
˜

Superseding
Traditional Indexes
with Multicriteria Data Structures

GIORGIO VINCIGUERRA

PhD student in Computer Science
giorgio.vinciguerra@phd.unipi.it

˜
Outline

1. Multicriteria data structures
2. The dictionary problem
• External memory model
• Multiway trees
• Novel approaches
• Our results

3. Bonus slides

2

˜
Motivation

1. Algorithms and data structures often offer a
collection of different trade-offs (e.g. time,
space occupancy, energy consumption, …)

2. Software engineers have to choose the one
that best fits the needs of their application

3. These needs change with time, data, devices,
and users

3

˜
Multicriteria Data Structures

A multicriteria data structure selects the best
data structure within some performance and

computational constraints

6

FAMILY
of data structures

CONSTRAINTS
space, time, energy…

OPTIMISATION
find the best structure

˜
The dictionary problem

We are given a set of “objects”, and we are asked to
store them succinctly and to support efficient retrieval

7

Databases

File Systems

Search Engines

Social Networks

˜
Memory hierarchy

9

˜
Memory hierarchy

10

L1

L2
L3

˜
Memory hierarchy

11

L1

L2
L3

˜
Memory hierarchy

12

100 ns
16 µs (SSD)
3 ms (HDD) 150 ms

L1 32 KB
L2 256 KB
L3 3 MB

8 GB 256 GB ∞ TB

˜
The External Memory (aka I/O) model

1. Internal memory (RAM) of capacity 𝑀
2. External memory (disk) of unlimited capacity
3. RAM and disk exchange blocks of size 𝐵
4. Count # transfers in Big O instead of # ops

14

𝐵 ≈ 4𝐾𝑖𝐵

𝑀

˜
The External Memory (aka I/O) model

1. Internal memory (RAM) of capacity 𝑀
2. External memory (disk) of unlimited capacity
3. RAM and disk exchange blocks of size 𝐵
4. Count # transfers in Big O instead of # ops

15

𝐵 = 64𝐵

𝑀

LLC

˜
Back to the dictionary problem

We are given a set of “objects”, and we are
asked to store them succinctly and to support

efficient retrieval

16

Integers or reals

e.g. point and range queries
✓

61 71 12 15 18 1 24 22 88 34 3 10 5 13 55 44 60 2 5 74 90 81

˜
Predecessor search & range queries

17

𝑀

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

𝑝𝑟𝑒𝑑 36 = 36

𝑝𝑟𝑒𝑑 50 = 48

𝑟𝑎𝑛𝑔𝑒 67,110

˜
Baseline solutions for predecessor search

18

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

𝑀

𝐵 = 4

1 𝑛

Solution RAM model
Worst case time

EM model
Worst case I/Os

EM model
Best case I/Os

Scan Ο 𝑛 Ο(𝑛/𝐵) Ο 1

˜
Baseline solutions for predecessor search

19

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

𝑀

𝐵 = 4

1 𝑛

Solution RAM model
Worst case time

EM model
Worst case I/Os

EM model
Best case I/Os

Scan Ο 𝑛 Ο(𝑛/𝐵) Ο 1

Binary search Ο log 𝑛

˜
Baseline solutions for predecessor search

20

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

𝑀

𝐵 = 4

1 𝑛

Solution RAM model
Worst case time

EM model
Worst case I/Os

EM model
Best case I/Os

Scan Ο 𝑛 Ο(𝑛/𝐵) Ο 1

Binary search Ο log 𝑛 Ο(log(𝑛/𝐵)) Ο(log(𝑛/𝐵))

˜
B+ trees

21

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

12 23 31 122 ∞ ∞55 71 76

31 76 ∞

˜
B+ trees

22

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

12 23 31 122 ∞ ∞

31 76 ∞

55 71 76

48?

˜
B+ trees

23

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

12 23 31 122 ∞ ∞55 71 76

31 76 ∞

Solution Space RAM model
Worst case

time

EM model
Worst case

I/Os

EM model
Best case

I/Os
Scan Ο 1 Ο 𝑛 Ο(𝑛/𝐵) Ο 1

Binary search Ο 1 Ο log 𝑛 Ο(log(𝑛/𝐵)) Ο(log(𝑛/𝐵))

B+ tree Ο 𝑛 Ο log 𝑛 Ο log> 𝑛 Ο log> 𝑛

𝐵 + 1

𝐵 = 3

˜
B-trees are everywhere

1. “B-trees have become, de facto, a standard for
file organization” Comer. Ubiquitous B-tree. ACM Computing Surveys. ’79

2. This is still true today

24

˜
B-trees are everywhere

25

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

12 23 31 122 ∞ ∞55 71 76

31 76 ∞

˜
B-trees are machine learning models

26

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑘𝑒𝑦

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝜀, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝜀

+

“All existing index structures can be replaced with other types of models,
including deep-learning models, which we term learned indexes.”

Trained on the dataset
{ 𝑘𝑒𝑦H, 𝑖 }HJK,…,M

˜
B-trees are machine learning models

27

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

2O2K
2^2

2P

+

“All existing index structures can be replaced with other types of models,
including deep-learning models, which we term learned indexes.”

𝑘𝑒𝑦
Trained on the dataset
{ 𝑘𝑒𝑦H, 𝑖 }HJK,…,M

˜
The Recursive Model Index (RMI)

28

Model 2.1 Model 2.3

Model 3.1 Model 3.2 Model 3.3 Model 3.4

Stage 1
Stage 2

Stage 3
+

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123

1 𝑛

𝑘𝑒𝑦

𝑝𝑜𝑠

𝑘𝑒𝑦 ∈ 𝑝𝑜𝑠 − 𝜀, 𝑝𝑜𝑠 + 𝜀 ?

Model 1.1

Model 2.2

˜
Construction of RMI

29

1. Train the root model on the dataset
2. Use it to distribute keys to the next stage
3. Repeat for each model in the next stage (on

smaller datasets)

Model 1.1

Model 2.1 Model 2.2 Model 2.3

Stage 1
Stage 2

key

po
s

+

˜
Performance of RMI

30

+

˜
Limitations of RMI

1. Fixed structure with many hyperparameters
stages, # models in each stage, kinds of regression models

2. No a priori error guarantees
Difficult to predict latencies

3. Models are agnostic to the power of models below
Can result in underused models (waste of space)

32

2.1 2.3

3.1 3.2 3.3 3.4

Stage1
Stage2

Stage3

1.1

2.2

˜
Our idea (submitted)

33

Compute the optimal piecewise linear approx with guaranteed error 𝜀 in Ο(𝑛)

˜
Our idea (submitted)

34

Save the 𝑚 segments in a vector as triples 𝑠H = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

˜
Our idea (submitted)

35

Drop all the points except 𝑠H. 𝑘𝑒𝑦

˜
Our idea (submitted)

36

… and repeat!

˜
Memory layout of the PGM-index

37

˜
Some asymptotic bounds

38

Data Structure Space of index RAM model
Worst case time

EM model
Worst case I/Os

EM model
Best case I/Os

Plain sorted array Ο(1) Ο log 𝑛 Ο log
𝑛
𝐵

Ο log
𝑛
𝐵

Multiway tree Θ(𝑛) Ο log 𝑛 Ο logX 𝑛 Ο logX 𝑛

RMI Fixed Ο(?) Ο(?) Ο 1

PGM-index Θ(𝑚) Ο log𝑚 Ο logY 𝑚
𝑐 ≥ 2𝜀 = Ω(𝐵)

Ο 1

𝐵

PGM-index
𝑛 keys𝑚 segments, 𝜀 error

˜
PGM-index in practice

39

Whole datasets First 25M entries

3 seconds to
compute

Web logs
Longitude

IoT

= 715M points
= 166M points
= 26M pointsError of the

position estimate

Number of
segments

˜
Space-time performance

40

˜
How to explore this space of trade-offs?

Given a space bound 𝑆, find efficiently the index that
minimizes the query time within space 𝑆 and vice versa

41

˜
Back to Multicriteria Data Structures

A multicriteria data structure is defined by a family
of data structures and an optimisation algorithm
that selects the best data structure in the family

within some computational constraints

42

FAMILY
PGM-indexes ∀ε

CONSTRAINTS
Space & Time

OPTIMISATION
???

˜
The Multicriteria PGM-index

1. We designed a cost model for the space 𝑠 𝜀 and the
time 𝑡(𝜀)

2. … but we don’t have a closed formula for 𝑠 𝜀 , it
depends on the input array

3. We fit 𝑠 𝜀 with a power law of the form 𝑎𝜀^_

43

sp
ac
e

ε

˜
Under the hood

1. A sort of interpolation search over 𝜀 values

2. Each iteration improves the fitting of 𝑎𝜀^_ updating 𝑎, 𝑏

3. Bias the 𝜀-iterate towards the midpoint of a bin. search

4. In practice, given a space (time) bound, it finds the
fastest (most compact) index for 715M keys in < 1 min

44

𝜀K𝜀P𝜀a

sp
ac
e

𝜀∗

˜
Future work

1. Insertion and deletions

2. Non-linear models

3. Compression

45

˜

Bonus slides

Tools that you may find useful

3× faster than py_distance
117× faster than scipy.spatial.distance.euclidean

˜

GIORGIO VINCIGUERRA
PhD student in Computer Science

http://pages.di.unipi.it/vinciguerra/
giorgio.vinciguerra@phd.unipi.it

