems: the Yeast-Cell Cycle and the SOS response in Escherichia coli.

The paper is organized as follows. Section 2 introduces the main concepts of (Closed) Reaction
Systems. In Section 3 we describe how Boolean networks are defined and how they work. Section 4
presents our encoding of threshold Boolean networks into Reaction Systems. The tool realizing the
proposed translation is presented in Section 5. Finally, in Section 6 we apply our tool to translate,
simulate and study the Yeast-Cell Cycle Boolean Network, while in Section 7 our tool is applied to the
regulatory network describing the SOS response in Escherichia coli. A description of future works in
Section 8 concludes the paper.
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2. Closed Reaction Systems

In this section we recall the basic definition of Reaction Systems [19, 12]. Let S be a finite set of symbols,
called objects. A reaction is formally a triple (R, I, P ) with R, I, P ⊆ S, composed of reactants R,
inhibitors I , and products P . Reactants and inhibitorsR∪I of a reaction are collectively called resources
of such a reaction, and we assume them to be disjoint (R ∩ I = ∅), otherwise the reaction would never
be applicable. The set of all possible reactions over a set S is denoted by rac(S). Finally, a Reaction
System is a pair A = (S,A), where S is a finite support set, and A ⊆ rac(S) is a set of reactions.

The state of a Reaction System is described by a set of objects. Let a = (Ra, Ia, Pa) be a reaction
and T a set of objects. The result resa(T ) of the application of a to T is either Pa, if T separatesRa from
Ia (i.e. Ra ⊆ T and Ia ∩ T = ∅), or the empty set ∅ otherwise. The application of multiple reactions
at the same time occurs without any competition for the used reactants (threshold supply assumption).
Therefore, each reaction which is not inhibited can be applied, and the result of the application of multiple
reactions is cumulative. Formally, given a Reaction SystemA = (S,A), the result of application ofA to
a set T ⊆ S is defined as resA(T ) = resA(T ) =

⋃
a∈A resa(T ).

An important feature of Reaction System is the assumption about the non-permanency of objects: the
objects carried over to the next step are only those produced by reactions. All the other objects vanish,
even if they are not involved in any reaction.

The dynamics of a Reaction System is generally driven by the contextual objects, namely the objects
supplied to the system by the external environment at each step. Closed Reaction Systems are the subset
of general Reaction Systems where the external environment provides objects at the first step only.

This allows us to simplify the dynamics of a (closed) Reaction System A = (S,A). Indeed, given
the initial set D0 the semantics can be simply defined as the result sequence, δ = D1, . . . , Dn where
each set Di, for i ≥ 1, is obtained from the application of reactions A to the state obtained at the
previous step Di−1 ; formally Di = resA(Di−1) for all 1 ≤ i < n. For the sake of simplicity, we write
Di−1 →A Di as a shorthand for Di = resA(Di−1). In this case the sequence of states of the Reaction
System coincides with the result sequence δ = D1, . . . , Dn.

3. Boolean Networks

We present a formal definition of threshold Boolean networks [28] considering a set M of n elements,
S1, S2, . . . Sn to be nodes of a network. We assign to each element, at each time instant t, a value
Si(t) ∈ {0, 1} denoting if the element Si is present at that instant or not. The interactions among
elements are given by the set of edges of the network called E. An edge from element Sj to element
Si is denoted aij (where i 6= j given that a element cannot activate/inhibit itself). Each edge in E can
be either activating or inhibiting. This is represented by a value associated to the edge: an activating
edge has value 1 while an inhibiting edge has value −1. Elements M can be partitioned in two sets Msa

and Mnsa of self-activating and non-self-activating elements, respectively, with M = Msa ∪Mnsa. A
self-activating element, present at time t and not inhibited, will be present also at time t + 1, while a
non-self-activating element will not. Moreover, we assume that each element Si has associated a value
θi ∈ Θ (we assume Θ = IN) which is called the threshold parameter of Si. The pair (M,E) is called a
threshold Boolean network.

The states of the nodes in the network are updated in parallel at discrete time steps. The rules for
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Figure 1. An example of gene regulatory network.

updating the values of nodes are the following, for i ∈ {1, . . . , n}

Si(t+ 1) =



1 if
∑
j
aijSj(t) > θi

0 if
∑
j
aijSj(t) < θi

Si(t) if Si ∈Msa ∧
∑
j
aijSj(t) = θi

0 if Si ∈Mnsa ∧
∑
j
aijSj(t) = θi

where the value θi is the threshold parameter associated to the element Si.
Typically, the threshold parameter θi associated to Si is equal to 0 so that the switch is inactive if

there is no activators, and it switches on when one or more activators and no inibithors are present. Note
that the effect of activators and inhibitors is addictive: the number of activators has to be greater than the
number of inhibitors in order for the element to be activated, and self-activation makes the element itself
to be counted among activators. A node which needs more than one activators to be switched on can be
represented in the model by setting θi to a value greater than 0.

There is a natural representation of Boolean networks in terms of a graph where the nodes represent
the elements and the edges represent the interactions between the elements; an activating edge is indi-
cated by a (green)→ while an inhibiting one is indicated by a (red) a. Non self-activating elements are
represented by nodes with (yellow) half-arrow (⇀) self loops.

Starting from an initial condition, the network produces a dynamical sequence of states, and it can
reach either a fixed point or a periodic attractor. We introduce an example to illustrate threshold Boolean
networks and their dynamic evolution.

Example 3.1. Let us consider the threshold Boolean network (M,E) with elementsM = {A,B,C,D}
such that Msa = {A,B} and Mnsa = {C,D} and with the edges depicted in Fig. 1. Thus, the elements
A and C are self-activating, while B and D are not. We also assume that the threshold parameter for
each element is 0.

We describe the temporal evolution of the network by considering an initial state in which only
element D is present. We have
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Step A B C D

1 0 0 0 1

2 1 1 0 0

3 1 1 1 0

4 0 0 1 1

5 0 0 0 1

Initially, element D stimulates the activation of both elements A and B because element C, their in-
hibitor, is not present. Note that at the second step the element D is inactive because it is non self-
activating. Then, at step 3, the element C is active because it is activated by B, while A and B are still
active because they are self-activating and at step 2 C was inactive. At step 4, element C activates D and
inhibitsA andB, which become inactive. Finally, at step 5 also C becomes inactive because inhibited by
D. The last state coincides with the first one, so we reached the end of a cycle. Different evolutions can
be obtained starting from different configurations. Consider, for example, an initial configuration where
all the elements except B are active.

Step A B C D

1 1 0 1 1

2 1 1 1 1

3 1 1 1 1

After one step the system reaches a stationary state, that is a stable state from which no different
configuration can be reached.

4. Encoding Threshold Boolean Networks into Reaction Systems

We present an encoding of threshold Boolean networks into closed Reaction Systems. Given a Boolean
network (M,E) with M = {S1, S2, . . . Sn} we define, for Si ∈M ,

Act(Si) = {Sj | j ∈ [1, n] ∧ aij = 1} In(Si) = {Sj | j ∈ [1, n] ∧ aij = −1}

We recall that aij denotes an edge from element Sj to element Si. Hence, Act(Si) reports the
elements Sj which activates Si and analogously In(Si) reports the elements Sj which inhibits it.

Definition 4.1. Let (M,E) be a threshold Boolean network with elements M = {S1, S2, . . . Sn} and
threshold parameters Θ = {θ1, θ2, . . . θn}. We define its translation as the closed Reaction System
RS((M,E)) = (M,A), where reactions in A are constructed according to the following inference
rules:

1)

Pi ⊆ Act(Si) Ii ⊆ In(Si)

#Pi −#(In(Si) \Ii) = θi + 1

(Pi, Ii, {Si}) ∈ A

2)

Si ∈Msa Pi ⊆ Act(Si) Ii ⊆ In(Si)

#Pi −#(In(Si)\Ii) = θi

(Pi ∪ {Si}, Ii, {Si}) ∈ A
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The closed Reaction System RS((M,E)) simulates the threshold Boolean network (M,E) using
reactions obtained by applying either the inference rule 1) or the inference rule 2). Rule 1) defines the
reactions which simulate the production of an element Si at time t + 1 whenever at time t the number
of the elements which activate Si minus the number of the elements which inhibit Si is greater than θi
(according to the rule given in Section 3). This behavior is simulated by a reaction which has as product
Si, as reactants Pi and as inhibitors Ii where Pi is a subset of the elements which activates Si and Ii is a
subset of the elements which inhibits it. Note that this reaction can be applied if in the Reaction System
state none of the elements in Ii is present. As a consequence, the set of the elements which are inhibitors
of Si and which may be present is given by In(Si)\Ii. Therefore, we require that the cardinality of Pi
minus that of In(Si)\Ii is greater than θi.

It is worth noting that our aim is to built a non redundant set of reactions, that is, for each pair of
reactions a1 = (R1

a, I
1
a , P

1
a ) and a2 = (R2

a, I
2
a , P

2
a ) such that P 1

a ∩P 2
a 6= ∅, we have that eitherR2

a 6⊇ R1
a

or I2a 6⊇ I1a . This condition ensures that each reaction is necessary, namely there exist two configurations
in which each of the two reactions is applicable, while the other is not. To achive this goal, we require
that the difference between the cardinality of Pi and the cardinality of In(Si)\Ii is exactly equal to θi+1.

Rule 2 applies only in case of self activating nodes by adding a new rule that model the self activation.
Indeed, in this case, activating elements remain active at time t + 1 if they are present, according to the
rule given in Section 3. In Reaction Systems, due to the non-permanency of objects, the objects carried
over to the next step are only those produced by reactions. Therefore, in this case, the reaction which
simulates the behavior has Si as reactant and also as product. Similarly as in the case of Rule 1, Pi is a
subset of the elements which activate Si, and Ii is a corresponding subset of the elements which inhibits
Si. In this case, however, we require that the cardinality of Pi minus the number of inhibitors which
might be present (i.e. (In(Si)\Ii) ) is exactly θi.

Example 4.2. We give the translation of the threshold Boolean network (M,E) presented in Example
3.1. Fig. 1) illustrates the interactions between the elements of the networkM = {A,B,C,D} such that
Msa = {A,C} and Mnsa = {B,D}.

By assuming again that the threshold parameter for each element is 0 we obtain the closed Reaction
SystemRS((M,E)) = (M,A) with reactions A defined as follows:

({D}, {C}, {A}) ({C}, ∅, {D}) ({A,D}, ∅, {B}) ({A}, {C}, {A}) ({C}, {D}, {C})
({B}, {D}, {C}) ({A}, {C}, {B}) ({D}, {C}, {B}) ({A,D}, {}, {A}) ({B,C}, {}, {C})

The reactions on the first three columns on the left are obtained by applying Rule 1, while those in
the two columns on the right by applying Rule 2. The three columns on the left contain one or more
reactions for each element to be produced.

For the production of A, C and D there is exactly one reaction each. The reaction producing A has
D as reactant and C as inhibitor, while C can be produced from B if inhibitor D is not present. Element
D can be produced from reactant C without any other condition.

Element B can be activated by two elements, A and D, and it is inhibited by C. Hence, there
are three different reactions corresponding to the possible combinations of elements which can activate
B. Note that the requirements of Rule 1 guarantee that only minimal combinations of reactants and
inhibitors are considered. For instance a reaction such as a2 = ({A,D}, {C}, {B}) is not present in
the set of reactions because it is subsumed by a1 = ({A,D}, ∅, {B}) since the latter reaction can be
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applied regardless the presence of C. This implies that there cannot exists any set in which reaction a2
is applicable while a1 is not, and, indeed, R2

a 6⊇ R1
a or I2a 6⊇ I1a does not hold in this case.

The two columns on the right shows the additional reactions for self-activating elements, A and
C, obtained by Rule 2. Similarly as in the previous case there can be one or more reactions for each
self-activating element, and these reaction have the self-activating element both as a reactant and as a
product.

We can now prove the soundness of the translation of threshold Boolean networks into closed Reac-
tion Systems. To relate the state of a threshold Boolean network with the configuration of the associated
Reaction System we introduce the following definition.

Definition 4.3. Given a threshold Boolean network (M,E) with M = {S1, . . . Sn} and a state at time t,
S(t) = {S1(t), S2(t), . . . Sn(t)}, the translation of the state S(t) into a corresponding Reaction System
configuration is given byRS(S(t)), defined as follows: RS(S(t)) = {Si | Si(t) = 1, i ∈ [1, n]}.

Theorem 4.4. Let (M,E) be a threshold Boolean network with elements M = {S1, S2, . . . Sn} and
threshold parameters Θ = {θ1, θ2, . . . θn}. Given a state at time t, S(t) = {S1(t), S2(t), . . . Sn(t)} we
have that

RS(S(t+ 1)) = resA(RS(S(t)))

where A = RS((M,E)) = (M,A) is the Reaction System obtained by the translation.

Proof:
We first show thatRS(S(t+ 1)) ⊇ resA(RS(S(t))).

Suppose that Si ∈ resA(RS(S(t))), then there are two cases:

- There exists inA a rule (Pi, Ii, {Si}) such that Pi ⊆ RS(S(t)) and Ii 6⊆ RS(S(t)). For construc-
tion of the rule, we know that Pi ⊆ Act(Si), Ii ⊆ In(Si), #Pi−#(In(Si)\Ii) = θi−1. Because
the rule is applicable, we know that the number of promoters inRS(S(t)) is greater than the num-
ber of inhibitors, thus

∑
j
aijSj(t) > θi and Si(t+ 1) = 1. By definition, Si ∈ RS(S(t+ 1)).

- Si ∈ Msa and there exists in A a rule (Pi ∪ {Si}, Ii, {Si}) such that Pi ⊆ RS(S(t)) and
Ii 6⊆ RS(S(t)). By the construction of the rule, we know that Pi ⊆ Act(Si), Ii ⊆ In(Si),
#Pi −#(In(Si)\Ii) = θi. Since the rule is applicable, we know that the number of promoters in
RS(S(t)) is greater than or equal to the one of inhibitors, thus

∑
j
aijSj(t) ≥ θi and Si(t+1) = 1.

Therefore, by definition, Si ∈ RS(S(t+ 1)).

We now prove that RS(S(t+ 1)) ⊆ resA(RS(S(t))).
Assume that Si ∈ RS(S(t+ 1)), then, by definition, S(t+ 1) = 1. There are two cases:

-
∑
j
aijSj(t) > θi, then we have #PTi > #TIi − θi,

where PTi = {Sj |Sj ∈ Act(Si) ∧ Sj(t) = 1} and TIi = {Sj |Sj ∈ In(Si) ∧ Sj(t) = 1}.
By construction, PTi ⊆ RS(S(t)) and TIi ⊆ RS(S(t)). By definition, we have a rule in A,
(Pi, Ii, {Si}), such that Pi ⊆ PTi, Ii ⊆ I , TIi ⊆ (In(Si)\Ii), and #Pi−#(In(Si)\Ii) = θi+1.
Since Ii ∩ TIi = ∅, the rule is applicable and Si ∈ resA(RS(S(t))).
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- Si ∈Msa, Si(t) = 1, and
∑
j
aijSj(t) > θi, then we have #PTi > #TIi − θi,

where PTi = {Sj |Sj ∈ Act(Si) ∧ Sj(t) = 1} and TIi = {Sj |Sj ∈ In(Si) ∧ Sj(t) = 1}.
By construction, PTi ⊆ RS(S(t)) and TIi ⊆ RS(S(t)). By definition we have a rule in A,
(Pi∪{Si}, Ii, {Si}), such that Pi ⊆ PTi, Ii ⊆ I , TIi ⊆ (In(Si)\Ii), and #Pi−#(In(Si)\Ii) =
θi. Since Ii ∩ TIi = ∅, the rule is applicable and Si ∈ resA(RS(S(t))).

This concludes the proof. ut

Due to Theorem 4.4, a threshold Boolean network (M,E) with a state S(0) at time 0 can be simulated
by the corresponding closed Reaction SystemRS((M,E)) by considering the initial stateRS(S(0)).

At this point, it is important to count the number reactions of the closed Reaction System necessary
to simulate a threshold Boolean network (M,E), since this would give us a measure of the space com-
plexity of the encoding. Such a number depends on the number of the nodes M and of the edges of the
network E, and also on the threshold parameters Θ. For each Si ∈M the number of the reactions which
have Si as a product depends on the cardinalities of Act(Si) and In(Si), and on θi. Indeed, Act(Si) and
In(Si) represents the number of the incoming edges which activates and inhibits Si respectively.

Proposition 4.5. Given a threshold Boolean network (M,E) with elements M = {S1, S2, . . . Sn} and
threshold parameters Θ = {θ1, θ2, . . . θn}, let RS((M,E)) = (S,A) be the corresponding closed Re-
action System. The following two properties hold:

• For each i ∈ {1, . . . , n}, the number of the reactions which produce the element Si, N(Si) =
#({(R, I, P ) ∈ A | Si ∈ P}), can be computed as follows:

N(Si) =



∑min(mi,(li+1+θi))
k=1+θi

(
mi
k

)
×
(

li
k−1−θi

)
, if Si ∈Mnsa;

∑min(mi,(lj+1+θi))
k=1+θi

(
mi
k

)
×
(

li
k−1−θi

)
+∑min(mi,(lj+θi))

h=θi

(
mi
h

)
×
(

li
k−θi

)
, if Si ∈Msa.

where mi = #(Act(Si)) and li = #(IN(Si)).

• We have that #(A) =
∑n

i=1N(Si).

The previous result is a direct consequence of Definition 4.1.

Example 4.6. Let us consider the closed Reaction System RS(M,E) = (M,A), presented in the Ex-
ample 4.2, which is the translation of the threshold Boolean network (M,E) of Example 3.1. The
reaction system has 12 reactions. Indeed, since A,B and C belong to Msa while D belongs to Mnsa and
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all threshold parameters are 0, by applying Proposition 4.5, we obtain:

N(A) =
∑min(1,2)

i=1

(
1
i

)
×
(

1
i−1
)

+
∑min(1,1)

i=0

(
1
i

)
×
(
1
i

)
= 1 + (1 + 1) = 3

N(B) =
∑min(2,2)

i=1

(
2
i

)
×
(

1
i−1
)

+
∑min(2,1)

i=0

(
2
i

)
×
(
1
i

)
= (2 + 1) + (1 + 2) = 6

N(C) =
∑min(1,1)

i=1

(
1
i

)
×
(

0
i−1
)

+
∑min(1,0)

i=0

(
1
i

)
×
(
0
i

)
= 1 + 1 = 2

N(D) =
∑min(1,2)

i=1

(
1
i

)
×
(

0
i−1
)

= 1

5. The Translation Tool

We developed a software tool, written in C, which takes a description of a Boolean network and returns
the set of rules of the Reaction System simulating the network. The description of the Boolean network
is given in a text file named “genes.txt” as follows. The first line of the file must contain the number
of nodes of the Boolean network. The subsequent lines describe each single node of the network. Each
line contains the name of the node, followed by a boolean value which specifies whether the node is
self-activating, 1, or not, 0, and, finally, by the value of the related threshold θ. After the description of
the nodes, the subsequent lines describe each single edge of the network. First of all we have a line with
the number of edges. Then, we have a line describing each edge in which we have the ending node, Sj ,
the starting node, Si, and a value aij (either −1 or +1). Several controls have been implemented in our
tool in order to be sure that file “genes.txt” describes a consistent boolean network.

As an example, the input file corresponding to the network described in the Example 3.1 should be
the following.

4

A 1 0

B 0 0

C 1 0

D 0 0

8

A C -1

A D 1

B A 1

B C -1

B D 1

C B 1

C D -1

D C 1

Observe that the self-loop of the non-self-activating nodes B and D are not described in the list of
edges because they are indicated (with a 1) in the description of the nodes.

The output is produced in the file “rules.txt”. In this case the rules of the reaction systemA1 produced
by the tool are the following.
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Figure 2. The evolution of the gene regulatory network of Fig. 1

({D},{C},{A})

({A,D},{},{A})

({A},{C},{A})

({A},{C},{B})

({D},{C},{B})

({A,D},{},{B})

({B},{D},{C})

({C},{D},{C})

({B,C},{},{C})

({C},{},{D})

The rules in file “rules.txt” can now be used to execute the reaction system that simulate the behaviour
of the Boolean network. Thus, the following evolution can be observed.

{D} →A1 {A, B} →A1 {A, B, C} →A1 {C, D} →A1 {D}

As expected, the steps of the execution of the reaction system (depicted in Fig. 2, where dark circles
indicates the activation of the corresponding genes) “mimic” the evolution of the Boolean network as
described in Example 3.1.

The tool is available at the address http://www.di.unipi.it/msvbio/software/TBN2RS.html.

6. Simulating the Yeast-Cell Cycle Boolean Network

The cell-cycle process by which a cell goes and divides into two cells is a vital process the regulation of
which is conserved among the eukaryotes [27]. The process mainly consists in four phases depicted in
Figure 3.

In phase G1 the cell grows and, under appropriate conditions, commits to division. In phase S the
DNA is synthesized and chromosomes replicated, G2 is the phase where the cell checks the duplicated
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chromosomes, and finally in the M (Mitosis) phase the cell is divided into two. After the Mitosis phase,
the cell enters the G1 phase, hence completing a “cycle”. There are about 800 genes involved in the cell-
cycle process of the budding yeast [33]. However, the number of key regulators that are responsible for
the control and regulation of this complex process is much smaller. Based on extensive literature studies,
the authors in [26] constructed a network of key regulators involving 11 genes. The relations between
genes are described by the boolean network (MCell, ECell) depicted in Figure 4, where the threshold
parameter θ is always 0. The boolean network was used to study the time evolution of the protein states.
Starting from the 211 = 2048 possible initial states describing a configuration for gene activation, they
discovered that all of them flow into one of seven attractor stationary states. In particular, among the
seven fixed points there is one big attractor that attracts 1764 initial states. We translated the Boolean
network (MCell, ECell) of Figure 4 into a Reaction SystemAcell = RS(MCell, ECell) = (MCell, ACell)
using the tool described in Section 5. The Reaction System obtained as result in file “rules.txt” has 50
reactions. For the sake of simplicity, we show a manipulated version of it where each reaction has a
identification name. The 50 reactions are listed in Fig. 5.

Let us focus on the translation of reactions describing the production (activation) of a single node of
the Boolean network. Consider the central node named Sic1 in the Boolean network of Figure 4. It has
2 activating incoming arcs and 3 inhibiting incoming arcs. Since Sic1 ∈ Msa, by Proposition 4.5 there
will be

∑min(2,4)
i=1

(
2
i

)
×
(

3
i−1
)

+
∑min(2,3)

i=0

(
2
i

)
×
(
3
i

)
= (2 + 3) + (1 + 6 + 3) = 15 reactions producing

Sic1. Indeed, by applying our translation we find the rules a7−a22 in Fig. 5 for the production of Sic1.
Note that the behavior of the reactions producing Sic1 faithfully model the activation of gene Sic1

in the Boolean network. Consider the case where genes Cdc20, Swi5 and Clb5, 6 are all active according
to the Boolean network of Figure 4 after one step Sic1 becomes active. The previous state is represented
in the Reaction System as the set of activated genes D0 = {Cdc20, Swi5, Clb5, 6}. Now starting from
D0, we can apply rule ({Cdc20, Swi5}, {Clb1, 2, Cln1, 2}, {Sic1}) to obtain the production(activation)
of gene Sic1, therefore Sic1 ∈ D1 where D0 →ACell

D1. Note that if Cln1, 2 was also active in the
initial state then gene Sic1 could not be activated according to the Boolean network. This is modeled
in the Reaction System by the fact that none of the 15 rules producing Sic1 could be applied to the set
D0 = {Cdc20, Swi5, Clb5, 6, Cln1, 2}. Once we have obtained the complete Reaction System Acell
that simulates the entire Boolean network we can run it with any initial state D0 in order to study the
behaviour of the cell when some genes are activated. As a first experiment we executed the Reaction
System with the initial state D0 that it was observed in nature triggers the cell-cycle. Indeed, usually

Figure 3. The complete cell-cycle
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the cell stays in a stationary state where just genes Sic1 and Cdh1 are active. When the cell grows, the
external cell size signal Cell size arrives and activates Cln3. This “excites” the cell from its stationary
state and triggers the cycle. We can observe the different states of activation/deactivation of genes during
the cell cycle by executing the Reaction System with an initial state where Sic1, Cdh1 and Cln3 are
active.
Thus, the following evolution can be observed.

{Sic1, Cdh1, Cln3} →ACell {SBF, MBF, Sic1} →ACell

{SBF, MBF, Sic1, Cln1, 2} →ACell {SBF, MBF, Cln1, 2} →ACell

{SBF, MBF, Cln1, 2, Clb5, 6} →ACell

{SBF, MBF, Cln1, 2, Clb5, 6, Clb1, 2, Mcm1} →ACell

{Cln1, 2, Clb5, 6, Clb1, 2, Mcm1, Cdc20} →ACell {Clb1, 2, Mcm1, Cdc20, Swi5} →ACell

{Clb1, 2, Mcm1, Cdc20, Swi5, Sic1} →ACell {Mcm1, Cdc20, Swi5, Sic1} →ACell

{Cdc20, Swi5, Sic1, Cdh1} →ACell {Swi5, Sic1, Cdh1} →ACell

{Sic1, Cdh1} →ACell {Sic1, Cdh1}

At this point the evolution reaches the stationary state {Sic1, Cdh1} and the cell waits for another exter-
nal stimulus to arrive, that is an external new cell size signal that activates gene Cln3 and triggers a new
cycle. The evolution of the Reaction System represents the evolution of the Boolean network depicted
in Figure 6 that describes the entire cell cycle. The Reaction SystemACell can now be used for studying
the influence that each gene has in the cell cycle. Each gene can be silenced in turn simply by deleting
the rules that produces such gene. Note that this corresponds to simulate the Boolean network where we
canceled the node representing the gene together with all his arcs. As a second example consider the case
where gene SBF was silenced. To this aim, let the Reaction SystemACell = (MCell, ACell), we consider
the Reaction System ACell−SBF = (MCell, ACell/{(Ra, Pa, {SBF})| a ∈ ACell}). In this case, starting
from the stationary state {Sic1, Cdh1, Cln3} the following evolution can be observed.

{Sic1, Cdh1, Cln3} →ACell−SBF {Cdh1, MBF, Sic1} →ACell−SBF {Cdh1, MBF, Sic1}

The corresponding evolution on the Boolean network is depicted in Figure 7.

Figure 4. The Boolean network (MCell, ECell).
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a1 = ({Cln3}, {Clb1, 2}, {SBF,MBF})
a2 = ({SBF}, {Clb1, 2}, {SBF})
a3 = ({SBF,Cln3}, {}, {SBF})
a4 = ({MBF}, {Clb1, 2}, {MBF})
a5 = ({MBF,Cln3}, {}, {MBF})
a6 = ({SBF}, {}, {Cln1, 2})
a7 = ({Cdc20}, {Clb5, 6, Clb1, 2, Cln1, 2}, {Sic1})
a8 = ({Swi5}, {Clb5, 6, Clb1, 2, Cln1, 2}, {Sic1})
a9 = ({Sic1}, {Clb5, 6, Clb1, 2, Cln1, 2}, {Sic1})
a10 = ({Cdc20, Swi5}, {Clb1, 2, Cln1, 2}, {Sic1})
a11 = ({Cdc20, Swi5}, {Clb5, 6, Cln1, 2}, {Sic1})
a12 = ({Cdc20, Swi5}, {Clb5, 6, Clb1, 2}, {Sic1})
a13 = ({Sic1, Cdc20, Swi5}, {Cln1, 2}, {Sic1})
a14 = ({Sic1, Cdc20, Swi5}, {Clb5, 6}, {Sic1})
a15 = ({Sic1, Cdc20, Swi5}, {Clb1, 2}, {Sic1})
a16 = ({Sic1, Cdc20, Swi5}, {Clb1, 2}, {Sic1})
a17 = ({Sic1, Cdc20}, {Clb1, 2, Cln1, 2}, {Sic1})
a18 = ({Sic1, Cdc20}, {Clb5, 6, Cln1, 2}, {Sic1})
a19 = ({Sic1, Cdc20}, {Clb5, 6, Clb1, 2}, {Sic1})
a20 = ({Sic1, Swi5}, {Clb1, 2, Cln1, 2}, {Sic1})
a21 = ({Sic1, Swi5}, {Clb5, 6, Cln1, 2}, {Sic1})
a22 = ({Sic1, Swi5}, {Clb5, 6, Clb1, 2}, {Sic1})
a23 = ({Cdc20}, {Clb5, 6, Cln1, 2, Clb1, 2}, {Cdh1})
a24 = ({Cdh1}, {Clb5, 6, Cln1, 2, Clb1, 2}, {Cdh1})
a25 = ({Cdh1Cdc20}, {Clb5, 6, Clb1, 2}, {Cdh1})
a26 = ({Cdh1Cdc20}, {Cln1, 2, Clb1, 2}, {Cdh1})
a27 = ({Cdh1Cdc20}, {Clb5, 6, Cln1, 2}, {Cdh1})
a28 = ({MBF}, {Sic1, Cdc20}, {Clb5, 6})
a29 = ({MBF,Clb5, 6 }, {Cdc20}, {Clb5, 6})
a30 = ({MBF,Clb5, 6 }, {Sic1}, {Clb5, 6})
a28 = ({Clb5, 6}, {Sic1, Cdc20}, {Clb5, 6})
a29 = ({Clb5, 6}, {}, {Mcm1})
a30 = ({Clb1, 2}, {}, {Mcm1})
a31 = ({Clb1, 2}, {}, {Cdc20})
a32 = ({Mcm1}, {}, {Cdc20})
a33 = ({Cdc20}, {Clb12}, {Swi5})
a34 = ({Mcm1}, {Clb12}, {Swi5})
a35 = ({Cdc20,Mcm1}, {}, {Swi5})
a36 = ({Mcm1}, {Sic1, Cdh1, Cdc20}, {Clb1, 2})
a37 = ({Clb5, 6}, {Sic1, Cdh1, Cdc20}, {Clb1, 2})
a38 = ({Clb1, 2}, {Sic1, Cdh1, Cdc20}, {Clb1, 2})
a39 = ({Mcm1, Clb5, 6}, {Cdh1, Cdc20}, {Clb1, 2})
a40 = ({Mcm1, Clb5, 6}, {Cdh1, Sic1}, {Clb1, 2})
a41 = ({Mcm1, Clb5, 6}, {Sic1, Cdc20}, {Clb1, 2})
a42 = ({Mcm1, Clb1, 2}, {Cdh1, Cdc20}, {Clb1, 2})
a43 = ({Mcm1, Clb1, 2}, {Cdh1, Sic1}, {Clb1, 2})
a44 = ({Mcm1, Clb1, 2}, {Sic1, Cdc20}, {Clb1, 2})
a45 = ({Clb1, 2, Clb5, 6}, {Cdh1, Cdc20}, {Clb1, 2})
a46 = ({Clb1, 2, Clb5, 6}, {Cdh1, Sic1}, {Clb1, 2})
a47 = ({Clb1, 2, Clb5, 6}, {Sic1, Cdc20}, {Clb1, 2})
a48 = ({Clb1, 2, Clb5, 6,Mcm1}, {Cdh1}, {Clb1, 2})
a49 = ({Clb1, 2, Clb5, 6,Mcm1}, {Sic1}, {Clb1, 2})
a50 = ({Clb1, 2, Clb5, 6,Mcm1}, {Cdc20}, {Clb1, 2})

Figure 5. The reactions of Acell.
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Figure 6. The cell cycle evolution

It can be observed that if gene SBF was silenced, the cell could not perform the cycle because after
one step it reaches a new stationary state. This shows that the gene SBF was, in some way, necessary
for the cycle to be performed. As a last example consider the case where gene Mcm1 was silenced. The
evolution we obtain by considering the Reaction System
ACell−Mcm1 = (MCell, ACell/{(Ra, Pa, {Mcm1})| a ∈ ACell}) starting with the stationary state
{Sic1, Cdh1, Cln3} is directly depicted in Figure 8.

In this case we obtain a very different result from the previous one. Indeed, it can be observed
that even if gene Mcm1 was silenced the cell could perform most of its cycle and go back to the initial
stationary state. This suggests that the gene Mcm1 was not necessary for the cycle to be performed.
Indeed, the cell can recover even if, for some reasons, gene Mcm1 could not be activated.

7. The SOS response in Escherichia coli

DNA damage in Escherichia coli evokes a response mechanism called the SOS response. The genetic
circuit of this mechanism includes the genes RecA and LexA, which regulate each other via a mixed feed-
back loop involving transcriptional regulation and protein-protein interaction. We follow the description
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Figure 7. The cycle evolution where gene SBF was silenced

of the boolean network in [32] describing the SOS response in Escherichia coli. The DNA repair is
induced in response to the existence of a single stranded DNA (ssDNA). The desired function of this
network is as follows: Upon accumulation of ssDNA, RecA is recruited to the single stranded regions
of DNA and becomes activated. Activation of RecA releases the inhibition of SOS genes by facilitating
self-cleavage of their repressor LexA. The main activator of SOS gene is Sigma70, which belongs to
a family of transcription initiation factors responsible for stress response. Its downstream genes can be
simplified into two genes, SSB and UmuDC, which are responsible for the repair of DNA damage and in-
hibition of RecA. When the DNA repair is completed, LexA is activated and the expression of SOS genes
is down-regulated [30, 20]. The natural network performing this function is presented in Fig 9. As can
be observed, each gene has at most one promoter and always one inhibitor. Each node is self-activating.
However, in this case the update rules of the network are slightly different from the ones that we saw for
threshold Boolean networks that we saw in Section 3 since in this case the inhibitor role dominates. This
means that the activation of the inhibitor always prevent the activation of the inhibited gene. In general,
this kind of network are not suitable for our tool because in order to treat them we would need to allow
to express some kind of weight on the promotion and inhibition arcs. Of course this will be the focus
of a future extension of our translation and tool, however, in this simple case the network can be treated
with our tool by simply adding some arcs in the description. The reaction system simulating the boolean
network of the SOS response of the Escherichia coli has the following reactions.

({ssDNA},{SSB},{RecA})

({Sigma70},{RecA},{LexA})

({One},{LexA},{Sigma70})

({Sigma70},{LexA},{UmuDC})

({Sigma70} {LexA},{SSB})

({ssDNA},{UmuDC},{ssDNA})

({RecA},{SSB},{RecA})

({LexA},{RecA},{LexA})

({Sigma70},{LexA},{Sigma70})

({UmuDC},{LexA},{UmuDC})

({SSB},{LexA},{SSB})

Once we have the reaction system simulating the Boolean network this can be executed for simulating
the updating of the Boolean network.
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Figure 8. The cycle evolution where gene Mcm1 was silenced

Figure 10 depicts the evolution of the reaction system that mimics what can be observed in nature.
As described above, the DNA repair is induced in response to the existence of a single stranded DNA
(ssDNA), hence in the initial configuration both ssDNA and LexA are active. Then, ssDNA induces the
activation of RecA and this starts the reparing cycle which leasts for 8 steps. At the end, LexA remain
active and waiting for another activation of ssDNA starting the reparation cycle again.

8. Conclusions

In this paper we proposed a method and developed a tool for the translation of threshold Boolean net-
works into Reaction Systems. This allows us to simulate the behaviour of a Boolean network simply
by executing the Reaction System we obtain. As a first example, we applied our method to model the
extensively studied Cell cycle that allows a yeast cell to split. The translation of the boolean network
describing the Cell cycle into a Reaction System allowed us to investigate the role of different genes sim-
ply by “playing” with the rules related to the activation of such gene. In this way, we studied the effects
of the silencing of some genes such SBF and Mcm1 on the entire cell cycle. As a second example we
applied our translation to the boolean network describing the response mechanism of the DNA damage
in Escherichia coli (called the SOS response). We used the execution of the obtained Reaction System
as a description of the behaviour of this repair mechanism that can be observed in nature.

The main advantage of our translation is that well known methods for reasoning on Reaction Systems
can now be applied to study the properties of the boolean networks they simulate. For example, in [2]
we applied techniques to detect dynamic causalities relations in Reaction Systems (see [13, 4, 3, 5, 6, 1])
to the translation of the Cell Cycle regulatory network to determine causality relations between genes.
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Figure 9. The boolean network of the the SOS response of the Escherichia coli.

Figure 10. The evolution of the SOS response of the Escherichia coli.

Some notions of causality can be formulated in terms of information flow properties [21, 15, 14], for
instance by exploiting the notion of opacity of Reaction Systems, introduced in [23, 22]. A development
of our approach may consist in the investigation and application of a notion of initial state opacity for
Reaction Systems obtained as translations of threshold Boolean networks. Let us suppose that we want to
learn the initial state of a Boolean network based on the knowledge of a state reached after a given number
of steps. The possibility of determining the initial state of the network depends on what information we
can observe on the states and on the dynamics of the network itself. Such a possibility can be expressed
in terms of opacity of Reaction Systems.

As a future work we plan to extend our method (and tool) to deal with threshold Boolean networks
where edges are equipped with an arbitrary weight. That is, allowing aij in the definition of Boolean
networks given in Section 3 to be any natural number instead of just 1 or −1. This would allows us to
easily model gene regulatory networks in which inhibitors are dominant as the one described in Section 7.
It is worth noting that in the general case of weigthed edges, a difficult part will be to guarantee that our
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translation produces a non redundant set of rules with a minimal number of objects.
An additional further development of our approach could consist in considering asynchronous Boolean

networks, namely models of Gene Regulatory Networks in which the activation state of at most one gene
can be updated at each step. The possibilty of dealing with asynchronous networks would allow our
approach to become applicable to a larger class of models of Gene Regulatory Networks. However, the
synchronous nature of Reaction Systems hampers the translation of asynchronous networks. As a conse-
quence, this development would probably require also the definition of a suitable asynchronous variant
of Reaction Systems.
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