
Università degli Studi di Bologna

Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea in Informatica

Materia di Tesi: Linguaggi di programmazione

Implementazione di un linguaggio

di programmazione distribuito

Tesi di Laurea di:

Paolo Milazzo

Relatore:

Chiar.mo Prof. Cosimo Laneve

Correlatore:

Dott. Lucian Wischik

II Sessione

Anno Accademico 2002-2003

Università degli Studi di Bologna

Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea in Informatica

Materia di Tesi: Linguaggi di programmazione

Implementazione di un linguaggio

di programmazione distribuito

Tesi di Laurea di:

Paolo Milazzo

Relatore:

Chiar.mo Prof. Cosimo Laneve

Correlatore:

Dott. Lucian Wischik

Parole chiave: Process algebra, π-calculus, programming language

linear forwarder calculus, bytecode, XML

II Sessione

Anno Accademico 2002-2003

A Lia ed alla mia famiglia

Contents

Prefazione 1

1 Introduction 5

1.1 Description of the Work . 6

1.2 Related Works . 8

2 Core Language and Compiler Theory 9

2.1 Hipi Core Language Syntax 9

2.2 Hipi Core Language Semantics 13

2.3 Bytecode Syntax . 17

2.4 Bytecode Semantics . 19

2.5 Core Language Encoding . 23

3 High Level Languages and Hipi Compiler 39

3.1 Hipi: Language Definition . 39

3.2 Translating Hipi into Hipi core 51

3.3 XIL: XML Intermediate Language 56

3.4 The Hipi Compiler . 63

3.5 The Network Simulator . 68

4 Thinking in Hipi 73

4.1 Idioms . 73

4.2 Mutable Variables as Processes 76

4.3 Data Structures as Processes 77

4.4 Design Pattern: The Delegate (n–ary Forwarder) 83

4.5 Design Pattern: The Assistant (Dynamic Forwarder) 87

4.6 Design Pattern: Proxy . 95

4.7 Example: Concurrent Dictionaries 101

5 Conclusions 107

5.1 Future Works . 108

5.2 Ringraziamenti . 108

A XML-Schema of XIL 111

Prefazione

Questo documento è scritto completamente in inglese. Lo scopo di questa

prefazione è di illustrare brevemente e in lingua italiana il lavoro svolto. Si

tratta perciò di una introduzione che si propone di dare una visione panoramica

dell’intero lavoro.

Negli ultimi anni, le reti di computer hanno rapidamente sostituito i com-

puter stand–alone come ambiente per l’esecuzione di applicazioni software. Al

giorno d’oggi, quasi tutte le applicazioni più diffuse utilizzano Internet per

comunicare, per procurare informazioni o per auto–aggiornarsi. In futuro, la

relazione tra il software e la rete diventerà ancora più forte: ci si attende, in-

fatti, che la rete venga utilizzata per la comunicazione fra componenti software

collaborativi, ovvero che le applicazioni diventino distribuite.

L’esempio principe di componenti software distribuiti sono, ad oggi, i Web

Service [Con02]. I Web Service sono interfacce che descrivono operazioni ac-

cessibili tramite la rete. L’esecuzione di tali operazioni può essere richiesta

dalle applicazioni tramite l’invio di messaggi XML standardizzati. In questo

scenario, quindi, un’applicazione distribuita può essere vista come un’orche-

strazione di operazioni messe a disposizione da Web Service.

A fronte di questa evoluzione delle applicazioni software, non corrisponde

però un’evoluzione dei linguaggi di programmazione. I linguaggi attualmente

più diffusi si basano in maggioranza sui paradigmi di programmazione im-

perativo o orientato agli oggetti. Tali paradigmi non sono fatti per descri-

vere esecuzioni parallele e distribuite di componenti software, e per questo

motivo spesso diventa difficile descrivere correttamente il comportamento di

1

2 PREFAZIONE

un’applicazione o verificarne delle proprietà.

Concorrenza e distribuzione possono invece essere descritte e studiate uti-

lizzando una delle tante varianti del π–calculus [MPW92]: un’algebra di pro-

cessi che negli ultimi dieci anni è divenuta lo strumento più diffuso per ra-

gionare formalmente su questioni di parallelismo e interoperabilità. Tramite

il π–calculus si possono descrivere insiemi di processi eseguiti in parallelo che

comunicano tra loro utilizzando message passing sincrono su canali. Un canale

del π–calculus è un entità, identificata da un nome, che può essere creata dai

processi, può essere utilizzata per inviare e ricevere messaggi e il cui nome può

essere utilizzato come contenuto di una comunicazione.

Tra le innumerevoli varianti del π–calculus quella sicuramente più utilizzata

dalla comunità di ricerca è il π–calculus asincrono [MS98]. In tale variante

l’invio di messaggi su canali è effettuato in modo asincrono, quindi non bloc-

cante: questa caratteristica meglio si presta a descrivere le comunicazioni sulla

rete. Un’altra variante del π–calculus (che verrà utilizzata in questo lavoro) è

invece il localized linear forwarder calculus [GLW03]. In tale algebra si usano

comunicazioni asincrone, vi è la possibilità di redirezionare singoli messaggi da

un canale ad un altro ed esiste una definizione implicita di locazione che può

essere utilizzata per descrivere l’aspetto di distribuzione.

Lo scopo principale di questo lavoro è di definire Hipi : un linguaggio di

programmazione distribuito basato sul π–calculus. Tramite questo linguaggio

sarà possibile scrivere programmi distribuiti il cui comportamento potrà es-

sere studiato attraverso i metodi normalmente utilizzati per il π–calculus. Si

definirà inoltre un linguaggio intermedio, XML Intermediate Language, basato

sul localized linear forwarder calculus, nel quale i programmi verranno compi-

lati e il quale verrà interpretato da un insieme di macchine virtuali distribuite

sulla rete. Il processo di compilazione verrà descritto formalmente e ne verrà

dimostrata la correttezza. Inoltre si implementerà il compilatore seguendone

la specifica formale e si fornirà un semplice simulatore di una rete di macchine

virtuali distribuite che potrà essere utilizzato per interpretare il codice inter-

medio. In fine si analizzeranno alcuni aspetti particolari della progettazione e

della programmazione di applicazioni distribuite in hipi: si descriveranno tec-

PREFAZIONE 3

niche di implementazione e di design che consentono di migliorare l’efficienza

delle applicazioni sotto diversi punti di vista.

Il percorso che verrà seguito nello svolgere questo lavoro andrà, in tre

passi, dalla teoria all’implementazione: innanzitutto si creeranno le fonda-

menta teoriche del compilatore utilizzando un nucleo di hipi; in seguito si pre-

senteranno le sintassi complete di hipi e XIL e si descriverà l’implementazione

del compilatore; in fine si illustreranno strumenti, design pattern ed esempi

che illustreranno come progettare e scrivere programmi in hipi in maniera

efficiente.

Fondamenta teoriche Si definisce un nucleo di hipi (chiamato hipi core

language) che sostanzialmente contiene i termini del π–calculus con variabili

tipate anziché semplici nomi di canali, con un concetto di locazione (il che

rende il linguaggio distribuito) e con un costrutto per la migrazione di processi

tra locazioni. Si definisce, inoltre, un linguaggio intermedio (detto bytecode)

basato sul localized linear forwarder calculus ed esteso con un termine per la

migrazione di processi. Si definiscono le sintassi operazionali e denotazionali

di entrambi i linguaggi ed un encoding
[[
·
]]
che traduce programmi da hipi core

language a bytecode. Tale encoding rappresenta il processo di compilazione e

per garantirne la correttezza si dimostra che il comportamento del programma

sorgente (rispetto alla semantica dell’hipi core language) è equivalente al com-

portamento del codice generato (rispetto alla semantica del bytecode).

Il risultato conclusivo che si dimostra è che dati due programmi nell’hipi

core language P e Q, si ha:

P
·

≈ Q ⇐⇒
[[
P

]] ·

≈
[[
Q

]]

dove
·

≈ è la relazione che indica equivalenza di comportamento fra processi

nello stesso linguaggio (più precisamente è la barbed bisimulation [MS92]).

Hipi, XIL e l’implementazione del compilatore Si definisce hipi come

un’estensione dell’hipi core language comprendente, tra l’altro, costrutti di

4 PREFAZIONE

programmazione sequenziale come funzioni e cicli for. Si illustra un encoding{[
·
]}

che permette di tradurre programmi hipi in programmi nel linguaggio

core. Si definisce l’XML Intermediate Language (XIL) come riscrittura, con

sintassi XML, del bytecode utilizzato per il lavoro teorico. In seguito si de-

scrive l’implementazione del compilatore da hipi a XIL: tale compilatore è

basato sull’encoding
{[
·
]}

appena definito e sull’encoding
[[
·
]]
di cui si è

provata la correttezza. Si descrive inoltre l’implementazione del simulatore

utilizzato come interprete XIL: tale simulatore viene inizializzato utilizzando

un documento XML che descrive le caratteristiche della rete nella quale si

vuole effettuare la simulazione. In seguito è possibile caricare ed eseguire uno

o più file XIL e monitorarne l’esecuzione.

Progettazione e programmazione in hipi Si illustra innanzitutto come

le variabili mutabili e le strutture dati più comuni possano essere implementate

in hipi. In seguito si affrontano problemi di progettazione definendo tre design

pattern per hipi. Il primo design pattern presentato è “il Delegato”, il quale

descrive come minimizzare il numero di messaggi scambiati fra un produttore

e un consumatore tramite la migrazione di un processo. Il secondo pattern,

invece, è “l’Assistente”, il quale descrive come realizzare un semplice algoritmo

dinamico di bilanciamento di carico. In seguito si ha il ben noto design pattern

“Proxy” [GHJG94], che descrive come progettare un surrogato locale per un

servizio offerto remotamente. In conclusione si presenta un esempio completo

di programma hipi: tale esempio è l’implementazione di un servizio on–line di

traduzione Italiano/Inglese.

Chapter 1

Introduction

In the past few years, computer networks have replaced stand-alone computers

as the environment where programs are executed. Nowadays, a lot of widely

used applications use networks for communication, to retrieve information or

to upgrade themselves. The future direction of programs is to be distributed

on networks: this means that an application could be divided in several sub–

parts that are executed in different computers of a network. These sub–parts

can be used by different programs and this allows the sharing of the execution

load. From the point of view of business, it allows to define new kinds of

software licences that give access to a distributed application, instead of giving

permission to run a local copy of it.

The main example of such new kinds of applications are Web Services

[Con02]. A Web Service is “an interface that describes a collection of op-

erations that are network–accessible through standardized XML messaging”

[Kre01]. These operations can access other operations on different Web Ser-

vices, so a Web Application can be seen as an orchestration of a set of Web

Services. The use of XML as object of the communications between Web Ser-

vices and the use of standard protocols like http [FGM+99] and SOAP [Con03]

allow for the interaction of services written in different languages and executed

in different environments.

This massive use of networks in programs has not so far been accompained

5

6 CHAPTER 1. INTRODUCTION

by the evolution of programming languages. The most popular programming

languages, also used to write distributed applications, are based on formalisms

which represent sequential execution well, but which do not express clearly the

effects of parallelism and distribution. This makes difficult to reason about

properties of programs, and requires the use of system calls for communications

and parallelism that usually are not programmer–friendly.

The π–calculus of Milner, Parrow and Walker [MPW92] is a widely studied

formalism for describing and reasoning about concurrent systems. It is based

on synchronous message passing over channels where the objects of communi-

cations are themselves channel names. The asynchronous π–calculus of Merro

and Sangiorgi [MS98] is a well-known subcalculus of the π–calculus where

communications are based on asynchronous message passing. Finally, the lo-

calized linear forwarder calculus of Gardner, Laneve and Wischik [GLW03]

is an extension of the asynchronous π–calculus with a new term (the linear

forwarder) that allows the redirection of output messages. In the localized

linear forwarder calculus there is an implicit notion of location: it is used to

specify where a channel resides and where a process is executed. In the lo-

calized linear forwarder calculus a process executing an input on a channel

must be co-located with such a channel. Hence, input–capability (which is the

ability to receive a channel name and subsequently receive messages on it) is

not possible; but it can be encoded using linear forwarders.

All the calculi just described allow us to describe of the behavior of concur-

rent (and distributed) processes and allow us to study properties of distributed

applications. A programming language based on one of them could be used

to write distributed programs whose behavior and whose properties can be

studied using the theories of the calculus. This motivated me to define and

implement such a language.

1.1 Description of the Work

In this work I define hipi, a distributed programming language based on the

π–calculus. It compiles into XML Intermediate Language (XIL) based on the

1.1. DESCRIPTION OF THE WORK 7

localized linear forwarder calculus, which is executed by an interpreter. A

hipi program specifies a computation composed of a set of parallel processes

where interaction is achieved by message passing over channels. In hipi there

is an implicit notion of location: it is intuitively defined as “the place where

a channel resides” or “the place where a process is executed”. Two channels

x and y are colocated if they reside at the same location. In similar ways two

processes can be colocated and a process can be colocated with a channel. The

presence of locations makes the language distributed.

The equivalent of locations in the real world depends on how the language

and the runtime environment are implemented. For instance, a location can

be a processor with its private memory in a multi–processor system, or a

workstation on a local area network, or an Application Server on Internet. In

our implementation a location corresponds to a virtual machine that acts as

a channel server and also as an interpreter for programs compiled into the

XML Intermediate Language. Channels are represented by URIs [BLFM98]

and a possible way to implement communications on them is by using the http

protocol [FGM+99]. An example of such a runtime environment, but for the

explicit fusion calculus [Wis01], is described in [Per03].

The work described in this thesis has three parts:

1. Define hipi and XIL, define their semantics and give an encoding from

the former to the latter that is proved to be correct. I do this theoretical

work on a subset of hipi called the hipi core language and then I give an

encoding from hipi into hipi core.

2. Implement a compiler from hipi into XIL based on the encodings given

in point 1. I also implement a network simulator that acts as a XIL

interpreter. It is used to execute compiled programs.

3. Show how hipi might be used in practice by a programmer. I describe

how to obtain some features that are not part of the language and I

present some design patterns.

8 CHAPTER 1. INTRODUCTION

1.2 Related Works

In recent years a number of π–calculus variants have been introduced in order

to study some aspect of distributed and mobile processes. They include:

- The π1–calculus of Amadio [Ama00], for modelling distributed compu-

tations with mobility of processes, failures and routing of messages;

- The distributed π–calculus Dπ of Hennessy and Riely [HR98], that ex-

tends the π–calculus with explicit locations and migrations;

- The Distributed Join Calculus of Fournet et al [FGL+96], intended as

the basis for a mobile agent language;

- The Fusion Calculus of Parrow and Victor [PV98] and the Explicit Fusion

Calculus of Gardner and Wischik [GW00], where communications are

symmetric and channels can be fused.

In particular, the explicit fusion calculus was used as a foundation for the

Fusion Machine of Gardner, Laneve and Wischik [GLW02], a forerunner of

the localized linear forwarder calculus.

Some programming languages based on the π–calculus, or on one of its

variants, were also implemented. Some of them include:

- Pict of Pierce and Turner [PT00], a strongly–typed concurrent program-

ming language without mobility of processes;

- Nomadic Pict of Sewell, Wojciechowski and Pierce; [WS00], which has

mobile agents and explicit locations

- The Join Calculus Language [Joi02] and Jocaml [CF99] both based on

the Join Calculus.

Chapter 2

Core Language and Compiler

Theory

The aim of this chapter is to define the theoretical foundations of our work.

We first describe the hipi core language and the bytecode. Then we define their

semantics and the encoding from the former to the latter. Finally, we prove

the correctness of the encoding.

The hipi core language is a variant of the synchronous π–calculus [MPW92]

which includes mobility of processes (through an explicit migration term) and

some simple data types (integers, strings and sorted channels). The bytecode

is a variant of the localized linear forwarder calculus [GLW03] with explicit

migrations and data types (integers, strings and unsorted channels). In the

following we do not describe formally the type checker or the properties of the

type system. As a future work, we expect to replace this simple type system

with XML data types as in XDuce [HP03].

2.1 Hipi Core Language Syntax

We now define the syntax of the hipi core language. We assume an infinite set

of variable identifiers X ranged over by u,w, x, y, z, . . ., an infinite set of type

9

10 CHAPTER 2. CORE LANGUAGE AND COMPILER THEORY

identifiers ranged over by r, s, t, . . . and an infinite set of identifiers for recursive

definitionsR ranged over byD,E, We use x̃ to denote the (possibly empty)

sequence x1, . . . , xn. Sometimes we also use the same notation x̃ to denote the

set {x1, . . . , xn}.

A program in the hipi core language is a triple (Φ,Γ,P) where Φ is a map-

ping from type identifiers into type expressions, Γ is a mapping from recursive

definition names into abstractions and P is a process. Φ allows us to use type

identifiers as types for variables declared inside a program and it allows recur-

sive types. Γ is a function environment : it allows the definition of recursive

definition calls (as in π–calculus). Finally, P is the “main” process executed

at run–time.

Definition 2.1 (Process) Processes in the hipi core language are defined by

the following grammar:

P ::= 0 nil

| x . send (Ẽ) ; P channel output

| x . recv (T̃ x) ; P channel input

| let T x = E in P new constant

| new T x in P new channel

| if (E) { P } { P } if then else

| D (Ẽ) ; P recdef call

| spawn [@ x] { P } P new process

Processes P include statements used for operations on channels, declaration

of variables and control–flow commands. The term 0 represents the empty

process and we usually omit it at the end of a sequence of statements. The

send and the recv statements are the output and the input terms of the

π–calculus with typed objects. The let defines a new immutable variable

x assigning E to it (as a constant) and its scope is the following P . The

statement new creates a new channel x and its scope is the following P . The

if is as usual in programming languages. The recursive definition call is as

2.1. HIPI CORE LANGUAGE SYNTAX 11

usual in π–calculus [Mil99] but includes a continuation P that is executed in

parallel. Finally, the spawn statement can be used to execute two processes in

parallel.

The optional argument @x of the spawn statement can be used for the

explicit migration of a process. Explicit migration are optimizations for com-

munications: if the spawned process (that is the process that executes the

first occurrence of P in the statement) executes a lot of communications on

the channel x then it could be convenient for it to migrate to the location of

x: this migration is achieved with the @x option.

Abstractions are as in π–calculus [Mil99] with typed variables instead of

channel names. An abstraction A = (T̃ x).P can be instanciated using a

concretion term A〈ỹ〉. This concretion becomes P{ỹ/x̃}.

Definition 2.2 (Types) Types of the language are the followings:

T ::= int integer type

| string string type

| channel < T̃ > channel type

| t type identifier

Types are only int, string and channel<...>. The type system is com-

pleted with type identifiers: using them it is possible to define recursive types.

Definition 2.3 (Expressions) Expressions and literal values are described

by the following grammar:

E ::= x variable

| LiteralInt integer value

| LiteralString string value

| E + E | E − E sum and sub

| E ∗ E | E / E | E % E mul, div and mod

| E > E | E == E | E ! = E comparators

| E && E | ! E boolean operators

12 CHAPTER 2. CORE LANGUAGE AND COMPILER THEORY

Expressions E can be used to specify arguments of invocations of recursive

definitions, and also the entities sent on channels. They are evaluated during

execution (i.e. in the operational semantics). A LiteralInt is an element of

Z and a LiteralString represents a string. Operators on expressions are all

standard: combining them it is possible to obtain also <,<=,>=, the unary

minus and the boolean choice ||.

Definition 2.4 (Well–Formed Hipi Core Program) A well–formed pro-

gram in the hipi core language satisfies the following requirements:

1. All the operations on variables, functions and channels always respect

their types;

2. All the free names in main are used with the same (inferred) channel

type;

3. In recursive definition bodies, the free names are a subset of the param-

eters of the recursive definition.

In what follows we consider only well–formed programs.

Examples We give two simple examples of programs in the hipi core lan-

guage. The first example creates a new channel and reacts on it:

Φ = ∅

Γ = ∅

P = new channel<> x in

spawn { x.send(); }

x.recv();

The second example illustrates recursive type declarations and recursive def-

initions. It executes an infinite sequence of reactions between two processes,

2.2. HIPI CORE LANGUAGE SEMANTICS 13

so simulating a ping pong match. The objects of the communications are the

same channels used as subjects.

Φ =
{
(pingpongT, channel<pingpongT>)

}

Γ =
{
(recursive player, (pingpongT ping).R)

}

where R = ping.recv(pingpongT pong);

pong.send(ping);

recursive player(ping);

P = new pingpongT p1 in

new pingpongT p2 in

recursive player(p1);

recursive player(p2);

p1.send(p2);

2.2 Hipi Core Language Semantics

In this section we describe the operational and the denotational semantics of

the hipi core language.

Definition 2.5 (State) A state of the system is a triple (Φ,Γ, S) where Φ is

a mapping from type identifiers to type expressions, Γ is an environment and

S is a set of parallel processes defined by the following grammar:

S ::= 0
∣∣ P

∣∣ S | S
∣∣ (x)S

where P is as in Definition 2.1.

In the following, when Φ and Γ are obvious, we write only S to identify

a state. The sets of bound names and free names of a state S, denoted by

bn(S) and fn(S), are as in the π–calculus with new Tx, y.recv(x) and (x) as

binders for the name x. Let R,S, T, . . . range over states.

Now we define structural congruence.

14 CHAPTER 2. CORE LANGUAGE AND COMPILER THEORY

Definition 2.6 (Structural Congruence) Structural congruence on states

≡ is the smallest equivalence relation satisfying the following and closed with

respect to alpha–renaming and parallel composition:

S | 0 ≡ S S | T ≡ T | S S | (T | R) ≡ (S | T) | R

(x)0 ≡ 0 (x)(y)S ≡ (y)(x)S

(x)(S | T) ≡ S | (x)T if x 6∈ fn(S)

We give a big step semantics for expression evaluation. This semantics is

used to evaluate expressions inside some rules of the transition system. Note

that variables are immutable and expressions have no side effects. We assume

i, j, k ranging over LiteralInt and s over LiteralString.

Definition 2.7 (Semantics of Expressions) The relation for expression

evaluation E ↓ v is the smallest relation satisfying the following:

i ↓ i s ↓ s x ↓ x

E1 ↓ i E2 ↓ j i = j

(E1 == E2) ↓ 1

E1 ↓ i E2 ↓ j i 6= j

(E1 == E2) ↓ 0

E1 ↓ i E2 ↓ j i > j

(E1 > E2) ↓ 1

E1 ↓ i E2 ↓ j i ≤ j

(E1 > E2) ↓ 0

E1 ↓ i E2 ↓ j k = i× j

(E1&&E2) ↓ k

E ↓ 0

!E ↓ 1

E ↓ i i 6= 0

!E ↓ 0

E1 ↓ i E2 ↓ j k = i op j

(E1 op E2) ↓ k
op ∈ {+,−, ∗, /,%}

2.2. HIPI CORE LANGUAGE SEMANTICS 15

It will transpire, in the operational semantics, that the evaluation x ↓ x will

only happen when x is a channel name. For this reason we define the values of

the operational semantics as literal integers, literal strings and channel names.

All the expressions in the operational semantics are evaluated into values. Let

v range over values.

Definition 2.8 (Reactions) The reaction relation (Φ,Γ, S)→ (Φ,Γ, S ′) be-

tween states is as follows. Φ and Γ never change; we assume them in the

following rules. Reactions are closed with respect to structural congruence ≡,

restriction (x) , parallel composition | and alpha–renaming:

spawn{P1}P2 → P1 | P2 (spawn)

spawn@x{P1}P2 → P1 | P2 (migrate)

newTx in P → (x)P (new)

E1 ↓ v1 · · · En ↓ vn

x.send(Ẽ);P1 | x.recv(T1y1, . . . , Tnyn);P2 → P1 | P2{ṽ/ỹ}
(react)

E1 ↓ v1 · · · En ↓ vn

D(Ẽ);P → Γ(D)〈ṽ〉 | P
(call)

E ↓ v

let Tx=E in P → P{v/x}
(let)

E ↓ i i 6= 0

if(E){P1}{P2} → P1

(if1)

E ↓ 0

if(E){P1}{P2} → P2

(if2)

We write ⇒ for a sequence of zero or more reactions →∗.

16 CHAPTER 2. CORE LANGUAGE AND COMPILER THEORY

As discussed, the intention of the optional @x argument in spawn is to

support location–based optimizations. But our current high–level semantics

abstract away from location, and so the @x argument has no effect. It will

have effect, however, in the low–level bytecode semantics (which do model

locations).

The (react) transition is as usual in the synchronous π–calculus, but with

expressions and typed variables. Recursive definitions calls are usually re-

moved from the reactions using structural congruence, instead we define (call)

in order to handle them. Other reactions are standard.

Now we define the observation relation and the related weak barbed bisim-

ulation. Let α range over labels x and x.

Definition 2.9 (Observation) The observation relation S ↓ α is the small-

est relation satisfying the followings:

x.send(ỹ);S ↓ x

x.recv(ỹ);S ↓ x

S | T ↓ α if S ↓ α or T ↓ α

(x)S ↓ α if S ↓ α and α 6= x, x

We write ⇓ for ⇒↓.

Definition 2.10 (Barbed Bisimulation) A relation R is a weak barbed

bisimulation if whenever S1 R S2 then

1. S1 ↓ α implies S2 ⇓ α

2. S1 → S ′

1 implies that exists S ′

2 such that S ′

2 ⇒ S ′

2 and S ′

1 R S ′

2

3. S2 ↓ α implies S1 ⇓ α

4. S2 → S ′

2 implies that exists S ′

1 such that S1 ⇒ S ′

1 and S ′

2 R S ′

1

We define
·

≈ to be the largest weak barbed bisimulation.

2.3. BYTECODE SYNTAX 17

2.3 Bytecode Syntax

A hipi program will be compiled into bytecode. The bytecode is based on the

localized linear forwarder calculus [GLW03] and it differs from the hipi core in

the following points: it is asynchronous, it includes a linear forwarder term, it

lacks the let operator and it merges the parallel composition and the recursive

definition call into a single statement. We have chosen a unified operator for

parallel compositions and for recursive definition calls because their behavior

are very similar (both execute a parallel process). A linear forwarder allows

the redirection of an output message from a channel to another one. It is used

to encode input operations on remote channels as in [GLW03]

A program in bytecode is a set of named threads. A named thread is a pair

(n,A) where n is the thread names and A is an abstraction. A thread name is

a name with which one can start the execution of the thread. The first thread

executed by a program is the one with distinguished name main. We require

thread names to be unique, and so we define a bytecode program as a function

Γbc from thread names into abstractions. We assume an infinite set of thread

names N ranged over by main,n,m,. . ..

Definition 2.11 (Bytecode Syntax) A bytecode program is a function Γbc

from thread names n into abstractions (x̃).T where T is a list of statements

given by:

T ::= 0 nil

| νx.T new channel

| xẼ channel output

| x(ỹ).T channel input

| x(y linear forwarder

| spawn(n)〈x̃〉.T new process

| @x.T migration

| [E]T, T if then else

where E is as in Definiton 2.3 .

18 CHAPTER 2. CORE LANGUAGE AND COMPILER THEORY

The input term x(ỹ).T where T is the continuation, and the output term xỹ

are as in the asynchronous π–calculus. The statement νx.T is used to create

a new channel and the scope of the name x is the continuation T . The linear

forwarder x(y is the same as in the linear forwarder calculus [GLW03]. The

command spawn(n)〈x̃〉.T executes the thread n using x̃ as parameters of the

concretion. The statement @x.T executes T at the location of the channel x.

The if-then-else and the nil terms are standard. We often omit 0 at the end

of a bytecode fragment.

We now define well–formedness for bytecode programs. We recall that an

input capability is the ability of receive a channel name and than accept inputs

on it.

Definition 2.12 (Well–Formed Bytecode Program) A well-formed byte-

code program satisfies the following:

1. No input capabilities are present;

2. In threads, apart from main, the free names are a subset of the parameters

of their abstractions;

3. The main thread is an abstraction with no parameters;

4. Expressions and channels operations are well–typed.

The no-input-capability property is inherited by the localized linear for-

warder calculus [GLW03]. It is extended to parameters of abstractions in

point 2: this is done because names in the parameters can be instanced to

either local or remote channel by concretions. In the following we consider

only well–formed programs.

Examples Here we show how the examples of section 2.1 can be expressed

in the bytecode language. The first example executes a reaction:

main : νx.spawn(child)〈x〉.x()

child : (x′).x′

2.4. BYTECODE SEMANTICS 19

The second example, instead, simulates a ping pong match:

main : νp1.νp2.spawn(recursive player)〈p1〉.

spawn(recursive player)〈p2〉.p1p2

recursive player : (p).νq.spawn(n)〈p, q〉.q(p′).p′p.

spawn(recursive player)〈p〉

n : (p, q).p(q

In recursive player, the input operation on p is executed through a linear

forwarder in order to satisfy well–formedness.

2.4 Bytecode Semantics

We now define the state of the operational semantics as a set of located ma-

chines executing processes. Processes executed by a machine are its body. We

consider co–location as an equivalence relation on channel names and we define

locations as sets of co–located channels.

Definition 2.13 (State) A state of the system is a pair (Γbc,M) where Γbc

is a function from thread names into abstractions and M is a set of located

machines defined by the following grammar:

M ::= 0
∣∣ ũ

[
z̃ : B

] ∣∣ M,M set of machines

B ::= 0
∣∣ T

∣∣ B | B bodies

where T is as in Definition 2.11 . In the machine ũ
[
z̃ : B

]
, all the names in

ũz̃ are said to be defined by the machine. In a set of machines, no name may

be multiply defined.

A machine is an entity that represents a location. ũ
[
z̃ : B

]
represents a

machine at location ũz̃, where the external channel ũ existed before execution

began, and the internal channels z̃ were created at this location in the course

of execution. The scope of z̃ is the whole set of machines. The body B of the

20 CHAPTER 2. CORE LANGUAGE AND COMPILER THEORY

machine is the set of processes executed at this location. Different machines

of a state execute in parallel at different locations. Let M,N, . . . range over

machines. In the follows we often assume the Γbc and we omit it from states.

Definition 2.14 (External and Internal Channels) Given a machine M

the sets ec(M) and ic(M) representing the external and internal channels of

M are given by:

ec(0) = ∅ ec(ũ
[
z̃ : B

]
) = ũ ec(M1,M2) = ec(M1) ∪ ec(M2)

ic(0) = ∅ ic(ũ
[
z̃ : B

]
) = z̃ ic(M1,M2) = ic(M1) ∪ ic(M2)

and the set dc(M) containing the defined channels of M is

dc(M) = ec(M) ∪ ic(M)

Bound names bn(B) and free names fn(B) of a body B are defined as in the

π–calculus. We extend their definitions to machines: let M = ũ
[
ṽ : B

]
,M ′

we define bn(M) and fn(M) as bn(B) ∪ bn(M ′) and fn(B) ∪ fn(M ′).

Definition 2.15 (Structural Congruence) The structural congruence ≡

for states of the system is the smallest equivalence relation satisfying the fol-

lowing and closed with respect to alpha renaming and to parallel composition

of machines M, and ,M :

ũ
[
z̃ : B | 0

]
≡ ũ

[
z̃ : B

]
ũ
[
z̃ : B1 | B2

]
≡ ũ

[
z̃ : B2 | B1

]

ũ
[
z̃ : (B1 | B2) | B3

]
≡ ũ

[
z̃ : B1 | (B2 | B3)

]

M,0 ≡M M1,M2 ≡M2,M1 (M1,M2),M3 ≡M1, (M2,M3)

ũ
[
z̃ : B

]
,M ≡ xũ

[
z̃ : B

]
,M ≡ ũ

[
xz̃ : B

]
,M if x 6∈ fn(B) ∪ fn(M)

We now define the operational semantics. We recall expression evaluation

E ↓ v given in Definition 2.7 .

2.4. BYTECODE SEMANTICS 21

Definition 2.16 (Reactions) The reaction relation (Γbc,M)→ (Γbc,M
′) be-

tween states is as follows. Since Γbc never change, we omit it. Reactions are

closed with respect to structural congruence, parallel composition of bodies and

alpha–renaming:

ũ
[
z̃ : xẼ | x(y

]
→ ũ

[
z̃ : yẼ

]
if x ∈ ũz̃ (react-fwd)

ũ
[
z̃ : xẼ

]
, w̃

[
k̃ :

]
→ ũ

[
z̃ :

]
, w̃

[
k̃ : xẼ

]
if x ∈ w̃k̃ (move-out)

ũ
[
z̃ : x(y

]
, w̃

[
k̃ :

]
→ ũ

[
z̃ :

]
, w̃

[
k̃ : x(y

]
if x ∈ w̃k̃ (move-fwd)

ũ
[
z̃ : spawn(n)〈x̃〉.T

]
→ ũ

[
z̃ : Γbc(n)〈x̃〉 | T

]
(spawn)

ũ
[
z̃ : @x.T

]
, w̃

[
k̃ :

]
→ ũ

[
z̃ :

]
, w̃

[
k̃ : T

]
if x ∈ w̃k̃ (migrate1)

ũ
[
z̃ : @x.T

]
→ ũ

[
z̃ : T

]
if x ∈ ũz̃ (migrate2)

ũ
[
z̃ : νx.T

]
→ ũ

[
x′z̃ : T{x

′

/x}
]

if x 6∈ ũz̃ (new)

E1 ↓ v1 · · ·En ↓ vn

ũ
[
z̃ : xẼ | x(ỹ).T

]
→ ũ

[
z̃ : T{ṽ/ỹ}

] if x ∈ ũz̃ (react)

E ↓ i i 6= 0

ũ
[
z̃ : [E]T1, T2

]
→ ũ

[
z̃ : T1

] (if1)

E ↓ 0

ũ
[
z̃ : [E]T1, T2

]
→ ũ

[
z̃ : T2

] (if2)

M1 → M2

M1,M3 → M2,M3

if dc(M2) ∩ dc(M3) = ∅ (context)

22 CHAPTER 2. CORE LANGUAGE AND COMPILER THEORY

The transition system has two reaction rules: between one input and one

output on a channel (react) and between one output and a linear forwarder

(react-fwd). Reactions can occur only at the location where the subject chan-

nel resides. Transitions (move-fwd) and (move-out) describe the mobility of

linear forwarders and output terms: input terms don’t move, so they must

be co–located with their subject channel. In (new) a new internal channel is

created using a fresh name; the side condition for (context) ensures that this

fresh name does not clash with the rest of the machine.

Lemma 2.17 Given a state M :

1. If M →M ′ then ec(M) = ec(M ′);

2. If M →M ′ then ic(M) ⊆ ic(M ′).

Proof. Part 1 is straightforward because no rules of the operational semantics

change the set of external channel of the state. Also part 2 is straightforward

because the only rule that changes the number of internal channels is (new)

that increases it by one. ¤

Now we define the observation relation and the related weak barbed bisimu-

lation. We chose to observe input as well as output commands: this is unusual

for an asynchronous calculus but it allows us to easily compare the behavior

of an hipi core program with the behavior of a bytecode program.

Definition 2.18 (Observation for Bodies) The observation relation for

bodies B ↓ α is the smallest relation satisfying the followings:

xẼ ↓ x

x(T̃ y).T ↓ x

x(y ↓ x

B1 | B2 ↓ α if B1 ↓ α or B2 ↓ α

2.5. CORE LANGUAGE ENCODING 23

Definition 2.19 (Observation for Machines) The observation relation for

machines M ↓ α is the smallest relation satisfying the followings:

ũ
[
z̃ : B

]
↓ x if B ↓ x , x ∈ ũ , x 6∈ z̃

ũ
[
z̃ : B

]
↓ x if B ↓ x , x ∈ ũ , x 6∈ z̃

M1,M2 ↓ α if M1 ↓ α or M2 ↓ α

We write ⇓ for ⇒↓.

Definition 2.20 (Barbed Bisimulation) A relation R is a weak barbed

bisimulation if whenever M R N then

1. M ↓ α implies N ⇓ α

2. M →M ′ implies ∃N ′ such that N ⇒ N ′ and M ′ R N ′

3. N ↓ α implies M ⇓ α

4. N → N ′ implies ∃M ′ such that M ⇒M ′ and M ′ R N ′

Let
·

≈ be the largest weak barbed bisimulation. Through abuse of notation we

use the same symbol
·

≈ for machines as for hipi core states. It will be clear

from the context which is intended.

2.5 Core Language Encoding

In this section we give the encoding from the hipi core language into bytecode

and we prove it correct. The main encodings concern recursive definitions

and communications (due to the asynchrony and the no–input–capability con-

straints of the bytecode).

As said in section 2.1, a program in the hipi core language is a triple

(Φ,Γ,P). We assume a well–formed and type–checked program as input of the

encoding. We assume a 1-1 mapping µ between recursive definition names and

thread names: the name main cannot be an output of the mapping. We write

nD for µ(D).

24 CHAPTER 2. CORE LANGUAGE AND COMPILER THEORY

Definition 2.21 (Encoding) The translation
[[
·
]]
from a hipi core program

(Φ,Γ, P) into a bytecode program is as follows. It makes use of a subsidiary

translation
[[
·
]]

ũ
, detailed below, which translates individual processes.

[[
(Φ,Γ, P)

]]
is the least bytecode program containing the following:

- For
[[
P

]]
∅
= (TM ,ΓM), let

[[
(Φ,Γ, P)

]]
contain ΓM ∪ (main, ().TM)

- For every (D, (x̃).P ′) in Γ, with
[[
P ′

]]
∅
= (T ′,Γ′), let

[[
(Φ,Γ, P)

]]
contain

Γ′ ∪ (nD, (x̃).T
′)

The subsidiary translation
[[
·
]]

ũ
from a hipi process into a bytecode fragment

(T,Γ) is as follows. It is parametrized on a set ũ of channel names which are

known to be local to P .

[[
T ′x=E in P

]]
ũ
=

[[
P{E/x}

]]
ũ

[[
newT ′x in P

]]
ũ
=

(
νx.T , Γbc

)
where

[[
P

]]
xũ

= (T,Γbc)

[[
if(E){P1}{P2}

]]
ũ
=

(
[E]T1, T2 , Γbc1 ∪ Γbc2

)
where

[[
Pi

]]
ũ
= (Ti,Γbci)

[[
x.send(Ẽ);P

]]
ũ
=

(
νy.spawn(n)〈y〉.y().T , Γbc

[
n 7→ (y).x〈y, Ẽ〉

])

where y 6∈ fn(P) n fresh
[[
P

]]
ũ
= (T,Γbc)

[[
x.recv(T̃ v);P

]]
ũ
=

(
x(y, ṽ).spawn(n)〈y〉.T , Γbc

[
n 7→ (y).y

])
if x ∈ ũ

where n fresh
[[
P

]]
ũ
= (T,Γbc)

(
νw.spawn(n)〈xw〉.w(y, ṽ).spawn(m)〈y〉.T ,

Γbc

[
n 7→ (xw).x(w , m 7→ (y).y

])
otherwise

where w 6∈ fn(P) n,m fresh
[[
P

]]
ũ
= (T,Γbc)

2.5. CORE LANGUAGE ENCODING 25

[[
D(Ẽ);P

]]
ũ
=

(
spawn(nD)〈Ẽ〉.T , Γbc

)
where

[[
P

]]
ũ
= (T,Γbc)

[[
spawn{P1}P2

]]
ũ
=

(
spawn(n)〈fn(P1)〉.T2 , Γbc1 ∪ Γbc2 ∪

{
n 7→ (fn(P1)).T1

})

where n fresh
[[
Pi

]]
ũ
= (Ti,Γbci)

[[
spawn@x{P1}P2

]]
ũ
=

(
spawn(n)〈fn(P1)〉.T2 , Γbc1 ∪ Γbc2 ∪

{
n 7→ (fn(P1)).@x.T1

})

where n fresh
[[
P1

]]
x
= (T1,Γbc1)

[[
P2

]]
ũ
= (T1,Γbc2)

We remark that named threads in the bytecode come from two sources:

(1) there is a named thread for each recursive definition, and also for “main”;

(2) there is a named thread for every spawn statement. We remark that the

encoding of recv using linear forwarders is standard from [GLW03]. The

encoding of synchronous send and recv into asynchronous send and recv is

standard from [SW01]. In the encoding
[[
·
]]

ũ
the set of names ũ are “certainly–

local”. These channels can be used as subject of input operations. The new

command creates a certainly–local name. After a spawn@x command only x is

certainly–local.

Correctness of the Encoding

We now describe some properties of the encoding that are the results of our

theoretical work. Our aim is to prove that the encoding preserves behavior, i.e.

we want to prove that a hipi core program and its translation into bytecode are

behavioral equivalent. Finally we prove that for any pair of barbed bisimilar

hipi core programs, they are encoded into a pair of barbed bisimilar bytecode

programs. These results ensure the correctness of the encoding. Hence we can

implement a compiler based on this encoding.

Now we define a function loc that will be used to check if an input operation

in a bytecode process is executed at the correct location. This is a crucial

property that must be verified by the encoding in order to ensure that all the

input operations will be executed.

26 CHAPTER 2. CORE LANGUAGE AND COMPILER THEORY

Definition 2.22 loc is a partial function from bytecode bodies into sets of

names defined by:

loc 0 = ∅

loc xỹ = ∅

loc x(y = ∅

loc spawn(n)〈x̃〉.T = loc T

loc x(ỹ).T =

{
loc T ∪ {x} if loc T ∩ ỹ = ∅

undefined otherwise

loc @x.T =

{
∅ if loc T ⊆ {x}

undefined otherwise

loc νx.T =

{
loc T \ {x} if loc T is defined

undefined otherwise

loc [E]T1, T2 =

{
loc T1 ∪ loc T2 if loc T1and loc T2are defined

undefined otherwise

loc B1 | B2 =

{
loc B1 ∪ loc B2 if loc B1and loc B2are defined

undefined otherwise

The loc function maps a bytecode body into the set of names used for input

and not guarded by a νx, a w(x̃) or a @w terms. The loc function is undefined

if something wrong occurs in the body of P : in particular, in the case of an

input capability and in the case of a migration to x followed by an input on a

different channel.

The loc function allows us to define well–formedness of machines.

2.5. CORE LANGUAGE ENCODING 27

Definition 2.23 (Well–Formedness of Machines) A bytecode machine

M = ũ
[
z̃ : B

]
,M ′

is well–formed if the followings are satisfied:

1. loc B is defined and loc B ⊆ ũz̃

2. M ′ is a well–formed machine

The empty machine 0 is always well–formed.

A well–formed machine is a machine where each input operation is executed

at the location of its subject channel. We give some examples of machines and

then we discuss their well–formedness. In each example we write B to refer to

the body of the machine.

ũ
[
z̃ : @w.νx.x(y)

]
loc B = ∅ (i)

ũ
[
z̃ : νx.@w.x(y)

]
loc B =

{
∅ if w = x

undefined otherwise
(ii)

ũ
[
z̃ : νw.x(y)

]
w 6= x loc B = {x} (iii)

In the examples illustrated above (i) is well–formed, (ii) is well–formed if

w = x and (iii) is well–formed if x ∈ ũz̃.

We now give a proposition on states (Γbc,M) that is based on well–formed-

ness of machinesM . We assume Γbc and we represent states as machines. This

allow us to use well–formedness of machines as a property for states without

define it explicitly.

Proposition 2.24 Well–Formedness of machines is preserved by reactions

Proof sketch. We refer to the bytecode reactions of Definition 2.16. The only

relevant reactions are (migrate1), (migrate2) and (new).

In (migrate1) we have:

ũ
[
z̃ : @x.T

]
, w̃

[
k̃ :

]
→ ũ

[
z̃ :

]
, w̃

[
k̃ : T

]
if x ∈ w̃k̃

28 CHAPTER 2. CORE LANGUAGE AND COMPILER THEORY

The well–formedness of the left hand side implies loc T ⊆ {x}. Since x ∈ w̃z̃

we have that also the right hand is well–formed.

The case of (migrate2) is a particular case of (migrate2) and the proof is

the same.

Finally, the (new) reaction is:

ũ
[
z̃ : νx.T

]
→ ũ

[
x′z̃ : T{x

′

/x}
]

if x 6∈ ũz̃

If loc νx.T = loc T (i.e. if no input operations on x are present in T) the

right hand side is trivially well–formed. Otherwise, we have: loc νx.T =

loc T \ {x} 6= loc T and loc T{x
′

/x} = loc T ∪ x′ \ x that guarantees the

well–formedness of the right hand side. ¤

The final goal of our theoretical work is to prove that the encoding
[[
·
]]

preserves the behavior of the source program. The proof of this proposition

requires a loader. A loader is an entity that inserts a bytecode program into

the environment where it will be executed. A loader allows us to define how

the execution of a bytecode program starts.

Definition 2.25 (Loader) A loader L is a partial mapping from bytecode

programs Γbc into well–formed bytecode states (Γbc,M) where M has the form:

x̃1

[
∅ : P1

]
, . . . , x̃n

[
∅ : Pn

]

such that

fn(Γbc(main)〈〉) ⊆ x̃1 . . . x̃n

and

∃k ∈ 1 . . . n s.t. Pk = Γbc(main)〈〉

and ∀i 6= k Pi = 0

the degenerate loader Ld maps every program Γbc into (Γbc, fn(P)
[
∅ : P

]
)

where P = Γbc(main)〈〉

2.5. CORE LANGUAGE ENCODING 29

The degenerate loader Ld represents the centralized execution of the pro-

gram Γbc. A single location is created by this loader and the program is

executed there.

We now justify the “degenerate” loader. We justify in the sense that, if

any loader is defined for a bytecode program Γbc, then the degenerate loader

will also be defined for Γbc.

Proposition 2.26 Given a bytecode program Γbc, if a loader L is defined on

Γbc then the degenerate loader Ld is also defined on Γbc.

Proof. Without loss of generality, we assume that

L(Γbc) = x̃1

[
∅ : P

]
, x̃2

[
∅ : 0

]
, . . . , x̃n

[
∅ : 0

]

where P = Γbc(main)〈〉 with loc P ⊆ x̃1. Hence, loc P ⊆ {x̃1, . . . , x̃n} and the

degenerate loader Ld is defined:

Ld(Γbc) = x̃1, . . . , x̃n

[
∅ : P

]

and this concludes the proof. ¤

Now we give an example that shows that Ld defined doesn’t implies that

every possible loader is also defined. Consider the following bytecode program:

Γbc =
{(

main , ().x().y()
)}

If the degenerate loader is defined on Γbc we have:

Ld(Γbc) = xy
[
∅ : x().y()

]

A possible different loader L is:

L(Γbc) = x
[
∅ : x().y()

]
, y

[
∅ :

]

But L(Γbc) is not well–formed because loc x().y() is {x, y} and {x, y} 6⊆ {x}.

Given a program Γbc, the degenerate loader is a good representative for the

set of defined loaders of Γbc. Our aim, now, is to prove that all loaded states

are equivalent in behavior to the degenerate loader.

30 CHAPTER 2. CORE LANGUAGE AND COMPILER THEORY

Lemma 2.27

ũw̃
[
z̃ : P

]
,M

·

≈ ũ
[
z̃ : P

]
, w̃

[
∅ :

]
,M

if ũw̃ ∩ dc(M) = ∅ and where both sides are assumed to be well–formed.

Proof. Consider the relation S on machines defined by:

S=
{(

M1 , M2

) ∣∣ M1 = ũw̃
[
z̃ : P

]
,M M2 = ũ

[
z̃ : P

]
, w̃

[
∅ :

]
,M

where M1,M2 well–formed ∀ũw̃z̃PM
}

To prove that S is a bisimulation we must verify the followings:

1. M1 ↓ α implies M2 ⇓ α

2. M1 →M ′

1 implies ∃M ′

2 such that M2 ⇒M ′

2 and M ′

1 S M ′

2

3. M2 ↓ α implies M1 ⇓ α

4. M2 →M ′

2 implies ∃M ′

1 such that M1 ⇒M ′

1 and M ′

1 S M ′

2

Point (1) is due to the well–formedness of M2, as follows. In the case of α = x

the proof is trivial. In the case of α = x the observed input operation on x

must be colocated with x in M2 in order to be observed also there. This is

guaranteed by the well–formedness of M2.

In point (2) the only problematic case is when the transition between M1

and M ′

1 is (react). For instance, if we lacked the well–formedness requirement

in S, then N1 S N2 where:

N1 = xy
[
∅ : y | y()

]
and N2 = x

[
∅ : y | y()

]
, y

[
∅ :

]

would be valid. But N1
(react)
−−−−→ N ′

1 and N2
(move−out)
−−−−−−→ N ′

2 with (N ′

1, N
′

2) 6∈S.

The well–formedness requirement in S guarantees that if M1
(react)
−−−−→ M ′

1 then

M2
(react)
−−−−→M ′

2.

The proofs of points 3. and 4. are trivial inductions. ¤

2.5. CORE LANGUAGE ENCODING 31

This completes our justification for considering the degenerate loader Ld

as a representative loader.

Now, in order to prove that
[[
·
]]

preserves bisimilarity, we define an

extended encoding
{[
·
]}

ũ
from hipi core states into bytecode states based

on the subsidiary translation
[[
·
]]

ũ
(Definition 2.21). For the sake of sim-

plicity and through abuse of notation we write
[[
P

]]
ũ
for (main,TM) where[[

P
]]

ũ
= (TM ,ΓM). This work–around is necessary because the loader requires

a complete bytecode program instead of a fragment (that is the output of the

subsidiary encoding).

Definition 2.28 (Extended Encoding) The extended encoding
{[
·
]}

ũ
maps

hipi core states into bytecode states as follows. In
{[
·
]}

ũ
, the names ũ are

certainly–local , i.e. the context in which
{[
P

]}
ũ
occurs will ensure that the

term is executed co–located with ũ:

{[
P

]}
ũ

= Ld(
[[
P

]]
ũ
)

{[
(x)S

]}
ũ

= A \ x
[
Bx : Tbc

]
where A

[
B : Tbc

]
=

{[
S
]}

ũ

{[
S1 | S2

]}
ũ

= A1A2

[
B1B2 : Tbc1 | Tbc2

]
where Ai

[
Bi : Tbci

]
=

{[
Ti

]}
ũ

We remark that the extended encoding
{[
·
]}

ũ
is a partial mapping because

Ld is also partial. For the sake of simplicity, in what follows we consider only

hipi core programs P such that the encoding
{[
P

]}
ũ
is defined.

The following lemma states a trivial property of the extended encoding

that we will use in proofs. It states that substitution of names can be done

either before or after the encoding, with the same result.

Lemma 2.29 Given a hipi core state S, for every ũ:

{[
S
]}

ũ
{x

′

/x} =
{[
S{x

′

/x}
]}

ũ

32 CHAPTER 2. CORE LANGUAGE AND COMPILER THEORY

We give also a lemma that states a property of linear forwarders. The proof

of the lemma is trivial and partially will emerge inside the proof of Theorem

2.31.

Lemma 2.30 If x̃ ⊆ ũ

ũ
[
∅ :

[[
P

]]
∅
| T

]
,M

·

≈ ũ
[
∅ :

[[
P

]]
x̃
| T

]
,M

We now give the theorem that guarantees the correctness of the encoding[[
·
]]
. It is obtained through the correctness of the encoding

{[
·
]}

ũ
: this is

possible because a hipi core program is a particular case of hipi core state and

in this case
{[
P

]}
∅
represents the execution of

[[
P

]]
.

This is the main theorem of our theoretical work: it ensures that the

encoding preserves the behavior of the source hipi core program.

Theorem 2.31 (Correctness) Given a hipi core state S, for every ũ the

following are satisfied:

1. S ↓ α implies
{[
S
]}

ũ
⇓ α

2. S → S ′ implies ∃M ′ such that
{[
S
]}

ũ
⇒M ′ and

{[
S ′

]}
ũ
≡M ′

3.
{[
S
]}

ũ
↓ α implies S ⇓ α

4.
{[
S
]}

ũ
→M ′ implies ∃S ′ such that S ⇒ S ′ and

{[
S ′

]}
ũ

·

≈M ′

Proof. Parts 1. and 3. are trivial inductions on the structure of S. We prove

part 2. by induction on the derivation of S → S ′ as defined in Definition 2.16

. The most relevant cases are (react),(spawn),(migrate) and (call) all closed

with respect to structural congruence, restriction and parallel composition.

In the (react) case we have:

≡ (z̃)(P | x.send(Ẽ);P1 | x.recv(T̃ y);P2) → ≡ (z̃)(P | P1 | P2{ṽ/ỹ})

2.5. CORE LANGUAGE ENCODING 33

where ṽ is the evaluation of Ẽ. For the sake of clarity, in what follows we omit
≡, (x̃) and P . We consider first the case x ∈ ũ:

{[
x.send(Ẽ);P1 | x.recv(T̃ y);P2

]}
ũ

= fn(P1 | P2) ∪ x
[
∅ :

[[
x.send(Ẽ);P1 | x.recv(T̃ y);P2

]]
ũ

]

= fn(P1 | P2) ∪ x
[
∅ : νz.spawn(n)〈z〉.z().

[[
P1

]]
ũ
| x(z, ỹ).spawn(m)〈z〉.

[[
P2

]]
ũ

]

→ fn(P1 | P2) ∪ x
[
z : spawn(n)〈z〉.z().

[[
P1

]]
ũ
| x(z, ỹ).spawn(m)〈z〉.

[[
P2

]]
ũ

]

→ fn(P1 | P2) ∪ x
[
z : xz, Ẽ | z().

[[
P1

]]
ũ
| x(z, ỹ).spawn(m)〈z〉.

[[
P2

]]
ũ

]

→ fn(P1 | P2) ∪ x
[
z : z().

[[
P1

]]
ũ
|
(
spawn(m)〈z〉.

[[
P2

]]
ũ

)
{ṽ/ỹ}

]

→ fn(P1 | P2) ∪ x
[
z : z().

[[
P1

]]
ũ
|
(
z |

[[
P2

]]
ũ

)
{ṽ/ỹ}

]

→ fn(P1 | P2) ∪ x
[
z :

[[
P1

]]
ũ
|
[[
P2

]]
ũ
{ṽ/ỹ}

]

≡ fn(P1 | P2)
[
∅ :

[[
P1

]]
ũ
|
[[
P2

]]
ũ
{ṽ/ỹ}

]

=
{[
P1 | P2{ṽ/ỹ}

]}
ũ

In the last two lines structural equivalence ≡ is used to remove ∪x and z

from the machine channels and Lemma 2.29 to obtain the final result.
In the case x 6∈ ũ we have:

{[
x.send(Ẽ);P1 | x.recv(T̃ y);P2

]}
ũ

= fn(P1 | P2) ∪ x
[
∅ :

[[
x.send(Ẽ);P1 | x.recv(T̃ y);P2

]]
ũ

]

= fn(P1 | P2) ∪ x
[
∅ : νz.spawn(n)〈z〉.z().

[[
P1

]]
ũ

| νw.spawn(o)〈xw〉.w(z, ỹ).spawn(m)〈z〉.
[[
P2

]]
ũ

]

→4 fn(P1 | P2) ∪ x
[
zw : xzẼ | z().

[[
P1

]]
ũ

| x(w | w(z, ỹ).spawn(m)〈z〉.
[[
P2

]]
ũ

]

→ fn(P1 | P2) ∪ x
[
zw : wzẼ | z().

[[
P1

]]
ũ
| w(z, ỹ).spawn(m)〈z〉.

[[
P2

]]
ũ

]

→ fn(P1 | P2) ∪ x
[
zw : z().

[[
P1

]]
ũ
|
(
spawn(m)〈z〉.

[[
P2

]]
ũ

)
{ṽ/ỹ}

]

→ fn(P1 | P2) ∪ x
[
zw : z().

[[
P1

]]
ũ
|
(
z |

[[
P2

]]
ũ

)
{ṽ/ỹ}

]

→ fn(P1 | P2) ∪ x
[
zw :

[[
P1

]]
ũ
|
[[
P2

]]
ũ
{ṽ/ỹ}

]

≡ fn(P1 | P2)
[
∅ :

[[
P1

]]
ũ
|
[[
P2

]]
ũ
{ṽ/ỹ}

]

=
{[
P1 | P2{ṽ/ỹ}

]}
ũ

34 CHAPTER 2. CORE LANGUAGE AND COMPILER THEORY

It is important to note that in the two cases just described (x ∈ ũ and

x 6∈ ũ) the sequences of reactions are different, but the general behavior is the

same. This equivalence partially proves also Lemma 2.30.

The cases of (spawn) and (migrate) are identical apart from a @x, but @x

has not influence on the behavior of a single location machine. We consider

only the former:

≡ (z̃)(P | spawn{P1}P2) → ≡ (z̃)(P | P1 | P2)

Applying the encoding we have Γbc(n) = (fn(P1)).
[[
P1

]]
ũ
with the following

behavior. For the sake of clarity, we omit ≡, (z̃) and P :
{[
spawn{P1}P2

]}
ũ

= fn(P1 | P2)
[
∅ : spawn(n)〈fn(P1)〉.

[[
P2

]]
ũ

]

→ fn(P1 | P2)
[
∅ :

[[
P1

]]
ũ
|
[[
P2

]]
ũ

]

=
{[
P1 | P2

]}
ũ

The last case is (call). We assume Γ(D) = (T̃ x).P1 The rule in the hipi core

semantics is:

≡ (z̃)(P | D(Ẽ);P2) → ≡ (z̃)(P | Γ(D)〈ṽ〉 | P2)

Applying the encoding we have Γbc(nD) = (x̃).
[[
P1

]]
∅

and we obtain the fol-

lowing behavior. As usual, we omit ≡, (z̃) and P :
{[
D(Ẽ);P2

]}
ũ

= fn(P2)
[
∅ :

[[
D(Ẽ);P2

]]
ũ

]

= fn(P2)
[
∅ : spawn(nD)〈Ẽ〉.

[[
P2

]]
ũ

]

→ fn(P2)
[
∅ :

[[
P1

]]
∅
{Ẽ/x̃} |

[[
P2

]]
ũ

]

(1) = fn(P2)
[
∅ :

[[
P1{Ẽ/x̃}

]]
∅
|
[[
P2

]]
ũ

]

(2)
·

≈ fn(P2)
[
∅ :

[[
P1{Ẽ/x̃}

]]
ũ
|
[[
P2

]]
ũ

]

(3) =
{[
P1{Ẽ/x̃} | P2

]}
ũ

2.5. CORE LANGUAGE ENCODING 35

The last three lines are due to: (1) Lemma 2.29, (2) Lemma 2.30 and the

well–formedness of hipi core programs (Definition 2.4) that ensures that the

free names of P1{Ẽ/x̃} are a subset of the free names of P2, (3) the definition

of
{[
·
]}

ũ
.

We now prove part 4. by induction on the derivation of
{[
S
]}

ũ
→ M ′

(Definition 2.16). The only possible reactions for
{[
S
]}

ũ
are (spawn), (new),

(if1) and (if2). In the (spawn) case, the reaction of
{[
S
]}

ũ
then S must have

one of the following forms:

D(Ẽ);P spawn{P1}P2 spawn@x{P1}P2

In all the three cases S → S ′ such that
{[
S ′

]}
ũ

·

≈M ′ trivially.

In the case of (new) then S must have one of the following forms:

newTx in P x.send(Ẽ);P x.recv(T̃ y);P

In all these three cases S ′ = S such that
{[
S
]}

ũ

·

≈M ′ trivially.

Finally, in both the cases of (if1) and (if2) S must have the form:

if(E){P1}{P2}

that executes a reaction to S ′ where either S ′ = P1 and
{[
S ′

]}
ũ
= M ′ or S ′ = P2

or
{[
S ′

]}
ũ
= M ′ in accordance to the evaluation of E. ¤

Now, we give our final result in the following proposition.

Proposition 2.32 Given the hipi core states S1 and S2 then

S1

·

≈ S2 if and only if
{[
S1

]}
ũ

·

≈
{[
S2

]}
ũ

for any subscript ũ

Proof. (⇒) Consider the relation S on machines defined by:

S=
{ (

M1,M2

) ∣∣ M1

·

≈
{[
S1

]}
ũ
, M2

·

≈
{[
S2

]}
ũ
, S1

·

≈ S2 for all ũ
}

36 CHAPTER 2. CORE LANGUAGE AND COMPILER THEORY

To prove that S is a bisimulation we must verify the followings:

1. M1 ↓ α implies M2 ⇓ α

2. M1 →M ′

1 implies ∃M ′

2 such that M2 ⇒M ′

2 and M ′

1 S M ′

2

3. M2 ↓ α implies M1 ⇓ α

4. M2 →M ′

2 implies ∃M ′

1 such that M1 ⇒M ′

1 and M ′

1 S M ′

2

The proof of parts 1. and 3. is trivial due to Theorem 2.31 (Correctness) and

because S1
·

≈ S2 , M1
·

≈
{[
S1

]}
ũ
and M2

·

≈
{[
S2

]}
ũ
.

The following commutative diagram establishes part (2):

M1 −→ M ′

1
·

≈
·

≈ by definitions of S and
·

≈{[
S1

]}
ũ

=⇒ B′

1

by step (4) of Theorem 2.31

S1 =⇒ S′

1 s.t. B′

1

·

≈
{[
S′

1

]}
ũ

·

≈
·

≈ by definitions of S and
·

≈

S2 =⇒ S′

2

by step (2) of Theorem 2.31{[
S2

]}
ũ

=⇒ B′

2 s.t. B′

2 ≡
{[
S′

2

]}
ũ

·

≈
·

≈ by definitions of S and
·

≈

M2 =⇒ M ′

2

The proof of part 4 is the same as that of part 2 because S is symmetric.

We conclude that if S1

·

≈ S2 then
{[
S1

]}
ũ
S

{[
S2

]}
ũ
by definition. Hence,

{[
S1

]}
ũ

·

≈
{[
S2

]}
ũ

(⇐) Consider the relation S on hipi core states defined by:

S=
{ (

S1, S2

) ∣∣ {[
S1

]}
ũ

·

≈
{[
S2

]}
ũ

for all ũ
}

To prove that S is a bisimulation we must verify the followings:

2.5. CORE LANGUAGE ENCODING 37

1.
{[
S1

]}
ũ
↓ α implies

{[
S2

]}
ũ
⇓ α

2.
{[
S1

]}
ũ
→M ′

1 implies ∃M ′

2 such that
{[
S2

]}
ũ
⇒M ′

2 and M ′

1 S M ′

2

3.
{[
S2

]}
ũ
↓ α implies

{[
S1

]}
ũ
⇓ α

4.
{[
S2

]}
ũ
→M ′

2 implies ∃M ′

1 such that
{[
S1

]}
ũ
⇒M ′

1 and M ′

1 S M ′

2

The proofs of parts (1) and (3) are trivial. We prove part (2) by giving the
following diagram.

S1 −→ S′

1

by step (2) of Theorem 2.31{[
S1

]}
ũ

=⇒ M ′

1 ≡
{[
S′

1

]}
·

≈
·

≈ by definitions of S and
·

≈{[
S2

]}
ũ

=⇒ M ′

2

by step (2) of Theorem 2.31{[
S2

]}
ũ

=⇒ S′

2 s.t. M ′

2 ≡
{[
S′

2

]}
ũ

Part 4 is due to the symmetry of S. We conclude that if
{[
S1

]}
ũ

·

≈
{[
S2

]}
ũ
then

S1 S S2. Hence, S1
·

≈ S2. ¤

38 CHAPTER 2. CORE LANGUAGE AND COMPILER THEORY

Chapter 3

High Level Languages and Hipi

Compiler

The aim of this chapter is to describe hipi, the XML Intermediate Language

(xil) and the implementation of the hipi Compiler (the “hipi core” and the

“bytecode” of the previous chapter were idealizations/simplifications of hipi

and XIL used to make proof clearer). We also describe the implementation of

a Network Simulator that can be used to execute compiled programs.

3.1 Hipi: Language Definition

Hipi is a programmer–friendly extension of the hipi core language described

in section 2.1. The main differences with the core language that hipi has: a

different program structure, C–like functions instead of recursive definitions,

for–loops, URIs and new as expressions for binding of channel names. These

differences are all syntactic sugar.

A hipi program contains a set of schedules. A schedule is the equivalent of

a full program in the core language: it has a “main” and some local functions.

Schedules are named, and their names are used by the compiler to choose

filenames for its output. Functions can be either local to a schedule, or global:

39

40 CHAPTER 3. HIGH LEVEL LANGUAGES AND HIPI COMPILER

the former are placed inside a schedule and their scope is that schedule, the

latter are placed outside any schedule and their scope is the whole program.

A URI is used to refer to a global (i.e. well–known and pre–existing) channel.

In this section we describe hipi. The semantics of hipi may be understood

either informally through the descriptions in this section, or formally through

syntactic sugar translation into the hipi core language (following section).

Structure of a Program

We start with some programming examples. As in every reference manual

of any programming language, the first example is a program that prints the

Hello World string on the standard output.

schedule HelloWorld {

main {

// global channel constant for console interaction

channel<string> console = "ch://string.console";

// prints Hello World

console.send("Hello World");

}

}

The example partially illustrates the structure of a hipi program: there is a

schedule, namely HelloWorld, that is a sort of container. Inside the schedule

there is a main that is a block containing the statements executed at run–time.

Finally, inside the main there are two statements: the first declares that the

constant name “console” refers to a global channel and the second sends a

string on it: the global channel is identified using a URI and it is provided by

the run–time environment. The HelloWorld program contains also two lines

of comment: in hipi they are as in C++ where // is used for single lines and

/* · · · */ for multiple lines.

3.1. HIPI: LANGUAGE DEFINITION 41

The Complete Language Grammar

An hipi program is made of four parts: (1) a set of type declarations, (2)
imports of external source files, (3) function declarations and (4) schedules.
Statements are defined for communications, control–flow commands, function
calls and the definition of new variables. Expressions are the same as the core
language extended with new channel and URI that are used in substitution
of the new statement and to avoid free names.

Program ::= TypeDecl ∗ FileImport ∗ Function ∗ Schedule∗

TypeDecl ::= typedef typeid = Type ;

Type ::= channel <
[

TypeList
]
>

| int | string | typeid

TypeList ::= Type
(

, Type
)
∗

FileImport ::= import filename ;

Function ::=
(

Type
∣∣ void

)
funName (ParamList) { Statement }

ParamList ::= Type var
(

, Type var
)
∗

Schedule ::= schedule schedname
[
colocatedwith URIList

]

{
(

Declaration | Function
)
∗

main { Statement }
(

Declaration | Function
)
∗ }

URIList ::= uri
(
, uri

)
∗

Declaration ::= Type var = Expression ;

42 CHAPTER 3. HIGH LEVEL LANGUAGES AND HIPI COMPILER

Statement ::= Type var = Expression ;

| spawn { Statement }

| spawn@ var { Statement }

| var . send (
[

ExpressionList
]
) ;

| var . asend (
[

ExpressionList
]
) ;

| var . recv (ParamList) ;

| funName (
[

ExpressionList
]
);

| return
[

Expression
]
;

| if (Expression) Statement
[
else Statement

]

| for var = Expression to Expression
[
by Expression

]
Statement

| Statement Statement

| { Statement }

Expression ::= LiteralInt | LiteralString | var

| Expression op Expression

| − Expression | ! Expression

| funName (
[

ExpressionList
]
)

| uri | new Type

| (Expression)

op ::= + | − | ∗ | / | % | && | || |

| < | > | <= | >= | == | ! =

ExpressionList ::= Expression
(

, Expression
)
∗

Types and Type Declarations

Three types are defined in hipi: integers, strings and channels. Integers and

strings are standard. Channel types are identified by the keyword channel<...>

where a list of types representing the objects of communications is written be-

3.1. HIPI: LANGUAGE DEFINITION 43

tween angles. A variable with type channel<string>, for instance, can be

used for communications using only strings as objects. Channel types are the

extensions of sorts in π–calculus [Mil99] with integers, strings and channels as

possible objects of communications.

The grammar rule describing types (or type expressions) is:

Type ::= channel <
[
TypeList

]
>

| int | string | typeid

where TypeList is a (non empty) comma–separated list of Type elements

and typeid is a type identifier. A type identifier is a variable that can be

instanced with a type expression. This is obtained through a type declaration

with the following syntax:

TypeDecl ::= typedef typeid = Type ;

As discussed above, type declarations are placed at the beginning of a program

and they allow recursion. The simplest example of recursive declaration is:

typedef recT = channel<recT>;

that is the type of a channel that can be used as the object of a communication

on itself.

In a type declaration the right hand side can be a type identifier (i.e. aliases

are admitted) but the definition of self–referent or mutually–referent identifiers

is forbidden. Examples of wrong declarations are:

typedef wrongT = wrongT;

typedef wrongA = wrongB;

typedef wrongB = wrongA;

We use structural equivalence for types, i.e. types are considered the same

if a the fixed point of the sequences their expansions are equivalent. We give

an example:

44 CHAPTER 3. HIGH LEVEL LANGUAGES AND HIPI COMPILER

typedef alphaT = channel<alphaT>;

typedef betaT = channel<channel<alphaT>;

This kind of equivalence relation for types allows to assign values of type

alphaT to variables of type betaT and vice–versa. Structural equivalence was

chosen instead of name equivalence (where types with different names are

always considered different) because as a future work we want to add XML

data types from XDuce [HP03], which themselves use structural equivalence.

Import Declarations

An import declaration is used to include the source code contained in a spec-

ified file. The syntax of an import declaration is the following:

FileImport ::= import filename ;

The import of a file copies the source code contained inside it into the current

program: type definitions, functions and schedules of the imported file are

written in the correct place. The names of the imported code must not clash

with the names of the current program. If the imported file contains other

import declarations, they are executed only if referred to different files (i.e. if

they are not the main file or another already imported file).

Schedules

The syntax of schedules is given by the following rules:

Schedule ::= schedule schedname
[
colocatedwith URIList

]

{
(

Declaration | Function
)
∗

main { Statement }(
Declaration | Function

)
∗ }

Declaration ::= Type var = Expression ;

3.1. HIPI: LANGUAGE DEFINITION 45

where URIList is a comma–separated list of URIs, Function is a local func-

tion and Statement is an instruction. A Declaration is used to declare an

immutable variable that can be used in the whole schedule (i.e. in main and

inside function bodies). The expression assigned to the declared variable is

evaluated once, before main starts. It is also possible to define a constraint

on the location where the schedule will be executed: this is achieved by using

the colocatedwith option. This option is followed by a list of URIs that are

references to channels. The use of the colocatedwith option guarantees that

the schedule will be executed at the location where the listed channels reside

(and implicitly requires that all these channels be colocated).

The main motivation for schedules comes from future works. Our expec-

tation is to define shared channels that can be used by multiple schedules to

coordinate their work but that are invisible to the rest of the world.

Functions

Functions can be defined either outside or inside schedules. In the first case

their scope is the whole program; in the second it is the schedule where they

are contained.

The syntax of a function definition is similar to C++:

Function ::=
(

Type
∣∣ void

)
funName (ParamList)

{ Statement }

ParamList ::= Type var
(
, Type var

)
∗

As usual the scope of the variables declared in ParamList is the body of the

function.

The distinction between global and local scope requires a discipline on

function names: the same name can’t be used for two different local functions

of the same schedule or for two different global functions. If a global function

and a local one exist with the same name, invocations inside the schedule refer

to the local one.

46 CHAPTER 3. HIGH LEVEL LANGUAGES AND HIPI COMPILER

Inside a function there can be also return statements: as usual, the re-

turned value must be of the same type of the function, or it must be omitted

if the type of the function is void. Return statements cannot be used inside

the main block.

Statements

Some statements of hipi are inherited from the core language, albeit with a

slightly different syntax: these are immutable variable declarations, spawns,

communications and selections. Others, as function calls and for–loops, are

new. Recursive definitions and the new statement of the core language are not

inherited.

Immutable Variable Declarations The syntax of an immutable variable

declaration is:

Type var = Expression ;

It differs from the variable declaration of the hipi core language by the absence

of the let keyword.

The scope of the variable is the block that contains it. The value of the

expression is assigned to the new variable and it cannot be replaced by subse-

quent statements. The type of the expression must be structurally equivalent

to Type. This kind of declaration substitutes also the new statement of the

core language because here a new channel expression is defined.

Parallel Processes (and Migrations) The syntax of Spawn statements

is:

spawn
[
@ var

]
{ Statement }

and the behavior is that the contained Statement starts a parallel execution.

If the option @x is used, the Statement is executed at the location of channel

x.

3.1. HIPI: LANGUAGE DEFINITION 47

Communications on Channels The syntax of output and input on chan-

nels is given by the following rules:

var . send (
[
ExpressionList

]
) ;

var . asend (
[
ExpressionList

]
) ;

var . recv (ParamList) ;

where:

ExpressionList ::= Expression
(
, Expression

)
∗

and ParamList is as defined above.

Communications are as in the core language with the addition of an asyn-

chronous send statement. send and recv are used for synchronous message

passing over channels: the scope of the variables in ParamList is the whole

continuation.

The asend, instead, is asynchronous: when it is used for a communication

the execution of the program continues immediately, without waiting for the

reaction with a recv. The asend statement is the same as a send statement in-

side a spawned block (i.e. x.asend(); is equivalent to spawn{x.send();}. We

added this statement because we found it to be used in hipi programs. However

we didn’t add an arecv statement because it was not so frequently needed and

because its implementation could lead to ambiguities. An arecv can be en-

coded to a recv placed inside a spawn block (for instance spawn{x.recv();})

or as a recv inside a migration term (for instance spawn@x{x.recv();}).

Since the sequence and the kind of the messages exchanged between locations

in the two cases are different, we preferred to leave them to the programmer.

Function Calls and Returns The function call statement can be used with

void functions or when the return value of the function is not used in the rest

of the program. Return statements, can be used only inside function bodies.

48 CHAPTER 3. HIGH LEVEL LANGUAGES AND HIPI COMPILER

Their syntax is given by:

funName (
[
ExpressionList

]
);

return
[
Expression

]
;

where ExpressionList is as defined above.

Function calls are replacements for recursive definition calls of the core

language. The difference between them is that the statements after a function

call are executed only when the called function terminates, but the statements

after a recursive definition are executed immediately.

We experienced, in programming in hipi, that both functions and recursive

definition can be useful for a programmer. We preferred to insert functions

in hipi instead of recursive definitions because a function can behave as a

recursive definition by adding a spawn statement to the caller.

Control–Flow Commands In hipi two control–flow statements are de-

fined: selection and for–loop. Their syntaxes are:

if (Expression) Statement 1

[
else Statement 2

]

for var = Expression 1 to Expression 2

[
by Expression 3

]
Statement

Selection (i.e. the if statement) is as usual. The for–loop is as in Pascal: a

read–only integer variable, whose scope is Statement, is used as the index of

the iteration. It ranges between the values of Expression1 and Expression2.

At each iteration it is increased by the value of Expression3 if it specified,

otherwise it is increased by 1. The three expressions are evaluated once before

the loop is entered and never during the cycle. The iteration terminates when

the index becomes equal or greater to the value of Expression2

Blocks Blocks of code can be written to limit the scope of a variable dec-

laration or to group together statements for an if or a for–loop. The syntax

rule of a block is the following:

Statement ::= { Statement }

3.1. HIPI: LANGUAGE DEFINITION 49

Expressions

The simplest expressions in hipi are literals (integer and string values), vari-

ables and function calls. Then there are URIs, used to refer to pre–existing

channels, and the new channel expression, which has the side effect of creat-

ing a new channel. Expressions are enriched with unary and binary integer

operators, and comparison operators.

In hipi, expressions are described by the following grammar:

Expression ::= LiteralInt | LiteralString | var

| Expression op Expression

| − Expression | ! Expression

| funName (
[
ExpressionList

]
)

| uri | new Type

| (Expression)

op ::= + | − | ∗ | / | % | && | || |

| < | > | <= | >= | == | ! =

Comparisons are allowed only between elements whose types are structurally

congruent; the other operators can be used only between integer expression.

Precedence rules are as usual: unary operators come first, then there are *,/

and %, then + and -, then comparators and finally && and ||. Parenthesis can

be used to specify different precedences as usual.

The Type used in the new expression must be a channel type. The new

expression creates a new channel and can be used to give it a name (by as-

signing the expression to a variable), to pass it to functions or to send it over

channels. Since the type used after new must be a channel type, we often call

this expression new channel.

Examples

Here we illustrate the examples of sections 2.1 and 2.3 in hipi. The first one

executes a reaction:

50 CHAPTER 3. HIGH LEVEL LANGUAGES AND HIPI COMPILER

schedule Reaction {

main {

new channel<> x;

spawn { x.send(); }

x.recv();

}

}

The second one simulates a ping pong match between two parallel pro-

cesses:

typedef pingpongT = channel<pingpongT>;

schedule PingPong {

void recursive_player(pingpongT ping) {

ping.recv(pingpongT pong);

pong.send(ping);

spawn { recursive_player(ping); }

}

main {

// creates the channels used by the players

pingpongT p1 = new pingpongT;

pingpongT p2 = new pingpongT;

// starts the execution of both players in parallel

spawn { recursive_player(p1); }

spawn { recursive_player(p2); }

// starts the match

p1.send(p2);

}

}

3.2. TRANSLATING HIPI INTO HIPI CORE 51

3.2 Translating Hipi into Hipi core

An hipi program can be translated into a set of programs in the hipi core lan-

guage. We recall that a program in the hipi core language is a triple (Φ,Γ,P)

where Φ is a mapping from type identifiers into type expressions, Γ is a map-

ping from recursive definition names into abstractions and P is a process whose

syntax is described in section 2.1.

We now give a formal definition of the translation from hipi into hipi core.

For the sake of simplicity we define a two step translation: the first step

translates for–loops into functions and the second step translates the result

into a set of hipi core programs. For the sake of the simplicity we assume

no import declarations. Let global(H) be the set of global functions of a hipi

program H and local(Sdl) be the set of local functions of a schedule Sdl.

Definition 3.1 (For–Loops Encoding) Given a hipi program H, the cor-

respondent For–Loops Free Program Hn is obtained by replacing every for loop

for x = E1 to E2 by E3 S

with:

int x1 = E1; int x2 = E2; int x3 = E3; f(fn(S), x1, x2, x3) ;

where f is the following global function:

void f (T̃ v, int a, int b, int c){

if(a < b){ S f(fn(S), a+ c, b, c); }

}

where T̃ v is a typed representation of fn(S).

Before defining the second step of the encoding, we introduce a derived

composition operator · for statements in the hipi core language. We use paren-

thesis to specify precedences.

52 CHAPTER 3. HIGH LEVEL LANGUAGES AND HIPI COMPILER

Definition 3.2 Composition · is a binary operator for statements in the hipi

core language defined by:

x.send(Ẽ);P1 · P2 = x.send(Ẽ);(P1 · P2)

x.recv(T̃ x);P1 · P2 = x.recv(T̃ x);(P1 · P2)

let x=Ẽ in P1 · P2 = let x=Ẽ in (P1 · P2)

newTx in P1 · P2 = newTx in (P1 · P2)

if(E){P1}{P2} · P3 = if(E){P1 · P3}{P2 · P3}

D(Ẽ);P1 · P2 = D(Ẽ);(P1 · P2)

spawn{P1}P2 · P3 = spawn{P1}(P2 · P3)

spawn@x{P1}P2 · P3 = spawn@x{P1}(P2 · P3)

0 · P = P

The composition operator is used to add continuations to statements. Note

that the continuation after an if statement is copied into both branches of the

statement. Also it shows that the scope of a variable is the whole continuation.

Now we define the second (and main) step of the translation from hipi into

hipi core. The translation uses an encoding
{[
·
]}
that takes the type definitions,

the global functions and one schedule of an hipi program and generates one

hipi core program (Φ,Γ, P). The encoding is repeated once for each schedule

of the source program. The final result is a set of hipi core programs whose

elements are as many programs as there were schedules.

Type declarations of the source hipi programs are used by the translation

to define the type function Φ in the obvious way. Given a schedule its local

functions and the global functions of the hipi program are used to define Γ.

If the name of a global function clashes with the name of a local one, such

a global function is ignored. Finally P is given by the encoding of the main

block of the schedule.

3.2. TRANSLATING HIPI INTO HIPI CORE 53

Definition 3.3 (Translation) Given a schedule Sdl of a hipi program H

without for–loops, its translation
{[
H

]}
into the hipi core language is the triple

(Φ,Γ, P) that follows. It makes use of a subsidiary translation
{[
·
]}

form hipi

statements into hipi core statements, defined below.

Φ =
{
(t , t’)

∣∣ typedef t = t′; ∈ H
}

Γ =
{(

f , (T̃ x, channel〈T′′〉 r).S ′
)

∣∣ T′f(T̃x){S} ∈ local(Sdl) ∪ global(H) \ local(Sdl)
}

P =
{[
M

]}

where:

r not free in S ′

M is the main of Sdl

T ′′ =

{
T ′ if T ′ 6= void

∅ otherwise

S ′ =

{[
S{r.send(E);/return E;}

]}
if T ′ 6= null

{[
S{r.send();/return;}

]}
otherwise

The encoding
{[
·
]}
maps hipi statements into statements in the core language:

{[
x.send(Ẽ);

]}
= A · x.send(B); where ([E]) = (A,B)

{[
x.asend(Ẽ);

]}
= A · spawn{x.send(B);} where ([E]) = (A,B)

{[
x.recv(T̃ y);

]}
= x.recv(T̃ y);

54 CHAPTER 3. HIGH LEVEL LANGUAGES AND HIPI COMPILER

{[
spawn{S}

]}
= spawn{

{[
S

]}
}

{[
spawn@x{S}

]}
= spawn@x{

{[
S

]}
}

{[
f(Ẽ);

]}
= new channel〈T ′〉 r in ·A · f(B, r);r.recv(T ′y);

where r, y fresh ([E]) = (A,B)

{[
{S}

]}
=

{[
S

]}

{[
Tx=E in

]}
= A · let Tx=B in ∅ where ([E]) = (A,B)

{[
if(E){S1}{S2}

]}
= A · if(B){S ′

1}{S
′

2} where ([E]) = (A,B)

The encoding ([·]) is the following mapping from sequences of hipi expressions

into pairs (S, Ẽ) where S is a statement and Ẽ a sequence of expressions in

the hipi core language.

([Ẽ]) =
(
A1 · · ·An , B1 · · ·Bn

)
where ([Ei]) = (Ai, Bi)

([uri]) =
(
0 , xuri

)

([newT]) =
(
new Tx in , x

)
x fresh

([f(Ẽ);]) =
(
new channel〈T ′〉 r in · A· f(B, r);r(T ′y) , y

)

where x fresh ([E]) = (A,B)

([E1 op E2]) =
(
A1 · A2 , B1 op B2

)
where ([Ei]) = (Ai, Bi)

([!E]) =
(
A , !B

)
where ([E]) = (A,B)

([−E]) =
(
A , −B

)
where ([E]) = (A,B)

3.2. TRANSLATING HIPI INTO HIPI CORE 55

([i]) =
(
0 , i

)
where i ∈ LiteralInt

([s]) =
(
0 , s

)
where s ∈ LiteralString

([x]) =
(
0 , x

)

([(E)]) =
(
A , B

)
where ([E]) = (A,B)

where op ranges over {+,−, ∗, /,%,&&, ||, <,>,<=, >=,==, ! =}.

The main non–straightforward rules of the encoding
{[
·
]}

are related to

the translation of function calls. The synchrony of a function call is obtained

by using a communication on a new channel r to transmit the return value.

The function call is translated into a recursive definition call followed by an

input on r. Return statements are translated into outputs on r (as shown in

the definition of Γ).

We remark that arecv is encoded into a recv statement contained in a

spawned block, and that to both branches of the if statement the whole

continuation is appended.

The encoding ([·]) has the feature of removing side effects from the new and

the function call expressions. We remark that expressions in hipi have side

effect but those in the core language do not: ([·]) substitutes side effects with

statements. We now give an example that shows the translation of a function

call expression:

x.send(fact(10));

it is translated into the following sequence of hipi core statements (without

side effects):

new channel<int> r in

fact(10);

r.recv(int y);

x.send(y);

56 CHAPTER 3. HIGH LEVEL LANGUAGES AND HIPI COMPILER

3.3 XIL: XML Intermediate Language

The XML Intermediate Language (XIL) is an XML representation of the byte-

code language described in section 2.3. A XIL file represents a schedule (i.e.

a loadable and executable entity) and it is an XML document made of a se-

quence of named threads. One of these threads is named “main” and it is the

starting point of the execution.

The only non–syntactic difference between XIL and the bytecode language

is that the the former uses a stack to store variable values, while the latter

uses substitutions in the operational semantics. A stack is a standard way

to implement substitutions: in XIL its elements can be strings, integers and

URIs (used to represent channels). We now give the complete syntax of XIL,

and then we explain each part of it. The XML–schema document that can

validate XIL files is shown in appendix A.

XILProg ::= < schedule name = “ schedName ′′ >

Thread∗

< /schedule >

Thread ::= < thread name = “ threadName ′′ >

< stacksize init = “ n ′′/ >

Statement∗

< /thread >

Statement ::= < send > LoadExp Expression ∗ < /send >

| < recv > LoadExp StoreExp ∗ < /recv >

| < fwd > LoadExp LoadExp < /fwd >

| < spawn thread = “ threadName ′′

[
dest = “ n | uri ′′

]
>

Expression∗

< /spawn >

3.3. XIL: XML INTERMEDIATE LANGUAGE 57

| < store idx = “ n ′′ > Expression < /store >

| < newch idx = “ n ′′/ >

| < if > Expression

< then > Statement ∗ < /then >

< else > Statement ∗ < /else >

< /if >

| < terminate/ >

LoadExp ::= < load src = “ n ′′/ >

| < load src = “ uri ′′/ >

StoreExp ::= < store idx = “ n ′′/ >

Expression ::= LoadExp

| < int > LiteralInt < /int >

| < string > LiteralString < /string >

| < op type = “ ExpOp ′′ >

Expression
[

Expression
]

< /op >

ExpOp ::= add | sub | mul | div | mod | and | or

| eq | neq | lt | gt | le | ge | umin | not

In XIL LiteralInt and LiteralString are integers and strings as usual.

The number of children of the op tag depends by the arity of the operator as

described in table 3.1

Each <thread> element of a XIL program has <stacksize> as a required

first child indicating (as the value of its required attribute init) the initial

size of the stack that will be associated to it at run–time. The main thread

must have initial stack size equal to zero. The initial stack size corresponds

58 CHAPTER 3. HIGH LEVEL LANGUAGES AND HIPI COMPILER

Op.Type N. of Children Description

add 2 sum

sub 2 subtraction

mul 2 multiplication

div 2 division

mod 2 modulus

and 2 boolean and

or 2 boolean or

eq 2 equal to

neq 2 not equal to

lt 2 lower than

gt 2 greater than

le 2 lower or equal than

ge 2 greater or equal than

umin 1 unary minus

not 1 boolean not

Table 3.1: Values of the type attribute of <op> and their descriptions

to the number of parameters of an abstraction in the bytecode language. An

example of <thread> is:

<thread name = "foo">

<stacksize init="2"/>

<store idx = "2">

<op type="sum">

<load idx="0"/>

<load idx="1"/>

</op>

</store>

</thread>

3.3. XIL: XML INTERMEDIATE LANGUAGE 59

Statements are based on the terms of the bytecode language of section 2.3.

<send> and <recv> are used for communication over channels. Their first

child represent the subject of the communication. The remaining children of

the <send> tag are the object of the communication; the remaining of the

<recv>, on the other hand, are used to describe at which positions of the

stacks the received elements must be stored. We now give examples of <send>

and <recv>, the first shows the output of 5 and ch://channel.x over the

channel at position 10 of the stack:

<send>

<load src="10"/>

<int>5</int>

<load src="ch://channel.x"/>

</send>

and the second shows the input of two elements (stored at positions 3 and

4 of the stack) over the channel at position 10 of the stack:

<recv>

<load src="10"/>

<store idx="3"/>

<store idx="4"/>

</recv>

<fwd> is a linear forwarder: it must have exactly two children that are the

old and the new destination of the forwarded message. An example is:

<fwd>

<load src="3"/>

<load src="4"/>

</fwd>

<spawn> starts the execution of the specified named thread: the optional

dest attribute is used to execute the new thread at a different location. The

60 CHAPTER 3. HIGH LEVEL LANGUAGES AND HIPI COMPILER

children of the <spawn> tag are parameters passed to the new thread in order

to build its stack. An example of <spawn> (that executes the foo thread

defined above) is:

<spawn thread = "foo">

<int>10</int>

<load src="12"/>

</spawn>

<store> puts the value obtained by its child into a specific position of the

stack (given by the required idx attribute). The <newch> statement creates a

new channel and stores its URI at the specified position of the stack (as using

a <store> with a <newch/> expression inside it). The <if> is as usual and

<terminate> is used to terminate the execution of the current thread.

The <load> expression is defined for loading values from stack and for

referencing to global (pre–existing) channels: in the first case the required src

attribute is an index of the stack, in the second case it is a URI. <int> and

<string> are used to represent literals and <op> is used for unary and binary

operators.

We explain briefly how the stack is used at run–time. At the start the

main thread is executed and a new (empty) stack is associated to it. This is

the reason why the init value of the <stacksize> child of the main thread is

required to be 0. During execution, every time a <spawn> is executed, a new

stack for the spawned thread is created. Such a new data structure contains

the element represented by the n children of <spawn> at the first n positions.

The <stacksize> tag of the spawned thread must have init value equal to

n.

Every time a new variable is bound its value is stored into the stack and

every time that variable is used its value is loaded from the stack: this is how

substitutions in the bytecode operational semantics (described in section 2.4)

are implemented using a stack. The <store> statement is used to put values

into a location of the stack (previous values are overwritten): this allows space

optimizations, obtained by reusing of stack positions.

3.3. XIL: XML INTERMEDIATE LANGUAGE 61

We now rewrite here the examples of section 2.3 using the XML notation

just described. The first example is the reaction:

<schedule name="Example1">

<thread name="main">

<stacksize init="0"/>

<newch idx="0">

<spawn thread="child">

<load src="0"/>

</spawn>

<recv>

<load src="0"/>

</recv>

</thread>

<thread name="child">

<stacksize init="1"/>

<send>

<load src="0"/>

</send>

</thread>

</schedule>

The second example simulates a ping–pong match:

<schedule name="Example2">

<thread name="main">

<stacksize init="0"/>

<newch idx="0"/>

<newch idx="1"/>

<spawn thread="recursive_player">

<load src="0"/>

</spawn>

<spawn thread="recursive_player">

<load src="1"/>

</spawn>

62 CHAPTER 3. HIGH LEVEL LANGUAGES AND HIPI COMPILER

<send>

<load src="0"/>

<load src="1"/>

</send>

</thread>

<thread name="recursive_player">

<stacksize init="1"/>

<newch idx="1"/>

<spawn thread="n">

<load src="0"/>

<load src="1"/>

</spawn>

<recv>

<load src="1"/>

<store idx="2"/>

</recv>

<send>

<load src="2"/>

<load src="0"/>

</send>

<spawn thread="recursive_player">

<load src="0"/>

</spawn>

</thread>

<thread name="n">

<stacksize init="2"/>

<fwd>

<load src="0"/>

<load src="1"/>

</fwd>

</thread>

</schedule>

3.4. THE HIPI COMPILER 63

3.4 The Hipi Compiler

In chapter 2 we presented the hipi core language and the bytecode and we de-

fined an encoding that can be used to translate a program in the core language

into a piece of behaviorally equivalent bytecode. In the first sections of this

chapter we illustrated hipi as an extension of the hipi core and we illustrated

how to translate an hipi program into a set of core programs.

Combining the two encodings and using the XML notation of XIL for the

bytecode, we obtain the way to translate an hipi program into a set of XIL

files. This hipi-to-XIL encoding is what we implemented in the hipi compiler.

The compiler operates in phases, each of which transforms the source pro-

gram from one representation to another. The 4 phases of the hipi compiler

are:

1. lexical and syntax analysis

2. semantic analysis

3. encoding

4. XIL code generation

Phase 1 was implemented using the parser generator JavaCC: a tool that

creates a set of Java classes that can be used to detect if a source file matches

a given grammar. The output of this phase is the Abstract Syntax Tree rep-

resenting the input source file.

The semantic analysis (phase 2) checks the well–formedness of the source

program and gathers the information for the subsequent phases. It uses the

AST to identify the operators and operands of expressions and statements and

uses a symbol table to store temporary information. Some information useful

in next phases are stored into nodes of the AST.

The encoding phase (numbered 3) takes the checked AST, enriched by the

semantic analysis, and applies to it the encoding formally defined in previous

chapter and sections. The output of this phase is a tree structure representing

the XIL document that will be returned by the compiler.

64 CHAPTER 3. HIGH LEVEL LANGUAGES AND HIPI COMPILER

Finally, the code generation phase makes some optimizations to the tree

structure returned by the encoding and generates the XIL output document.

We now give more details about each phase.

Lexical and Syntax Analysis Both lexical and syntax analysis were im-

plemented using a parser generator. The tool used was the Java Compiler

Compiler (JavaCC) that is one of the most popular parser generators for

Java. The main features of JavaCC are: (1) generation of top–down (recursive

descent) parsers as opposed to bottom–up parsers generated by YACC-like

tools; (2) tree building preprocessor (via the included JJTree tool); (3) syn-

tactic and semantic lookahead specification. By default, JavaCC generates

an LL(1) parser, but it is possible to change the value of the lookahead for

specific portions of the grammar. It is possible also to use a special lookahead

that checks if an input fragment is equal to a specific sequence of terminals or

satisfies a specific non–terminal rule of the grammar.

In our implementation, the grammar specified by the input file of JavaCC

is equivalent to the one of section 3.1 but without left recursions (because they

are avoided in LL(n) grammars). JJTree is used to create the Abstract Syntax

Tree with the nodes listed in table 3.2: for each node of the tree a Java class

is created.

Semantic Analysis This phase is implemented as a depth–first visit of

the Abstract Syntax Tree. During the visit the well–formedness of the tree

(that reflects the well–formedness of the source program) is checked. Variables

scopes are checked in this phase: a variable must be defined before it is used

inside expressions or as subject of a communication. No pairs of variables

sharing the same name can be defined in the same block. During the visit of

the AST a depth counter is used: at the root node it is set to 0 and its value

is changed during the visit. Using this counter together with a symbol table

it is possible to check the scopes and types of the variables.

The symbol table is a dynamic data structure used to store temporary

information about variables. The symbol table is an hash table that contains

3.4. THE HIPI COMPILER 65

Node Description

ASTHiPiProgram The root of the Abstract Syntax Tree. Childnodes are

type declarations, imports, functions and schedules.

ASTTypeDeclaration Contains the type identifier and the type expression

of a type declaration. No childnodes.

ASTImportDeclaration Contains the name of an imported file. No childnodes.

ASTFunction Contains the type and the description of the formal

parameters. Childnodes are the body of the function.

ASTSchedule Contains the name of the schedule and a set of URIs

representing the co–located channels. Childnodes

are functions, local declarations and the main block.

ASTScheduleMain No information contained. Childnodes are statements.

ASTLocalDeclStatement Contains the name and the type of the new variable

or channel. The childnode is the assigned expression.

ASTFunctionCall Contains the name of the called function. Childnodes

are the expressions used as arguments.

ASTSend Contains the name of the subject channel. Childnodes

are the expressions used as object.

ASTRecv Contains the name of the subject channel and the

description of the received names with their types

ASTSpawnStatement Optionally contains a destination channel (if it is a

migration). Childnodes are statements of the new

parallel process.

ASTBlock Childnodes are statements.

ASTReturnStatement The childnode is the returned expression (if any).

ASTSelectionStatement The first childnode is an integer expression, then

there are two child blocks representing the two branches

of the selection.

ASTNewChannel Represents the new channel expression.

ASTExpIdentifier Represents a variable inside an expression. Contains the

name of the variable.

ASTExpInteger Represents a literal integer. Contains an integer value,

ASTExpString Represents a literal string. Contains a string value,

ASTExpOp Contains the rapresentation of an operator. Childnodes

are the expressions used as operands.

Table 3.2: Nodes of the Abstract Syntax Tree

66 CHAPTER 3. HIGH LEVEL LANGUAGES AND HIPI COMPILER

name, type and depth of each variable declared in the program. It can be

accessed using an hash function on the name of the variable. A graphical

representation of the symbol table is given in figure 3.1.

X int 1 Z str 0 X C<int> 0

Y int 0

K C<str> 1

Figure 3.1: A graphical representation of the symbol table

The figure shows a symbol table containing five variables. Z and the two

occurrences of X are an example of names whose hash values are the same: they

form a list. We give a description of how variables are checked during the visit.

Let us denote elements of the symbol table as a set of triples (id,type,depth):

1. the depth counter is initialized to 0;

2. the visit starts;

3. every time a new variable x is declared: if (x,t,d) is present into the

symbol table and d is equal to the value of the depth counter, then an

error message is returned. Otherwise (x,t,c) is inserted, where t is the

type of x and c is the value of the counter;

3.4. THE HIPI COMPILER 67

4. every time a variable is used inside an expression or as a subject of a

communication it is found inside the symbol table: if it is not present an

error message is returned;

5. every time a block or a branch of a selection or a spawn block is entered

the depth counter is incremented by one;

6. every time a block or a branch of a selection or a spawn block is exited

the depth counter is decremented by one and all the elements of the

symbol table with depth equal to the old value are removed.

Encoding In this phase the AST is transformed in order to obtain a data

structure that represents the output XIL program. The encoding was de-

scribed in the previous sections; we now give only an example of how it is

applied to the tree structure.

We recall that in hipi a send statement is defined and it is used for syn-

chronous communications. In the bytecode, instead, output operations are

asynchronous, so an acknowledgment channel is used to encode the hipi into

bytecode. Figure 3.2 shows the AST fragment representing the synchronous

send of hipi on the left, and its encoding with a new channel for the acknowl-

edgment on the right.

XIL code generation The tree structure generated by the encoding is used

to generate the XIL document that is the output of the encoding. In this

phase all the subtree of the ASTSpawn nodes and of the ASTFunction nodes

are removed from the AST and used to generate the sequence of named thread

of the XIL document. All the other nodes are directly translated into one or

more XIL tag in the obvious manner. Some space optimizations are made in

this phase: for instance, some threads generated by the previous encoding are

repeated (like the thread that sends the acknowledgment after an output), so

they are substituted by a single thread executed once for each output.

68 CHAPTER 3. HIGH LEVEL LANGUAGES AND HIPI COMPILER

ASTSend
Subject: X

ASTExpIdentifier
Name: Y ASTSend

Subject: X

ASTExpIdentifier
Name: Y

ASTLocalDecl
Statement

Name: ack (fresh)
Type: channel<>

AST AST

ASTExpIdentifier
Name: ack

ASTSpawn
ASTRecv
Subject: ack
Object: <>

Figure 3.2: The encoding of the send statement as a transformation of the

AST

3.5 The Network Simulator

Together with the hipi compiler we implemented also a network simulator

that can be used to execute XIL programs generated by the compiler. This

tool simulates a network of virtual machines. In our implementation a virtual

machine is the equivalent of a location: it can host channels and it can execute

XIL programs.

The simulator takes the filename of a “geometry” file describing the layout

of the simulated network as a command line argument, and uses this geometry

for its initialization. An example geometry file is the following:

<network>

<vm name="Bologna">

<channel uri="ch://virtualmachine.bo.it/one"/>

<channel uri="ch://virtualmachine.bo.it/two"/>

</vm>

3.5. THE NETWORK SIMULATOR 69

<vm name="NewYork">

<channel uri="ch://virtualmachine.ny.com/one"/>

<channel uri="ch://virtualmachine.ny.com/two"/>

</vm>

<vm name="Paris"/>

</network>

The network described by the example document is made of three virtual ma-

chines, namely Bologna, NewYork and Paris. Two channels are hosted at both

Bologna and NewYork, no channels are hosted by Paris. The four declared channels

are the only pre–existing channels: they are the equivalent of the external channels

described in section 2.4 and their URIs can be used to communicate on them.

After initialization the simulator starts a command shell that allow the user to

load XIL programs and simulate their execution. The first screen of the console

illustrates the available commands:

RNG seed = 1000

Simulator initialized...

Verbose mode is off

Starting console...

Commands:

load <VM_name> <filename> - Load a schedule on a VM

play - Execute forever

step <num> - Execute <num> steps

s - The same as: step 1

view - Print simulator state

help - This message

verb - Switch verbose mode on|off

quit - Exit the simulator

ATT: Console is case sensitive

SIM>

Figure 3.3 shows a graphical representation of the simulator.

70 CHAPTER 3. HIGH LEVEL LANGUAGES AND HIPI COMPILER

Simulator:

Virtual Machines:

Schedules:

Virtual Machine:

CM CM

Thread

}Stack

Channel Manager:

T

T

T

in out

Thread

}Stack

Figure 3.3: A graphical representation of the Network Simulator

3.5. THE NETWORK SIMULATOR 71

The simulator handles a set of virtual machines created as specified in the

geometry document, and a set of DOM trees that are the representations of

all the loaded schedules. A virtual machine contains a set of channel managers

that are used to handle communication over channels. Each virtual machine

is started with one channel manager for each channel it hosts as declared in

the geometry file. New channel managers can be created at run–time. A

virtual machine contains also a set of threads: each thread has its own stack

and a reference to a node of a DOM tree (this is the equivalent of a program

counter). Threads of each virtual machine are executed using a round robin

scheduler and blocked threads can be enqueued on the input or output queue

of a channel manager during execution.

Each time a new schedule is loaded on a virtual machine, the related XIL

document is transformed into a DOM tree and a new thread is started in the

virtual machine. The stack of this new thread is initialized empty and the

DOM tree pointer is initialized to the node that identifies the main thread of

the new schedule. A simulation step is executed on a randomly chosen virtual

machine. In this machine the step is executed in accordance with the round

robin policy of its scheduler. When a thread communicates on a channel it is

enqueued on the channel manager that handles the channel. When a channel

manager has at least one enqueued input thread and one enqueued output

thread, a reaction step is possible.

Three special URIs are defined for console input and output:

ch://string.console ch://int.console and ch://channel.console.

These carry strings, integers and channels (of any type). Values sent on them

are immediately printed on the console and input operations on them are im-

mediately translated into console inputs. URIs are used to represent channel

values on the console.

The state of the simulator can be printed on the console. The state contains

information about the channels currently hosted by the virtual machines and

about the state of the running and enqueued processes. Here is an example:

72 CHAPTER 3. HIGH LEVEL LANGUAGES AND HIPI COMPILER

SIM> view

Bologna:

Channels - 2

ch://virtualmachine.bo.it/one

INPUT QUEUE: 0

OUTPUT QUEUE:0

ch://virtualmachine.bo.it/two

INPUT QUEUE: 1

OUTPUT QUEUE:0

Active threads - 0

NewYork:

Channels - 3

ch://virtualmachine.ny.it/one

INPUT QUEUE: 3

OUTPUT QUEUE:0

ch://virtualmachine.ny.it/two

INPUT QUEUE: 0

OUTPUT QUEUE:1

Active threads - 2

Paris:

Channels - 1

ch://paris/localchannels/idx_1

INPUT QUEUE: 0

OUTPUT QUEUE:0

Active threads - 4

Finally we describe some implementation details of the network simulator.

It is implemented in Java and it requires a JVM version 1.3 or later. The

geometry XML document used during initialization is processed using a SAX

parser. All the XIL documents are transformed into DOM documents. The

library for XML handling used to parse and elaborate documents is the widely–

used xerces for Java of the Apache Foundation [Fou]. The random number

generator used at each step of the execution is the Random class of the Java

Standard API: the seed of the rng can be set as a command line argument.

Chapter 4

Thinking in Hipi

Channels, processes and locations are the new features that hipi offers to

programmers. The aim of this chapter is to explore how to use them effectively.

We show also how some elements often used in imperative languages, but

missing in hipi, can be substituted. We begin by describing some idioms, then

we show how mutable variables and data structures can be simulated using

processes. Then we describe some design patterns for hipi and finally we give

a complete programming example.

4.1 Idioms

Here we describe some idioms that are frequently used in hipi programs.

Reply and Return Channels Network communication is often based on

request/reply protocols. Requests are made of two parts: (1) a message de-

scribing the kind and the data of the request, (2) the address of the sender

and some information describing how to reply. Examples are emails and the

socket API [Ste93]. In hipi a request/reply communication can be obtained

by adding a reply channel to the request, as in the following example:

73

74 CHAPTER 4. THINKING IN HIPI

// CLIENT PROCESS: send a request and waits for reply

channel<string> replyCh = new channel<string>;

server.send(request,replyCh);

replyCh.recv(string reply);

// SERVER PROCESS: receive a request and sends reply

server.recv(requestT req, channel<string> reply);

/* handle request */

reply.send(handle(req));

In a similar way a channel can be used for additional return values in
functions:

// function definition

string foo(channel<string> reply) {

reply.asend("World");

return "Hello";

}

// function call

channel<string> replyCh = new channel<string>;

string s1 = foo(replyCh);

replyCh.recv(string s2);

Note the use of asynchronous communication to send the additional return

value. Otherwise results a deadlock.

Mutex Channel A channel<> can be used guarantee mutual exclusion in

the access to a resource. At the beginning it must be created and initialized

by asynchronously sending on it. Then every access to the resource must be

preceded by a recv and followed by an asend. We give an example:

// creation and initialization

channel<> mutex = new channel<>;

mutex.asend();

4.1. IDIOMS 75

// resource access

mutex.recv();

use_resource();

mutex.asend();

A mutex channel is similar to a binary semaphore [Ste93].

Parallel Recursion Tail recursion in a void function should be done by
putting the recursive call inside a spawn block. We give an example:

void tailRecursive() {

/*

* do something

*/

spawn { tailRecursive(); }

}

The reason for this is efficiency of our current implementation. A function

call is translated (by the encodings of previous chapters) into a parallel thread

that executes the body of the function. The thread of the caller waits until

the end of the new thread and then continues its execution. If the function

call has no continuation (as in the case of tail recursion) the caller thread can

immediately terminate. This is obtained by putting the call inside a spawn

statement.

Output Consumer When a message is expected on a channel but it is not

used in the continuation, it can be consumed without waste of time by putting

the recv command into a spawn block:

// makes a request and ignores reply

channel<string> replyCh = new channel<string>;

server.send(request,replyCh);

spawn{ replyCh.recv(string ignoreMe); }

The use of output consumers avoids “dead” messages on channels.

76 CHAPTER 4. THINKING IN HIPI

4.2 Mutable Variables as Processes

Sometimes mutable variables can be useful in hipi programs: for instance, they

allow the creation of counters. Milner used channels as pointers to store the

value of the mutable variable [Mil99]. He used also a process running a choice

to handle operations on such a channel.

The implementation of Milner’s encoding in hipi is not straightforward.

This is due to the absence in our language of the choice operator of the π–

calculus [MPW92]. Instead, we suggest a simple protocol for simulating mu-

table variables. It uses channels as pointer and leaves the handling part to the

programmer. The protocol is as follows:

1. define a new channel that carries values of the type of the expected

mutable variable;

2. initialize the variable by asynchronously sending the initial value on the

new channel;

3. every time the variable must be accessed or modified: (a) receive the old

value on the channel, (b) send asynchronously the new value (or the old

one if not changed) on the channel to allow other accesses.

This protocol guarantees the persistence of the variable because every ac-

cess is followed by an asynchronous send that restores the value. The mutual

exclusion on the access of the variable is also guaranteed: this is due to the

fact that there is always almost one process sending the value on the channel

(this can be easily seen in the protocol). We now give a little programming

example of counter in hipi:

4.3. DATA STRUCTURES AS PROCESSES 77

channel<int> counter = new channel<int>; // 1. define a new channel

counter.asend(0); // 2. send initial value

for i=0 to 10 {

x.recv(string msg);

if (msg=="countme") {

counter.recv(int oldval); // 3a. get old value

counter.asend(oldval+1); // 3b. set new value

}

}

The use of polyadic channels allows us also to define simple data structures:

for instance, it is possible to define a mutable variable whose type is a pair

(int,string) by using a channel of type channel<int,string>.

4.3 Data Structures as Processes

The type system of hipi lacks any kind of data structure. The reason for this

is that as a future work we want to define a new type system based on XML

data types. Here we want to explain how, in its absence, data structures as

vectors, sets, lists, etc. . . can be implemented in hipi.

The implementation is inspired by the design given by Milner for the π–

calculus in [Mil99]. Milner’s uses a chain of processes linked by channels: each

element of the chain stores one value of the data structure and a reference to

the rest of the chain. The last element of the chain is a special process called

nil. The element of the chain can be heterogeneous but they are all accessed

in the same way (i.e. their communication interface is the same).

Our implementation is a simplification of Milner’s design. We consider

only lists of homogeneous elements terminated by a “nil” channel. This allows

us to use fewer channels and makes operations on the list easier to implement.

We give an example of how a list of strings can be implemented in hipi using

this design: the main operations on the list are represented by functions.

78 CHAPTER 4. THINKING IN HIPI

// type of a list of strings

typedef listT = channel<listT,string>

schedule listExample {

// the terminator of the list

listT nil = new listT;

// list constructor

listT new_list() { return nil; }

// adds an element at the head of the list

// and returns the updated list

listT add_first(listT l, string s) {

listT l2 = new listT;

l2.asend(l,s);

return l2;

}

// adds an element at the tail of the list

// and returns the updated list

listT add_last(listT l, string s) {

if (l==nil) return add_first(l,s);

l.recv(listT l2, string s2);

listT l3=add_last(l2,s);

l.asend(l3,s2);

return l;

}

// removes the element at the head of the list

// returns the updated list and sends the removed

// element on channel c

listT remove_first(listT l, channel<string> c) {

if (l==nil) {

4.3. DATA STRUCTURES AS PROCESSES 79

c.asend("");

return l;

}

else {

l.recv(listT l2, string s);

c.asend(s);

return l2;

}

}

// removes the element at the tail of the list

// returns the updated list and sends the removed

// element on channel c

listT remove_last(listT l, channel<string> c) {

if (l==nil) {

c.asend("");

return l;

}

l.recv(listT l2, string s);

if (l2==nil) {

c.asend(s);

return nil;

}

listT l3=remove_last(l2,c);

l.asend(l3,s);

return l;

}

}

Now we write an example of main that executes some operations on a list:

main {

// creates a new list

listT mylist = new_list();

80 CHAPTER 4. THINKING IN HIPI

// adds some elements

listT mylist2 = add_first(mylist,"red");

listT mylist3 = add_last(mylist2,"white");

// removes the elements

channel<string> c = new channel<string>;

listT mylist4 = remove_first(mylist3, c);

c.recv(string s1); // receives "red"

listT mylist5 = remove_first(mylist4, c);

c.recv(string s2); // receives "white"

}

There is an awkwardness in what we have seen: every time an operation on

the list is done a new variable is defined (namely mylist2, mylist3, . . .). The

new variable is necessary because all the functions implementing the opera-

tions return the (possibly) updated list. Furthermore, since all the functions

return only the updated list, we need to use a communication on a channel

in order to receive the removed element. In the shown example, both the

remove first and the remove last functions use the channel c to return the

removed element.

A better implementation can be done using the protocol of section 4.2 for

mutable variables. This allows us to avoid the need of updated lists as return

values. The use of mutable variables complicates a bit the implementation of

the functions, but simplifies their usage. The previously shown example can

be rewritten as follows:

// type of an element of the list

typedef elemT = channel<elemT,string>;

// type of a list

typedef listT = channel<elemT>;

schedule listExample {

// the terminator of the list

elemT nil = new elemT;

4.3. DATA STRUCTURES AS PROCESSES 81

// list constructor

listT new_list() {

listT l = new listT;

l.asend(nil);

return l;

}

// adds an element at the head of the list

void add_first(listT l, string s) {

l.recv(elemT e);

elemT e2 = new elemT;

e2.asend(e,s);

l.asend(e2);

}

// adds an element at the tail of the list

void add_last(listT l, string s) {

l.recv(elemT e);

if (e==nil) {

elemT e2 = new elemT;

e2.asend(e,s);

l.asend(e2);

}

else {

e.recv(elemT e2, string s2);

listT l2 = new listT;

l2.asend(e2);

add_last(l2,s);

l2.recv(elemT e3);

e.asend(e3,s2);

l.asend(e);

}

}

82 CHAPTER 4. THINKING IN HIPI

// removes the element at the head of the list

string remove_first(listT l) {

l.recv(elemT e)

if (e==nil) {

l.asend(e);

return "";

}

else {

e.recv(elemT e2, string s);

l.asend(e2);

return s;

}

}

// removes the element at the tail of the list

string remove_last(listT l) {

l.recv(elemT e);

if (e==nil) {

l.asend(e);

return "";

}

e.recv(elemT e2, string s);

if (e2==nil) {

l.asend(e2);

return s;

}

listT l2 = new listT;

l2.asend(e2);

string s2 = remove_last(l2);

l2.recv(elemT e3);

l.asend(e3);

return s2;

}

}

4.4. DESIGN PATTERN: THE DELEGATE (N–ARY FORWARDER) 83

And now, the main becomes more friendly:

main {

// creates a new list

listT mylist = new_list();

// adds some elements

add_first(mylist,"red");

add_last(mylist,"white");

// removes the elements

string s1 = remove_first(mylist); // "red"

string s2 = remove_first(mylist); // "white"

}

The implementation of data structures like sets, stacks and vectors based

on lists is standard. We suggest also an alternative implementation for vectors

with constant time access operations based on channel types. For instance,

a channel typed channel< string, string, string, string, string> can

be used to store a vector of five strings. This allows the access of the whole

array with a single recv instruction, but this requires pre–determined array

sizes and it is very unpractical for large vectors.

4.4 Design Pattern: The Delegate (n–ary For-

warder)

Overview Assume a process that continuously produces elements and sends

them on a channel x. A Delegate is a process used to obtain a lot of elements

while reducing the number of messages exchanged.

Example A process continuously produces electronic tickets and sends each

one as a message on a channel x. A remote process requires a lots of tickets:

since they are sent one–by–one on x the number of messages exchanged be-

comes very high. We want to design a ticket consumer that uses few messages.

84 CHAPTER 4. THINKING IN HIPI

Motivations recv operations on remote channels are executed using linear

forwarders (as in the encoding in section 2.5). For each recv on a remote

channel executed two messages are exchanged: the first one (from the receiver

to the channel owner) is the linear forwarder and the second one (in the reverse

direction) is a redirected output. The use of linear forwarders can be avoided

by migrating the receiver process to the location of the remote channel. In

this pattern a new process is started at the location of the remote channel and

it is used as an n–ary forwarder.

Pattern Description The producer is executed at the location of x, the

consumer is executed elsewhere. Channel x is used by the producer to send

out tickets to consumers. No requests are necessary to obtain a ticket: they

can be directly received on x. The consumer creates a new channel y and

starts the execution of a delegate process at the location of x. The delegate

process receives as many tickets as needed by the consumer, sends them to y

and then terminates its execution.

Pattern Model The geometry of the network requested by the pattern is

the following:

Location x type of x = channel<ticketT>

Location no channels are needed here

where ticketT is assumed to be the type of a ticket. The actors involved in

the pattern are:

Producer Executed at x. Continuously produces tickets and sends

them on x.

Consumer Not colocated with x. Creates the channel y and starts

the execution of the Delegate at the location of x. Finally

receives the tickets on y.

Delegate Executed at y. Receives tickes on x and sends them

on y.

4.4. DESIGN PATTERN: THE DELEGATE (N–ARY FORWARDER) 85

The exchange of messages between the actors is shown on figure 4.1.

x

producer consumer

delegate
new y

spawn@x

y.send(t1)

y.send(ti)

x.recv(t1)

x.recv(ti)

.

.

.

.

.

.

y.send(tn)

x.recv(tn)

y.recv(t1)

y.recv(ti)

y.recv(tn)

x.send(t1)

x.send(ti)

x.send(tn)

Figure 4.1: A message–based model of the delegate pattern

Implementation We implement Producer and Consumer as two different

schedules. We assume x to be identified by ch://channel.x. We assume the

colocation of the Producer with x (using the colocatedwith option on the

schedule). The source code of the Producer, assuming ticketT to be the type

of a ticket and new ticket() to be a ticket constructor, is:

86 CHAPTER 4. THINKING IN HIPI

schedule Producer

colocatedwith ch://channel.x {

// declaration of channel x

channel<ticketT> x = ch://channel.x;

// starts the production of tickets

main {

produce();

}

// produces tickets and sends them on x

void produce() {

x.send(new_ticket());

spawn{ produce(); }

}

}

schedule Consumer {

// starts a 100-ary forwarder

main {

channel<ticketT> x = ch://channel.x;

// the Delegate

spawn@x{

for i=1 to 100 {

x.recv(ticketT t);

y.send(t);

}

}

}

}

4.5 DESIGN PATTERN: THE ASSISTANT (D. FORWARDER) 87

Observations This design pattern shows how migration can be used to op-

timize communication. The Delegate is executed at the location of x: this

implies the exchange of one big message for its migration, and one message

for each ticket. Messages exchanged between the Producer and the Delegate

are intra–location, so we don’t count them. As an alternative, the use of recv

on the remote channel x eliminates the initial big message but requires two

messages for each query (due to linear forwarders).

The pattern can be slightly changed by adding ticket requests: in this case

the Delegate must not only forward elements from x to y, it must also request

all them one–by–one before forwarding.

4.5 Design Pattern: The Assistant (Dynamic

Forwarder)

Overview A service–provider receives requests on a channel and handles

them. When it is overloaded with requests, it asks an assistant server for help.

Example A search engine waits for user requests on a channel x. A request

is a pair (string,channel<string>) where the first element is the keyword

searched by the user and the second one is the channel for the engine’s answer.

The search requires time and resources: we want to design a server that handles

user requests and asks for help to an assistant application when it is overloaded.

We want to design the assistant application too.

Motivations As in the Delegate design pattern, our aim is to describe how

the number of messages exchanged for remote recv operations can be reduced.

As in the Delegate pattern with its n–ary forwarder, here we describe how a

dynamic forwarder can be implemented. Dynamic means that it can be started

and terminated when necessary.

88 CHAPTER 4. THINKING IN HIPI

Pattern Description The server process is executed at the location of x.

Channels y and h and the assistant process are all at a different location.

Channel x is used to receive user queries: when the load factor of the server

process becomes greater than a specified threshold, an help message is sent

to the assistant process on channel h. The assistant starts the execution of a

new process at the location of x: this new process redirects messages from x

to y. User queries redirected to y are handled by the assistant. When the load

factor of the server decreases under a lower threshold, an enough message is

sent to the assistant.

Pattern Model The geometry of the network requested by the pattern is

made of two locations:

Location x type of x = channel<string, channel<string>>

Location yh type of h = channel<string>

type of y = channel<string, channel<string>>

The actors involved in the pattern are:

Server Executed at x. Receives user requests on x, executes the

searches and replies to the users using the channels contained

into the requests. Sends a help or enough messages on h when

needed.

Assistant Executed at h. Waits for help messages on h: when one

is received, creates a new channel z with type channel<>. It

starts Forwarder at x and waits for user requests on y. When

receives enough on h, sends a message on z and stops receiving

user requests.

Forwarder Started at x by the Assistant. Receives user requests

on z and sends them on y. Concurrently waits for a mes-

sage on the remote channel z: when the message is received,

terminates its execution.

The exchange of messages between the actors is shown in Figure 4.2.

4.5 DESIGN PATTERN: THE ASSISTANT (D. FORWARDER) 89

x h y

server assistant

forwarder

h.send(“help”)

new z
spawn@x

h.recv(msg)

z.recv()

x.recv(qi)

y.send(qi) y.recv(query)

h.send(“enough”) h.recv(msg)

z.send()

A

B

C

Figure 4.2: Messages used in the assistant pattern: (A) is the help request,

(B) is the redirection of a user request, (C) is the end of the help

90 CHAPTER 4. THINKING IN HIPI

Implementation We implement Server and Assistant as two different sched-

ules. We assume channels x, y and h to be identified by: ch://channel.x,

ch://channel.y and ch://channel.h. We require the colocation of Server

with x and the colocation of Assistant with h and y (using the colocatedwith

option on the schedules). The source code for Server is:

schedule Server

colocatedwith ch://channel.x {

// channel declarations

channel<string,channel<string>> x = ch://channel.x;

channel<string> h = ch://channel.h;

// mutable record for the state of the server

// the first element is the load factor

// the second element is 1 if the assistant

// is helping the server, 0 otherwise

channel<int,int> state = new channel<int,int>;

// thresholds

int lower_threshold = 100;

int upper_threshold = 150;

// initializes the state and starts the service

main {

state.asend(0,0);

receive_queries();

}

// handles user requests

void receive_queries() {

// receive a new request and checks the state

x.recv(string msg, channel<string> replyCh);

state.recv(int served, int isHelped);

4.5 DESIGN PATTERN: THE ASSISTANT (D. FORWARDER) 91

// if help is needed sends a message to the assistant

if ((served >= upper_threshold) && (!isHelped)) {

h.send("help");

state.asend(served+1, 1);

}

// otherwise only updates the state

else {

state.asend(served+1, isHelped);

}

// handle the request and waits a new one

spawn { receive_queries(); }

string result = handle(msg);

replyCh.send(result);

// if the load factor decreases stops the help

state.recv(int served2, int isHelped2);

if ((served2 <= lower_threshold) && (isHelped2)) {

h.send("enough");

state.asend(served2-1,0);

}

// otherwise updates the state

else { state.asend(served2-1, isHelped2); }

}

// handles a user request and return the result

string handle(string msg) {

/*

* not implemented

*/

}

}

92 CHAPTER 4. THINKING IN HIPI

This is the Assistant schedule. It contains also the code of the Forwarder

process:

schedule Assistant

colocatedwith ch://channel.y ch://channel.h {

// channel declarations

channel<string,channel<string>> y = ch://channel.y;

channel<string,channel<string>> x = ch://channel.x;

channel<string> h = ch://channel.h;

// starts the help-message handler and the assistant

main {

spawn { help(); }

assist_queries();

}

// handles help and enough messages

void help() {

// receives a message and checks the state

h.recv(string msg);

state.recv(int isHelped);

// if help is needed

if ((msg=="help") && (!isHelped)) {

state.asend(1);

channel<> z = new channel<>;

// starts the Forwarder process at x

spawn@x {

channel<int> terminate = new channel<int>;

terminate.asend(0);

// handles the termination signal

spawn {

z.recv();

4.5 DESIGN PATTERN: THE ASSISTANT (D. FORWARDER) 93

terminate.recv(int oldval);

terminate.send(1);

}

// in parallel redirects messages

forwarder(terminate);

}

// handles a new message

spawn { help(); }

}

// if help is enough

else if ((msg=="enough") && (isHelped)) {

// sends the termination signal

z.send();

state.asend(0);

// handles a new message

spawn{ help(); }

}

}

// redirects messages from x to y

void forwarder(channel<int> terminate) {

// looks for termination requests

terminate.recv(int term);

// if it must not terminate

if (!term) {

// receives a user request

x.recv(string q, channel<string> r);

94 CHAPTER 4. THINKING IN HIPI

// updates the mutable variable

terminate.asend(term);

spawn {forwarder(terminate);}

// redirects the request

y.send(q,r);

}

}

// handles user request received on y

void assist_queries() {

// receives the (redirected) request

y.recv(string msg, channel<string> replyCh);

spawn { assist_queries(); }

// handles the request

string result = handle(msg);

replyCh.send(result);

}

// handles a user request and returns the result

string handle(string msg) {

/*

* not implemented

*/

}

}

Observations This design pattern shows how a load–balancing protocol can

be easily implemented in hipi. The design was influenced by considering the

number of messages exchanged between locations.

4.6. DESIGN PATTERN: PROXY 95

The Forwarder process is executed at the location of x: this implies the

exchange of one big message at the begin of the help (the migration of the

Forwarder process) and one message for each user request. The possible al-

ternative is to let the Assistant use directly recv on the remote channel x:

this eliminates the initial big message but implies two messages for each query

(due to the encoding in bytecode, these are linear forwarder and an output on

a fresh channel).

The Forwarder starts a parallel process that waits until a termination sig-

nal is sent on z. Then the parallel process terminates the execution of the

Forwarder by setting 1 on the mutable variable terminate. We recall that

mutable variables are always used without race conditions due to the protocol

of section 4.2, so their use for inter–process communications is safe.

4.6 Design Pattern: Proxy

Overview Specifies how to create a local surrogate of a service provided on

a remote channel. The local surrogate can avoid the need for some accesses to

the remote resource.

Example A text editor is used to read a file stored on a remote location.

The remote file system provides a channel that can be used to ask for the

whole text or for a specific line. For the sake of the simplicity we assume that

the editor is used only for reading the file — modifications are not allowed. A

request to the remote file system requires time: we want to design a process

that prevents remote accesses when two subsequent requests for the same line

of text are made.

Motivations Proxies are widely used on networks: we show how they can

be designed in hipi.

Pattern Description This is the equivalent of the Proxy design pattern for

object oriented programming (described in [GHJG94]), but in a distributed

96 CHAPTER 4. THINKING IN HIPI

environment. The file system service containing the file to access is executed

at the location of x and it receives requests for this file over this channel. A

Proxy process is executed at the location of the text editor. It receives requests

on a local channel y: if it can satisfy a request it sends back the result to the

editor, otherwise it access the remote service. The requests received by the

Proxy are exactly the same accepted by the file system service. The Proxy

stores the last line received by the service: if the same line is requested again,

no remote access is needed.

Pattern Model The geometry of the network requested by the pattern is

the following:

Location x type of x = channel<string,int,channel<string>

Location y type of y = channel<string,int,channel<string>

The actors involved in the pattern are:

Editor Executed at y. Makes requests for the whole text or for

a single line of a remote file accordingly to user necessities.

Requests are sent to the Proxy on channel y.

FileSystem Executed at x. Receives requests on x and replies

with the result.

Proxy Executed at y. Receives requests on y: if necessary for-

wards them to the FileSystem , otherwise (if they are repeated

requests for the same line) it replies to them with the cached

result.

Requests are triples (s,i,c) where s is "text" or "line" to represent a

request for the whole text or a single line; i is the line number if s is "line"

or it is ignored otherwise; c is the channel used for the reply.

The exchange of messages between the actors is shown in Figure 4.3

4.6. DESIGN PATTERN: PROXY 97

x

file system editor

y.recv(l,n,c)

y

proxy

y.send(l,n,c)

x.send(l,n,d)
x.recv(l,n,d)

d.send(res) d.recv(res)

c.send(res) c.recv(res)

y.recv(l,n,c) y.send(l,n,c)

c.send(res) c.recv(res)

new c

new d

Figure 4.3: Messages used in the proxy pattern: here two subsequent requests

for the same line are made, the second one is handled locally

98 CHAPTER 4. THINKING IN HIPI

Implementation We implement Editor, Proxy and FileSystem as three dif-

ferent schedules. We assume x and y to be identified by ch://channel.x and

ch://channel.y. We require the FileSystem to be colocated with x and of

the Editor and the Proxy with y (using the colocatedwith option). The source

code of the Editor is:

schedule Editor

colocatedwith ch://channel.y {

// simulates some user requests

main {

// declaration of channel y

channel<string,int,channel<string>> y = ch://channel.y;

// simulates the requests

channel<string> c = new channel<string>;

y.send("text",0,c);

c.recv(string text);

y.send("line",10,c);

c.recv(string line10);

y.send("line",35,c);

c.recv(string line35);

y.send("line",35,c);

c.recv(string line35bis);

}

}

The source code of the Proxy is:

schedule Proxy

colocatedwith ch://channel.y {

// mutable variables used to store the last line

channel<int> lastLineNum = new channel<int>;

channel<string> lastLine = new channel<string>;

4.6. DESIGN PATTERN: PROXY 99

// initializes lastLine and lastLineNum and starts the proxy

main {

lastLineNum.asend(-1);

lastLine.asend("");

proxy();

}

// handles user requests and forwards them to

// the remote file system if necessary

void proxy() {

// receives a request

y.recv(string s, int i, channel<string> c);

// if the full texts is requested forward to

// the file system

if (s=="text")

x.asend(s,i,c);

// otherwise

else {

lastLineNum.recv(int linenum);

lastLine.recv(string line);

// if it is a repeated line request satisfies it

if (linenum==i) {

c.asend(line);

lastLine.asend(line);

lastLineNum.asend(linenum);

}

// otherwise accesses the remote file system,

// stores a copy of the reply and forwards the

// reply to the user

100 CHAPTER 4. THINKING IN HIPI

else {

channel<string> d = new channel<string>;

x.send(s,i,d);

d.recv(string newline);

c.asend(newline);

lastLine.asend(newline);

lastLineNum.asend(i);

}

spawn{ proxy(); }

}

}

Finally, the source code of the FileSystem, where the file access functions

get text() and get line() are assumed, is:

schedule FileSystem

colocatedwith ch://channel.x {

// declares channel x

channel<string,int,channel<string>> x = ch://channel.x;

// starts the service

main { request_handler(); }

// receives requests

void request_handler() {

x.recv(string s, int i, channel<string> c);

spawn { request_handler(); }

if (s=="text")

c.send(get_text());

else

c.send(get_line(i));

}

}

4.7. EXAMPLE: CONCURRENT DICTIONARIES 101

Observations This design pattern shows how a communications between

locations can be reduced by storing data in a cache. Cache proxies are well–

known and widely–used entities on networks.

4.7 Example: Concurrent Dictionaries

This program is a complete example of a distributed Italian-English dictio-

nary. It is made of two schedules: the first one — OnLineDict — represents a

dictionary server: when it is executed it loads its database of words and waits

for requests on a global channel (3 global channels are provided). The second

schedule — DictClient — asks the user for a word in Italian or English, then

sends a request on all the three global channels. The first answer received is

shown to the user; the other two are discarded.

typedef DictChannel = channel<string,string,channel<string,string>>;

import "hipi_lib/SVector.hp";

// Server schedule

schedule OnlineDict {

// these are the global channels where requests are received

DictChannel netDict1 = "http://italian_to_english.com/dict";

DictChannel netDict2 = "http://the_translator.com/ita_eng";

DictChannel netDict3 = "http://freetranslations.org/ita_eng";

// channels for console interaction

channel<string> sconsole = "sim://string.console";

channel<DictChannel> cconsole = "sim://channel.console";

// inserts a pair of words into dictionaries

void insertDict(SVector italian, string ita,

SVector english, string eng) {

int size = SVector_capacity(italian);

102 CHAPTER 4. THINKING IN HIPI

SVector_add(italian,size,ita);

SVector_add(english,size,eng);

}

// translates a word if present on the dictionary

// return an error message otherwise

string translate(SVector source, string word, SVector dest) {

int idx = SVector_indexOf(source, word);

SVectorInfo info = SVector_get(dest, idx);

string retVal = SVectorInfo_elem(info);

if (retVal!="")

return retVal;

else

return "Word not found";

}

// accepts a request on a channel

// (terminates if word is __TERMINATE__)

void acceptReq(string serviceID, DictChannel dictChan,

SVector italian, SVector english) {

dictChan.recv(string lang, string word,

channel<string,string> reply);

if (word!="__TERMINATE__") {

spawn { acceptReq(serviceID, dictChan, italian, english); }

// selects the language

if (lang=="italian") {

string trans = translate(italian, word, english);

reply.send(trans,serviceID);

}

else if (lang=="english") {

string trans = translate(english, word, italian);

reply.send(trans,serviceID);

}

4.7. EXAMPLE: CONCURRENT DICTIONARIES 103

else

reply.send("language not supported",serviceID);

}

}

main {

// schedule initialization

sconsole.send("Insert a nick name for this dictonary");

sconsole.recv(string nick);

sconsole.send("Insert the URI where requests will be received:");

sconsole.send(" http://italian_to_english.com/dict");

sconsole.send(" http://the_translator.com/ita_eng");

sconsole.send(" http://freetranslations.org/ita_eng");

cconsole.recv(DictChannel dictChan);

spawn@dictChan {

// italian and english words (they are created here in

// order to colocate them with dictChan)

SVector italian = new_SVector();

SVector english = new_SVector();

// dictionaries initialization

insertDict(italian, "rosso", english, "red");

insertDict(italian, "verde", english, "green");

insertDict(italian, "nero", english, "black");

insertDict(italian, "giallo", english, "yellow");

insertDict(italian, "rosa", english, "pink");

// service start

acceptReq(nick,dictChan,italian,english);

}

}

}

104 CHAPTER 4. THINKING IN HIPI

// Client schedule

schedule DictClient{

// channel for console interaction

channel<string> sconsole = "sim://string.console";

void makeReq() {

// start query

sconsole.send("Insert source language:");

sconsole.recv(string srcLang);

sconsole.send("Insert word:");

sconsole.recv(string word);

// channel for return values

channel<string,string> values = new channel<string,string>;

// parallel search

spawn { netDict1.send(srcLang, word, values); }

spawn { netDict2.send(srcLang, word, values); }

spawn { netDict3.send(srcLang, word, values); }

// return the first result received

values.recv(string trans, string id);

// discard other results received

spawn {

values.recv(string id2, string trans2);

values.recv(string id3, string trans3);

}

sconsole.send("The translation is");

sconsole.send(trans);

sconsole.send("The answer was received by");

sconsole.send(id);

4.7. EXAMPLE: CONCURRENT DICTIONARIES 105

// ask if a new search is needed

sconsole.send("Would you like to continue (y/n) ?");

sconsole.recv(string ans);

if ((ans=="y")||(ans=="Y")||(ans=="yes")

||(ans=="YES")||(ans=="Yes"))

spawn { makeReq(); } // start new search

}

main {

makeReq();

}

}

106 CHAPTER 4. THINKING IN HIPI

Chapter 5

Conclusions

The π–calculus is a widely used process algebra for reasoning about the be-

havior and the properties of parallel processes. The use of the π–calculus

with an implicit definition of location allows us to reason about distributed

processes. Finally, the definition of a programming language based on such a

located calculus, allows us to write distributed programs whose properties can

be discussed using the theories of the calculus.

Hipi has been introduced here as a programming language based on of the

π–calculus. Our work concerned: (1) the definition of the hipi core language,

(2) the definition of a bytecode language that is proper for a network imple-

mentation, (3) the definition and the implementation of the compiler from hipi

into bytecode and (4) the discussion on how to efficiently use hipi for network

aware programming.

The implementation of the hipi compiler followed the formal definition we

gave of it. This allowed us to prove its correctness. We implemented also a

network simulator that was used to execute compiled programs.

With hipi we experimented distributed programming. We studied which id-

ioms are common using a π–like programming language and we have seen that

network entities like n-ary and dynamic forwarders can be easily implemented.

Hipi lacks a complete type system, the choice operator of the π–calculus and

107

108 CHAPTER 5. CONCLUSIONS

some features that can be useful in distributed programming. We leave all

these as future works.

5.1 Future Works

What follows describes the main extension that hipi requires in order to be-

come a complete distributed programming language.

Data Types The actual type system of hipi is too simple: it should be

replaced with a type system comprehensive of structured data types. Our

expectation is to integrate the XML data types of XDuce [HP03] in hipi.

This integration is the aim of XRel [Bis03], that is a tool for XML processing

inspired by XDuce. It will be merged with hipi and this will allow us to use

data structures in programs and to send and receive XML documents over

channels.

Choice Operator Hipi lacks the choice operator of the π–calculus. This

operator should be added to the language after having studied well its impact

on the run–time environment and the possible problems that could arise from

its use in distributed programs.

Shared Channels A feature that we expect to add in the future is shared

channel definitions. A shared channel is a channel that can be used from

multiple schedules to coordinate their work, but that is invisible to the rest of

the word. Shared channels allow programs to become modular. This could be

a useful feature addresses to orchestration of distributed application.

5.2 Ringraziamenti

Ringrazio innanzitutto il prof.Cosimo Laneve per avermi motivato a scegliere

questo argomento di tesi e avermi dato fiducia. Ringrazio tantissimo Lucian

5.2. RINGRAZIAMENTI 109

Wischik per aver seguito il mio lavoro passo dopo passo, correggendomi negli

errori e motivandomi quando necessario. Lo ringrazio anche per tutto quello

che ho imparato da lui in questi mesi e per la disponibilità che ha sempre

dimostrato nei miei confronti. Infine ringrazio Fabrizio Bisi, Manuel Mazzara

e Samuele Carpineti, con i quali ho avuto un sacco di interessanti conversazioni

che si sono rivelate molto utili per il mio lavoro.

110 CHAPTER 5. CONCLUSIONS

Appendix A

XML-Schema of XIL

Here we illustrate the XML-Schema of the XML Intermediate Language de-

scribed in section 3.3. This schema can be used to validate bytecode files

generated by the hipi compiler.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="schedule">

<xsd:complexType>

<xsd:sequence>

<xsd:element maxOccurs="unbounded" minOccurs="0"

name="thread" type="ThreadType"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string"/>

</xsd:complexType>

<xsd:key name="threadName">

<xsd:selector xpath="thread"/>

<xsd:field xpath="@name"/>

</xsd:key>

<xsd:keyref name="threadRef" refer="threadName">

<xsd:selector xpath="statements/spawn"/>

<xsd:field xpath="@thread"/>

</xsd:keyref>

</xsd:element>

111

112 APPENDIX A. XML-SCHEMA OF XIL

<xsd:complexType name="ThreadType">

<xsd:sequence>

<xsd:element name="stacksize" type="StackSizeType"/>

<xsd:group maxOccurs="unbounded" minOccurs="0"

ref="statements"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:ID" use="required"/>

</xsd:complexType>

<xsd:complexType name="StackSizeType">

<xsd:attribute name="init" use="required"

type="xsd:nonNegativeInteger"/>

</xsd:complexType>

<xsd:group name="statements">

<xsd:choice>

<xsd:element name="send" type="SendStmType"/>

<xsd:element name="recv" type="RecvStmType"/>

<xsd:element name="fwd" type="FwdStmType"/>

<xsd:element name="store" type="StoreStmType"/>

<xsd:element name="spawn" type="SpawnStmType"/>

<xsd:element name="newch" type="NewChStmType"/>

<xsd:element name="if" type="IfStmType"/>

<xsd:element name="terminate">

<xsd:complexType/>

</xsd:element>

</xsd:choice>

</xsd:group>

<xsd:complexType name="SendStmType">

<xsd:sequence>

<xsd:element name="load" type="LoadExpType"/>

<xsd:group minOccurs="0" maxOccurs="unbounded"

113

ref="expressions"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="RecvStmType">

<xsd:sequence>

<xsd:element name="load" type="LoadExpType"/>

<xsd:element name="store" minOccurs="0"

maxOccurs="unbounded">

<xsd:complexType>

<xsd:attribute name="idx"

type="xsd:nonNegativeInteger" use="required"/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="FwdStmType">

<xsd:sequence>

<xsd:element name="load" minOccurs="2" maxOccurs="2"

type="LoadExpType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="SpawnStmType">

<xsd:sequence>

<xsd:group minOccurs="0" maxOccurs="unbounded"

ref="expressions"/>

<xsd:sequence>

<xsd:attribute name="thread" type="xsd:IDREF"

use="required"/>

<xsd:attribute name="dest" type="srcType"/>

</xsd:complexType>

114 APPENDIX A. XML-SCHEMA OF XIL

<xsd:complexType name="StoreStmType">

<xsd:sequence>

<xsd:group ref="expressions"/>

</xsd:sequence>

<xsd:attribute name="idx" type="xsd:nonNegativeInteger"

use="required"/>

</xsd:complexType>

<xsd:complexType name="NewChStmType">

<xsd:attribute name="idx" type="xsd:nonNegativeInteger"

use="required"/>

</xsd:complexType>

<xsd:complexType name="IfStmType">

<xsd:sequence>

<xsd:group ref="booleanExp"/>

<xsd:element name="then">

<xsd:complexType>

<xsd:group minOccurs="0" maxOccurs="unbounded"

ref="statements"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="else">

<xsd:complexType>

<xsd:group minOccurs="0" maxOccurs="unbounded"

ref="statements"/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:group name="expressions">

<xsd:choice>

<xsd:element name="load" type="LoadExpType"/>

115

<xsd:element name="int" type="xsd:integer"/>

<xsd:element name="string" type="xsd:string"/>

<xsd:element name="newch">

<xsd:complexType/>

</xsd:element>

<xsd:element name="op" type="OpType"/>

</xsd:choice>

</xsd:group>

<xsd:group name="booleanExp">

<xsd:choice>

<xsd:element name="load" type="LoadExpType"/>

<xsd:element name="int" type="xsd:integer"/>

<xsd:element name="op" type="OpType"/>

</xsd:choice>

</xsd:group>

<xsd:complexType name="LoadExpType">

<xsd:attribute name="src" type="srcType"/>

</xsd:complexType>

<xsd:simpleType name="srcType">

<xsd:union memberTypes="xsd:nonNegativeInteger xsd:anyURI"/>

</xsd:simpleType>

<xsd:complexType name="OpType">

<xsd:sequence>

<xsd:group maxOccurs="2" minOccurs="1"

ref="expressions"/>

</xsd:sequence>

<xsd:attribute name="type" use="required">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="add"/>

116 APPENDIX A. XML-SCHEMA OF XIL

<xsd:enumeration value="sub"/>

<xsd:enumeration value="mul"/>

<xsd:enumeration value="div"/>

<xsd:enumeration value="mod"/>

<xsd:enumeration value="and"/>

<xsd:enumeration value="or"/>

<xsd:enumeration value="eq"/>

<xsd:enumeration value="neq"/>

<xsd:enumeration value="lt"/>

<xsd:enumeration value="gt"/>

<xsd:enumeration value="le"/>

<xsd:enumeration value="ge"/>

<xsd:enumeration value="umin"/>

<xsd:enumeration value="not"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:schema>

Bibliography

[Ama00] Roberto M. Amadio. On modelling mobility. Theoretical Computer

Science, 240(1):147–176, June 2000.

[Bis03] Fabrizio Bisi. XRel: XML Processing Through Regular

Expressions, December 2003. Masters Thesis Project —

http://www.cs.unibo.it/∼bisi/thesis.html.

[BLFM98] T. Berners-Lee, R. Fielding, and L. Masinter. RFC

2396: Uniform Resource Identifiers (URI): Generic syn-

tax, August 1998. ftp://ftp.math.utah.edu/pub/rfc/rfc2396.txt,

ftp://ftp.internic.net/rfc/rfc2396.txt.

[CF99] Sylvain Conchon and Fabrice Le Fessant. Jocaml: Mobile agents

for Objective-Caml. In First International Symposium on Agent

Systems and Applications (ASA’99)/Third International Sympo-

sium on Mobile Agents (MA’99), Palm Springs, CA, USA, October

1999.

[Con02] W3C World Wide Web Consortium. Web services activity web

site, 2002. http://www.w3.org/2002/ws/.

[Con03] W3C World Wide Web Consortium. SOAP Version 1.2 Part 0:

Primer, June 2003. http://www.w3.org/TR/soap12-part0/.

[FGL+96] C. Fournet, G. Gonthier, JJ. Levy, L. Maranget, and D. Remy.

A Calculus of Mobile Agents. In U. Montanari and V. Sassone,

117

118 BIBLIOGRAPHY

editors, Proc. 7th Int. Conf. on Concurrency Theory (CONCUR),

volume 1119 of Lecture Notes in Computer Science, pages 406–421,

Pisa, Italy, August 1996. Springer-Verlag, Berlin.

[FGM+99] Robert Fielding, Jim Gettys, Jeff Mogul, Henrik Frystyk,

L. Masinter, Paul Leach, and Tim Berners-Lee. Hyper-

text transfer protocol – HTTP/1.1. RFC 2616, June 1999.

http://www.ietf.org/rfc/rfc2616.txt.

[Fou] The Apache Software Foundation. Xerces: Xml parser for java.

http://xml.apache.org.

[GHJG94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides

(GoF). Design Patterns: Elements of Reusable Object-Oriented

Software. Addison Wesley, October 1994. ISBN: 0-201-63361-2.

[GLW02] Philippa Gardner, Cosimo Laneve, and Lucian Wischik. The fu-

sion machine (extended abstract). In L. Brim, P. Jancar, and

M. Kretinsky, editors, CONCUR 2002, volume 2421 of Lecture

Notes in Computer Science, pages 418–433. Springer-Verlag, 2002.

[GLW03] Philippa Gardner, Cosimo Laneve, and Lucian Wischik. Linear

forwarders. In R. Amadio and D. Lugiez, editors, CONCUR 2003,

volume 2761 of Lecture Notes in Computer Science, pages 415–430.

Springer-Verlag, 2003.

[GW00] Philippa Gardner and Lucian Wischik. Explicit fusions. In Mogens

Nielsen and Branislav Rovan, editors, MFCS 2000, volume 1893

of Lecture Notes in Computer Science, pages 373–382. Springer-

Verlag, 2000. Full version to appear in TCS.

[HP03] Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically typed

XML processing language. ACM Transactions on Internet Tech-

nology, 3(2):117–148, May 2003.

BIBLIOGRAPHY 119

[HR98] Matthew Hennessy and James Riely. Resource access control in

systems of mobile agents. In Proceedings of HLCL ’98: High-Level

Concurrent Languages, number 16.3 in Electronic Notes in Theo-

retical Computer Science, pages 3–17. Elsevier, 1998.

[Joi02] The join calculus language, 2002. Implementations available from:

http://pauillac.inria.fr/join/unix/eng.htm.

[Kre01] Heather Kreger. Web services conceptual architecture (WSCA 1.0).

IBM, May 2001.

[Mil99] Robin Milner. Communicating and Mobile Systems: The π Calcu-

lus. Cambridge University Press, Cambridge, England, 1999.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of

mobile processes, I + II. Information and Computation, 100:1–40,

41–77, 1992.

[MS92] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In

W. Kuich, editor, 19th ICALP, volume 623, pages 685–695, 1992.

[MS98] Massimo Merro and Davide Sangiorgi. On asynchrony in name-

passing calculi. Lecture Notes in Computer Science, 1443:856–872,

1998.

[Per03] Enrico Persiani. Progettazione e implementazione di una macchina

per fusioni distribuite. Masters thesis in computer science, Univer-

sity of Bologna, 2003.

[PT00] Benjamin C. Pierce and David N. Turner. Pict: A programming

language based on the pi-calculus. In G. Plotkin, C. Stirling, and

M. Tofte, editors, Proof, Language and Interaction: Essays in Hon-

our of Robin Milner. MIT Press, 2000.

[PV98] Joachim Parrow and Björn Victor. The fusion calculus: Expres-

siveness and symmetry in mobile processes. In Thirteenth Annual

120 BIBLIOGRAPHY

Symposium on Logic in Computer Science (LICS) (Indiana), pages

176–185. IEEE, Computer Society Press, July 1998.

[Ste93] W. Richard Stevens. Advanced Programming in the UNIX Envi-

ronment. Addison Wesley, 1993.

[SW01] Davide Sangiorgi and David Walker. The π–calculus: A Theory

of Mobile Processes. Cambridge University Press, 2001. ISBN:

0-521-78177-9.

[Wis01] Lucian Wischik. Explicit Fusions: Theory and Implementation.

PhD thesis, Computer Laboratory, University of Cambridge, 2001.

[WS00] PaweÃl T. Wojciechowski and Peter Sewell. Nomadic Pict: Lan-

guage and infrastructure design for mobile agents. IEEE Con-

currency. The Computer Society’s Systems Magazine, 8(2):42–52,

April-June 2000.

