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• Our results
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˜
Motivation

1. Algorithms and data structures often offer a 
collection of different trade-offs (e.g. time, 
space occupancy, energy consumption, …)

2. Software engineers have to choose the one 
that best fits the needs of their application

3. These needs change with time, data, devices, 
and users
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˜
Multicriteria Data Structures

A multicriteria data structure selects the best 
data structure within some performance and 

computational constraints
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FAMILY
of data structures

CONSTRAINTS
space, time, energy…

OPTIMISATION
find the best structure



˜
The dictionary problem

We are given a set of “objects”, and we are asked to 
store them succinctly and to support efficient retrieval
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Databases

File Systems

Search Engines

Social Networks





˜
Memory hierarchy
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˜
Memory hierarchy
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100 ns
16 µs (SSD)
3 ms (HDD) 150 ms

L1 32 KB
L2 256 KB
L3 3 MB

8 GB 256 GB ∞ TB





˜
The External Memory (aka I/O) model

1. Internal memory (RAM) of capacity 𝑀
2. External memory (disk) of unlimited capacity
3. RAM and disk exchange blocks of size 𝐵
4. Count # transfers in Big O instead of # ops
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𝐵 ≈ 4𝐾𝑖𝐵

𝑀



˜
The External Memory (aka I/O) model

1. Internal memory (RAM) of capacity 𝑀
2. External memory (disk) of unlimited capacity
3. RAM and disk exchange blocks of size 𝐵
4. Count # transfers in Big O instead of # ops
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𝐵 = 64𝐵

𝑀

LLC



˜
Back to the dictionary problem

We are given a set of “objects”, and we are 
asked to store them succinctly and to support

efficient retrieval
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Integers or reals 

e.g. point and range queries
✓
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˜
Predecessor search & range queries
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𝑀

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

𝑝𝑟𝑒𝑑 36 = 36

𝑝𝑟𝑒𝑑 50 = 48

𝑟𝑎𝑛𝑔𝑒 67,110



˜
Baseline solutions for predecessor search
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2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

𝑀

𝐵 = 4

1 𝑛

Solution RAM model
Worst case time

EM model
Worst case I/Os

EM model
Best case I/Os

Scan Ο 𝑛 Ο(𝑛/𝐵) Ο 1
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Baseline solutions for predecessor search
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2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

𝑀

𝐵 = 4

1 𝑛

Solution RAM model
Worst case time

EM model
Worst case I/Os

EM model
Best case I/Os

Scan Ο 𝑛 Ο(𝑛/𝐵) Ο 1

Binary search Ο log 𝑛



˜
Baseline solutions for predecessor search
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2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

𝑀

𝐵 = 4

1 𝑛

Solution RAM model
Worst case time

EM model
Worst case I/Os

EM model
Best case I/Os

Scan Ο 𝑛 Ο(𝑛/𝐵) Ο 1

Binary search Ο log 𝑛 Ο(log(𝑛/𝐵)) Ο(log(𝑛/𝐵))



˜
B+ trees
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12 23 31 122 ∞ ∞55 71 76
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˜
B+ trees

22

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

12 23 31 122 ∞ ∞

31 76 ∞

55 71 76

48?



˜
B+ trees
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2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

12 23 31 122 ∞ ∞55 71 76

31 76 ∞

Solution Space RAM model
Worst case 

time

EM model
Worst case 

I/Os

EM model
Best case 

I/Os
Scan Ο 1 Ο 𝑛 Ο(𝑛/𝐵) Ο 1

Binary search Ο 1 Ο log 𝑛 Ο(log(𝑛/𝐵)) Ο(log(𝑛/𝐵))

B+ tree Ο 𝑛 Ο log 𝑛 Ο log> 𝑛 Ο log> 𝑛

𝐵 + 1

𝐵 = 3



˜
B-trees are everywhere

1. “B-trees have become, de facto, a standard for 
file organization” Comer. Ubiquitous B-tree. ACM Computing Surveys. ’79

2. This is still true today
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˜
B-trees are everywhere
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2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

12 23 31 122 ∞ ∞55 71 76

31 76 ∞



˜
B-trees are machine learning models
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2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑘𝑒𝑦

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝜀, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝜀

+

“All existing index structures can be replaced with other types of models, 
including deep-learning models, which we term learned indexes.”

Trained on the dataset 
{ 𝑘𝑒𝑦H, 𝑖 }HJK,…,M



˜
B-trees are machine learning models
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2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

2O2K
2^2

2P

+

“All existing index structures can be replaced with other types of models, 
including deep-learning models, which we term learned indexes.”

𝑘𝑒𝑦
Trained on the dataset 
{ 𝑘𝑒𝑦H, 𝑖 }HJK,…,M



˜
The Recursive Model Index (RMI)
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Model 2.1 Model 2.3

Model 3.1 Model 3.2 Model 3.3 Model 3.4

Stage 1
Stage 2

Stage 3
+

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

𝑘𝑒𝑦

𝑝𝑜𝑠

𝑘𝑒𝑦 ∈ 𝑝𝑜𝑠 − 𝜀, 𝑝𝑜𝑠 + 𝜀 ?

Model 1.1

Model 2.2



˜
Construction of RMI
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1. Train the root model on the dataset
2. Use it to distribute keys to the next stage
3. Repeat for each model in the next stage (on 

smaller datasets)

Model 1.1

Model 2.1 Model 2.2 Model 2.3

Stage 1
Stage 2

key

po
s

+



˜
Performance of RMI
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˜
Limitations of RMI

1. Fixed structure with many hyperparameters
# stages, # models in each stage, kinds of regression models

2. No a priori error guarantees 
Difficult to predict latencies

3. Models are agnostic to the power of models below
Can result in underused models (waste of space)

32

2.1 2.3

3.1 3.2 3.3 3.4

Stage1
Stage2

Stage3

1.1

2.2



˜
Our idea (submitted)
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Compute the optimal piecewise linear approx with guaranteed error 𝜀 in Ο(𝑛)



˜
Our idea (submitted)
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Save the 𝑚 segments in a vector as triples 𝑠H = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡



˜
Our idea (submitted)
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Drop all the points except 𝑠H. 𝑘𝑒𝑦



˜
Our idea (submitted)
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… and repeat!



˜
Memory layout of the PGM-index
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˜
Some asymptotic bounds
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Data Structure Space of index RAM model
Worst case time

EM model
Worst case I/Os

EM model
Best case I/Os

Plain sorted array Ο(1) Ο log 𝑛 Ο log
𝑛
𝐵

Ο log
𝑛
𝐵

Multiway tree Θ(𝑛) Ο log 𝑛 Ο logX 𝑛 Ο logX 𝑛

RMI Fixed Ο(?) Ο(?) Ο 1

PGM-index Θ(𝑚) Ο log𝑚 Ο logY 𝑚
𝑐 ≥ 2𝜀 = Ω(𝐵)

Ο 1

𝐵

PGM-index
𝑛 keys𝑚 segments, 𝜀 error



˜
PGM-index in practice
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Whole datasets First 25M entries

3 seconds to 
compute

Web logs
Longitude 

IoT

= 715M points
= 166M points
= 26M pointsError of the 

position estimate

Number of 
segments



˜
Space-time performance
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˜
How to explore this space of trade-offs?

Given a space bound 𝑆, find efficiently the index that
minimizes the query time within space 𝑆 and vice versa
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˜
Back to Multicriteria Data Structures

A multicriteria data structure is defined by a family 
of data structures and an optimisation algorithm 
that selects the best data structure in the family 

within some computational constraints
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FAMILY
PGM-indexes ∀ε

CONSTRAINTS
Space & Time

OPTIMISATION
???



˜
The Multicriteria PGM-index

1. We designed a cost model for the space 𝑠 𝜀 and the 
time 𝑡(𝜀)

2. … but we don’t have a closed formula for 𝑠 𝜀 , it 
depends on the input array

3. We fit 𝑠 𝜀 with a power law of the form 𝑎𝜀^_
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sp
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e

ε



˜
Under the hood

1. A sort of interpolation search over 𝜀 values

2. Each iteration improves the fitting of 𝑎𝜀^_ updating 𝑎, 𝑏

3. Bias the 𝜀-iterate towards the midpoint of a bin. search

4. In practice, given a space (time) bound, it finds the 
fastest (most compact) index for 715M keys in < 1 min
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𝜀K𝜀P𝜀a
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e

𝜀∗



˜
Future work

1. Insertion and deletions

2. Non-linear models

3. Compression
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˜

Bonus slides

Tools that you may find useful









3× faster than py_distance
117× faster than scipy.spatial.distance.euclidean
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