
High Level Management of Firewall Configurations

Mauriana Pesaresi Seminar

Lorenzo Ceragioli
Università di Pisa, Pisa, Italy

lorenzo.ceragioli@phd.unipi.it

lorenzo.ceragioli@phd.unipi.it

Presentation Outline

Introduction and Motivation
What is a Firewall
Their configuration are difficult to manage

Transcompilation Pipeline
A language-based Solution
FireWall Synthesizer (FWS)

Function-Based Redefinition (Master Thesis)
from Firewalls to Functions and Back
Composition
Function Representation

Ongoing and Future Work
Tag System
Networks of Firewalls

High Level Management of Firewall Configurations 1 / 29

What is a Firewall?

Inspects the traffic: for each packet
accepts or drops it
possibly modifying it (NAT)

Based on a configuration
List of rules
Possibly using tags
Control-flow constructs
Complex Interaction among rules
(Shadowing)
Different configuration languages
Low level details

Difficult and error prone:
Configuration
Cross-system porting
Test
Verification

High Level Management of Firewall Configurations 2 / 29

Our Goal

Old Legacy Technology iptables
ipfw

pf

High level representation

decompilation

update
test
generate
verify
inspect

compilation

High Level Management of Firewall Configurations 3 / 29

Our Goal

Old Legacy Technology iptables
ipfw

pf

High level representation

decompilation

update
test
generate
verify
inspect

compilation

High Level Management of Firewall Configurations 3 / 29

Our Goal

Old Legacy Technology iptables
ipfw

pf

High level representation

decompilation

update
test
generate
verify
inspect

compilation

High Level Management of Firewall Configurations 3 / 29

Our Goal

Old Legacy Technology iptables
ipfw

pf

High level representation

decompilation

update
test
generate
verify
inspect

compilation

High Level Management of Firewall Configurations 3 / 29

Transcompiltation Pipeline

Transcompilation Pipeline between firewall languages
Supports iptables, pf, ipfw and (partially) CISCO-ios
General approach
Supports NAT
Formal semantics
tool: FireWall Synthesizer

High Level Management of Firewall Configurations 4 / 29

IFCL — Intermediate Firewall Configuration Language

Each firewall system
Has its own configuration language
Makes different evaluation steps to process packets
Lots of low level details

First do the NAT, than filtering or vice-versa?
How to express complex conditions (disjunction and negation)?

General Model

Firewall = set of rules + the evaluating procedure

High Level Management of Firewall Configurations 5 / 29

IFCL — Intermediate Firewall Configuration Language

Each firewall system
Has its own configuration language
Makes different evaluation steps to process packets
Lots of low level details

First do the NAT, than filtering or vice-versa?
How to express complex conditions (disjunction and negation)?

General Model

Firewall = set of rules + the evaluating procedure

High Level Management of Firewall Configurations 5 / 29

IFCL — Intermediate Firewall Configuration Language

Firewall = set of rules + the evaluating procedure

Configuration

Assigns a rulesets to each node

Ruleset : list of rules r = (φ, a)
φ(p) : condition
a : action

ACCEPT
DROP
NAT(dn, sn)
MARK(m)
����GOTO(R)
����CALL(R)
����RETURN

Control Diagram

qi

q0 q1

qf

sIP /∈ S sIP ∈ S

dIP /∈ S

dIP ∈ S dIP /∈ S

dIP ∈ S

S are the addresses of the firewall

High Level Management of Firewall Configurations 6 / 29

Transcompilation Pipeline

tool: FWS
FireWall Synthesizer

ipfw

qi

q0

q1

qf

ipfw

qf

q1q0

qi

q2 q3 pf

pf

formalization

synthesis

generation

translation

High Level Management of Firewall Configurations 7 / 29

Transcompilation Pipeline

tool: FWS
FireWall Synthesizer

ipfw

qi

q0

q1

qf

ipfw

qf

q1q0

qi

q2 q3 pf

pf

formalization

synthesis

generation

translation

High Level Management of Firewall Configurations 7 / 29

From Firewalls to Functions and Back: The Idea

Previous implementation of the pipeline synthesis:
• Associate two predicates with a configuration: its meaning
on pairs p, p′ when p is accepted as p′ or on discarded p
• Compute the models of a predicate (SAT-solver)
Black-box approach (no fine tuning)

Change of domain:
Function-based redefinition of the pipeline

(Firewalls _ Functions) :
source configuration 7→ function representing its meaning

(Firewalls ^ Functions) :
functional representation 7→ target configuration

High Level Management of Firewall Configurations 8 / 29

Rulesets and Firewalls as Functions

τ : P→ T (P) ∪ {⊥} where

P network packets
T (P) transformations possibly applied to packets
⊥ discard of a packet

New pipeline stages:
ruleset synthesis: rulesets became functions
composition: computes the semantics of the firewall
generation: assign functions to the target nodes

Why:
Parametric w.r.t. IFCL specification
Support minimal control diagrams and MARK
Translation from IFCL to target language is trivial

. . .

qi

q0

q1

qf

τ1

τ0

qi

q0

q1

qf

τ

τ0 τ1

τ2 τ3

qf

q1q0

qi

q2 q3

. . .

r.synthesis

composition

generation

High Level Management of Firewall Configurations 9 / 29

Function Representation

Functions τ : P→ T (P) ∪ {⊥} as sets of pairs (P, t)
t is a transformation
P is a multi-cube of packets

Cube :
Cartesian product of one segment
for each dimension

Multi-cube :
Cartesian product of one union of
segments for each dimension

succinct representation
sets of packets verifying rule conditions
sets of packets verifying arc conditions
closed under transformations

High Level Management of Firewall Configurations 10 / 29

Synthesis

. . .

qi

q0

q1

qf

τ1

τ0

qi

q0

q1

qf

τ τ0 τ1

τ2 τ3

qf

q1q0

qi

q2 q3

. . .

{
High Level Management of Firewall Configurations 10 / 29

Ruleset Synthesis: from ruleset to pairs (P, t)

We scan the ruleset rule-by-rule, keeping track of
P packets still to process
t transformation assigned to P

P =
{
Ps packets that verifiy the rule condition
Pn packets that do not – managed by the other rules

if the action accept/rejects the packet then (Ps, t′), where t′ updates t
else processing continues with the other rules on Ps (updating t to t′)

High Level Management of Firewall Configurations 11 / 29

Composition

τ

P1 t1

P2 t2

P3 t3

τ ′

P ′
1 t′1

P ′
2 t′2

P ′
3 t′3

q q′

Globally p 7→ t updated with t′
. . .

ψ

Ideally, for each p ∈ P

compute t in the first node

compute p′:
(how p is when exits node q)

check ψ(p′) ... if it does then
compute t′ in the second node
Overall: p 7→ t updated by t′

Composition Algorithm:

The same,
but with Multi-cubes ...

(... with additional details)

High Level Management of Firewall Configurations 12 / 29

Example from ipfw to pf: formalization
ipfw -q nat 1 config ip 151.15.185.183
ipfw -q nat 2 config redirect port tcp 9.9.8.8:17 17
ipfw -q add 0010 nat 1 tcp from 192.168.0.0/24 to not 192.168.0.0/24
ipfw -q add 0020 nat 2 tcp from 151.15.185.183 to not 192.168.0.0/24 17
ipfw -q add 0030 allow tcp from 151.15.185.183 to not 192.168.0.0/24 out
ipfw -q add 0040 deny all from any to any

qi

q0 q1

qf

sIP /∈ S sIP ∈ S
dIP /∈ S

dIP ∈ S dIP /∈ S

dIP ∈ S

R0 : (sIP ∈ 192.168.0.0/24 ∧ dIP /∈ 192.168.0.0/24,
NAT(? : ?, 151.15.15.183 : ?));

(sIP = 151.15.185.183 ∧ dIP /∈ 192.168.0.0/24 ∧ dPort = 17,
NAT(9.9.8.8 : ?, ? : ?));

(true, DROP)

R1 : . . .

High Level Management of Firewall Configurations 13 / 29

Example from ipfw to pf: ruleset synthesis

R0 : (sIP ∈ 192.168.0.0/24 ∧ dIP /∈ 192.168.0.0/24, NAT(? : ?, 151.15.15.183 : ?));
(sIP = 151.15.185.183 ∧ dIP /∈ 192.168.0.0/24 ∧ dPort = 17, NAT(9.9.8.8 : ?, ? : ?));
(true, DROP)

τ0

Received packets Accepted packets
source destination source destination

192.168.0.0/24 * * \{ 192.168.0.0/24 } * 151.15.185.183 - - -
151.15.185.183 * * \{ 192.168.0.0/24 } 17 - - 9.9.8.8 -

High Level Management of Firewall Configurations 14 / 29

Example from ipfw to pf: composition

qi

q0 q1

qf

sIP /∈ S sIP ∈ S
dIP /∈ S

dIP ∈ S dIP /∈ S

dIP ∈ S

τ0
Received packets Accepted packets

source destination source destination

192.168.0.0/24 * * \{ 192.168.0.0/24 } * 151.15.185.183 - - -
151.15.185.183 * * \{ 192.168.0.0/24 } 17 - - 9.9.8.8 -

τ1
Received packets Accepted packets

source destination source destination

192.168.0.0/24 * * \{ 192.168.0.0/24 } * 151.15.185.183 - - -
151.15.185.183 * * \{ 192.168.0.0/24 } 17 - - 9.9.8.8 -
151.15.185.183 * * \{ 192.168.0.0/24 } * \{ - - 9.9.8.8 -

17 }

Received packets Accepted packets
source destination source destination

151.15.185.183 * * \{ 151.15.185.183 * \{17} - - - -
192.168.0.0/24 }

192.168.0.0/24 \{192.168.0.1} * 127.0.0.1 * 151.15.185.183 - - -
151.15.185.183

192.168.0.0/24 \{192.168.0.1} * * \{ 127.0.0.1 * \{17} 151.15.185.183 - - -
151.15.185.183
192.168.0.0/24 }

192.168.0.0/24 \{192.168.0.1} * * \{ 127.0.0.1 17 151.15.185.183 - 9.9.8.8 -
151.15.185.183
192.168.0.0/24 }

192.168.0.1 * * \{ 127.0.0.1 * 151.15.185.183 - - -
151.15.185.183
192.168.0.0/24 }

151.15.185.183 * * \{ 192.168.0.0/24 } 17 - - 9.9.8.8 -

High Level Management of Firewall Configurations 15 / 29

Generation

. . .

qi

q0

q1

qf

τ1

τ0

qi

q0

q1

qf

τ τ0 τ1

τ2 τ3

qf

q1q0

qi

q2 q3

. . .

{
High Level Management of Firewall Configurations 15 / 29

How to generate functions

Problem: not every ruleset can be assigned to each node!

Assign Labels to nodes
DROP
SNAT
DNAT

Different expressive power

{DNAT} {DROP}

{SNAT} {DROP}

qf

q1q0

qi

q2 q3

sIP /∈ S

sIP ∈ S

dIP /∈ S
dIP ∈ S

dIP ∈ S
dIP /∈ S

Algorithm
For each pair (P, t) with t 6= ⊥

Find the path
For each node q

Preceding nodes → Pq
Labels in q → tq

Special management for DROP pairs (P,⊥)

High Level Management of Firewall Configurations 16 / 29

Management of DROP pairs

Special management for DROP pairs (P,⊥)
For each node: packets still not managed
Drop as many as possible

q {SNAT}

⊥

q′ {DROP}

⊥

s

d

s

d

s

d

s

d

Legend

: dropped
: will be dropped
: remaining

ψ

High Level Management of Firewall Configurations 17 / 29

Recap

This transcompilation approach
Is parametric w.r.t. the IFCL specification
Supports the use of tags in IFCL
Supports firewalls with minimal control diagram
Preserves the NAT
Reveals different expressive power of firewall languages

High Level Management of Firewall Configurations 18 / 29

Ongoing and Future Work

High Level Management of Firewall Configurations 18 / 29

Objectives

Preserve the structure of the original configuration: Refactoring
Reduce the gap between real languages and IFCL
Fully support of tag system in real languages
Handle networks with many firewalls
Port configurations to Software Defined Networks

High Level Management of Firewall Configurations 19 / 29

Problem with tags: pf

PF:
Rules read top-down
Last matching rule is applied
Tag is applied immediately (evaluation continues)
Quick rules are applied immediately (evaluation stops)

IFCL:
Rules read top-down and applied immediately
Tags never stop the evaluation

High Level Management of Firewall Configurations 20 / 29

Basic solution

Just rewrite bottom-up the same list of rules (prepending quick rules)

Example:

(true, DROP)
(src = 1.2.3.4, ACCEPT)

(dst = 5.6.7.8, NAT(1.6.3.8, ?)) E
(src = 8.8.8.8, DROP)

become

(dst = 5.6.7.8, NAT(1.6.3.8, ?))
(src = 8.8.8.8, DROP)
(src = 1.2.3.4, ACCEPT)
(true, DROP)

High Level Management of Firewall Configurations 21 / 29

Basic solution

Just rewrite bottom-up the same list of rules (prepending quick rules)

Example:

(true, DROP)
(src = 1.2.3.4, ACCEPT)

(dst = 5.6.7.8, NAT(1.6.3.8, ?)) E
(src = 8.8.8.8, DROP)

become

(dst = 5.6.7.8, NAT(1.6.3.8, ?))
(src = 8.8.8.8, DROP)
(src = 1.2.3.4, ACCEPT)
(true, DROP)

High Level Management of Firewall Configurations 21 / 29

Basic solution: tag

Divide each rule r into
quick part : r′ (E + tag)
slow part : r′′ (everything else)

Example:

R =


(r1)
(r2)
. . .

(rn)

R′ =


(r′

1)
(r′

2)
. . .

(r′
n)

reverse(R′′) =


(r′′

n)
. . .

(r′′
2)

(r′′
1)

The devil is in the detail

High Level Management of Firewall Configurations 22 / 29

Basic solution: tag

Divide each rule r into
quick part : r′ (E + tag)
slow part : r′′ (everything else)

Example:

R =


(r1)
(r2)
. . .

(rn)

R′ =


(r′

1)
(r′

2)
. . .

(r′
n)

reverse(R′′) =


(r′′

n)
. . .

(r′′
2)

(r′′
1)

The devil is in the detail

High Level Management of Firewall Configurations 22 / 29

Basic solution: tag

Divide each rule r into
quick part : r′ (E + tag)
slow part : r′′ (everything else)

Example:

R =


(r1)
(r2)
. . .

(rn)

R′ =


(r′

1)
(r′

2)
. . .

(r′
n)

reverse(R′′) =


(r′′

n)
. . .

(r′′
2)

(r′′
1)

The devil is in the detail

High Level Management of Firewall Configurations 22 / 29

Problem with tags: Example

(true, DROP)
(src = 1.2.3.4 ∧ tag = a, tag ← b; ACCEPT)
(dst = 5.6.7.8 ∧ tag = b, NAT(1.6.3.8, ?))

(src = 1.2.3.4 ∧ tag = a, tag ← b)
(dst = 5.6.7.8 ∧ tag = b, NAT(1.6.3.8, ?))
(src = 1.2.3.4 ∧ tag = a, ACCEPT)
(true, DROP)

High Level Management of Firewall Configurations 23 / 29

Problem with tags: Example

(true, DROP)
(src = 1.2.3.4 ∧ tag = a, tag ← b; ACCEPT)
(dst = 5.6.7.8 ∧ tag = b, NAT(1.6.3.8, ?))

(src = 1.2.3.4 ∧ tag = a, tag ← b)
(dst = 5.6.7.8 ∧ tag = b, NAT(1.6.3.8, ?))
(src = 1.2.3.4 ∧ tag = a, ACCEPT)
(true, DROP)

High Level Management of Firewall Configurations 23 / 29

Problem with tags: Example

(true, DROP)
(src = 1.2.3.4 ∧ tag = a, tag ← b; ACCEPT)
(dst = 5.6.7.8 ∧ tag = b, NAT(1.6.3.8, ?))

(src = 1.2.3.4 ∧ tag = a, tag ← b)
(dst = 5.6.7.8 ∧ tag = b, NAT(1.6.3.8, ?))
(src = 1.2.3.4 ∧ tag = b, ACCEPT)
(true, DROP)

High Level Management of Firewall Configurations 23 / 29

Problem with tags: Example

(true, DROP)
(src = 1.2.3.4 ∧ tag = a, tag ← b; ACCEPT)
(src = 1.2.3.4 ∧ tag = c, tag ← b; NAT(?, 5.2.7.4))
(dst = 5.6.7.8 ∧ tag = b, NAT(1.6.3.8, ?))

(src = 1.2.3.4 ∧ tag = a, tag ← b)
(src = 1.2.3.4 ∧ tag = c, tag ← b)
(dst = 5.6.7.8 ∧ tag = b, NAT(1.6.3.8, ?))
(src = 1.2.3.4 ∧ tag = b, NAT(?, 5.2.7.4))
(src = 1.2.3.4 ∧ tag = b, ACCEPT)
(true, DROP)

High Level Management of Firewall Configurations 24 / 29

Problem with tags: Example

(true, DROP)
(src = 1.2.3.4 ∧ tag = a, tag ← b; ACCEPT)
(src = 1.2.3.4 ∧ tag = c, tag ← b; NAT(?, 5.2.7.4))
(dst = 5.6.7.8 ∧ tag = b, NAT(1.6.3.8, ?))

(src = 1.2.3.4 ∧ tag = a, tag ← b)
(src = 1.2.3.4 ∧ tag = c, tag ← b)
(dst = 5.6.7.8 ∧ tag = b, NAT(1.6.3.8, ?))
(src = 1.2.3.4 ∧ tag = b, NAT(?, 5.2.7.4))
(src = 1.2.3.4 ∧ tag = b, ACCEPT)
(true, DROP)

High Level Management of Firewall Configurations 24 / 29

Problem with tags: Example

(true, DROP)
(src = 1.2.3.4 ∧ tag = a, tag ← b; ACCEPT)
(src = 1.2.3.4 ∧ tag = c, tag ← b; NAT(?, 5.2.7.4))
(dst = 5.6.7.8 ∧ tag = b, NAT(1.6.3.8, ?))

(src = 1.2.3.4 ∧ tag = a, tag ← b1)
(src = 1.2.3.4 ∧ tag = c, tag ← b2)
(dst = 5.6.7.8 ∧ tag = b1, tag ← b; NAT(1.6.3.8, ?))
(dst = 5.6.7.8 ∧ tag = b2, tag ← b; NAT(1.6.3.8, ?))
(src = 1.2.3.4 ∧ tag = b2, tag ← b; NAT(?, 5.2.7.4))
(src = 1.2.3.4 ∧ tag = b1, tag ← b; ACCEPT)
(true, DROP)

High Level Management of Firewall Configurations 24 / 29

Programming network behaviour at high level

NetKAT: Kleene Algebra with Tests for Networks
Kleene Algebra for reasoning about network structure
Boolean Algebra for reasoning about switch behaviour
Packet Algebra for reasoning about packets

+ · ¬ 0 1

action (policy) choice composition fail skip
test (predicate) disjunction conjunction negation false true

f = n (test on a packet field) f ← n (modification of a packet field)

High Level Management of Firewall Configurations 25 / 29

Programming network behaviour at high level

Network topology : a NetKAT formula
Each Firewall configuration : NetKAT formula
Code Motion & Refactoring : Equational theory
Security property : NetKAT formula
Property verification : Equational theory

High Level Management of Firewall Configurations 26 / 29

Compilation from real firewall languages to NetKAT

From IFCL to NetKAT is quite simple:
Ruleset : a NetKAT formula (a syntactic translation)

Control Diagram : as Network topology
Non-propagation of Tags : explicitly set to empty in ruleset

J(φ, t);RK =



LφM · LtM + L¬φM · JRK if t ∈ {ACCEPT, NAT}
L¬φM · JRK if t = DROP

LφM · LtM · JRK + L¬φM · JRK if t = MARK(m)
LφM · JR’K + L¬φM · JRK if t = GOTO(R’)

LφM · JR’K · JRK + L¬φM · JRK if t = CALL(R’)

LφM + L¬φM · JRK if t = RETURN

High Level Management of Firewall Configurations 27 / 29

Compilation from NetKAT to real firewall languages

NetKAT for configuring traditional firewalls: NetKAT → specific language
Each language corresponds to a normal form
Equational reduction to the specific normal form
Compilation from normal form of NetKAT to target language
Preserve the structure of the original configuration for free

High Level Management of Firewall Configurations 28 / 29

Our NEW Goal

iptablespfipfw

.

. . .

. . .

High level representation

decompilation

update
test
generate
verify
inspect

compilation

High Level Management of Firewall Configurations 29 / 29

Our NEW Goal

iptablespfipfw

.

. . .

. . .

High level representation

decompilation

update
test
generate
verify
inspect

compilation

High Level Management of Firewall Configurations 29 / 29

Our NEW Goal

iptablespfipfw

.

. . .

. . .

High level representation

decompilation

update
test
generate
verify
inspect

compilation

High Level Management of Firewall Configurations 29 / 29

Our NEW Goal

iptablespfipfw

.

. . .

. . .

High level representation

decompilation

update
test
generate
verify
inspect

compilation

High Level Management of Firewall Configurations 29 / 29

	Synthesis
	Generation
	Ongoing and Future Work

