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Abstract—FPGA architectures are becoming popular because
of their high performance-to-energy ratio. Nonetheless, their
effective exploitation is often counterbalanced by a high pro-
gramming effort, since most of the modern hardware description
languages provide only low-level programming abstractions. This
paper proposes FSP, a framework to productively support
the development of Data Stream Processing applications on
CPU+FPGA System-on-Chip devices (SoCs). By exploiting a code
generation approach starting from a high-level DSL in Python,
FSP generates an efficient OpenCL skeleton implementation of
the parallel pipeline on FPGA and the library to be used by host
programs to transfer inputs and collect results to/from the FPGA
program. The experimental results showcase the effectiveness
of FSP on an SoC equipped with an Intel Arria 10 FPGA by
running two streaming benchmark applications.

Index Terms—Data Stream Processing, FPGA, OpenCL,
Shared Memory, System-on-Chip Devices

I. INTRODUCTION

The last years have been witnessing rapid growth in the
volume of data that is being generated in the form of data
streams, i.e., unbounded sequences of inputs received at high
speed from thousands of data sources spread in our cities,
buildings, environment and from the metaverse. With such a
proliferation of streams, analyzing them to extract informa-
tion, insights, and hidden value is a capital asset for many
companies and industries.

Processing streams in an efficient and effective manner
has been the subject of several research activities falling
under the theoretical umbrella of the Data Stream Processing
(DSP) [1] research field. Most of the first attempts have
been conducted by the database research community, with
SQL-like formalisms to process streams analogously to finite
relations. To support the execution of such relational streaming
queries, Data Stream Management Systems (DSMSs) [1] have
been released in the past. In recent years, this topic has
been extended to face two important issues: i) the support
of non-relational applications with DSP frameworks capable
of running general computations beyond the space of SQL-
like queries; ii) the efficient exploitation of parallel hardware
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of different kinds, including traditional servers equipped with
multi-core CPUs and clusters.

With the current trend of hardware evolution, DSP frame-
works are demanding the efficient support of accelerators
to speed up their performance by providing high-throughput
and low-latency processing capabilities. GPUs and FPGAs
are fundamental building blocks of supercomputers nowadays.
Furthermore, they represent hardware capabilities also avail-
able on resource-constrained embedded resources like System-
on-Chip (SoC) devices present in the Internet of Things. So,
supporting accelerators for DSP is pivotal both for enabling
efficient stream processing on high-performance architectures
as well as on Edge/IoT computing resources.

Although GPU programming has improved in terms of pro-
gramming abstractions, and recent attempts to exploit GPUs
for DSP have been presented in the literature (they will be
mentioned in § VII), the exploitation of reconfigurable hard-
ware in a productive manner is still a research issue. FPGAs
are very powerful, and they promise effective performance-
to-energy ratios useful for embedded architectures. However,
the learning curve to use FPGAs is quite challenging and
the definition of novel programming frameworks assisting
programmers in developing FPGA-based stream processing
applications represents an open research direction.

This paper presents FSP, a framework for DSP applications
for SoCs equipped with a multi-core CPU and an integrated
FPGA. The contributions of this paper are the following:

• FSP reduces the programming effort in using recon-
figurable hardware for general-purpose non-relational
streaming applications owing to its code generation ap-
proach which, starting from a Domain-Specific Language
(DSL) in Python, generates the OpenCL skeleton code to
be integrated by the developer with few business logic
functions in the C programming language;

• the generation of the OpenCL skeleton of a DSP appli-
cation includes a ready-to-use efficient implementation
of intra-FPGA communications between OpenCL ker-
nels representing the application operators (introduced
in § II-A), so alleviating the programming effort for this
part of the runtime code by the application developer;

• FSP also generates from the DSL the header-only library
to be used by host programs to interact with the DSP
application on the FPGA.We provide several mechanisms



to offload streaming data to the FPGA and to collect
results efficiently.

The experimental analysis has been conducted using two
streaming applications from an open-source benchmark
suite [2] and discussing the performance results on the Terasic
Han Pilot Platform SoC, equipped with a dual-core ARM CPU
and an Intel Arria 10 FPGA.

This paper is organized as follows. § II introduces the
background. § III provides an overview of FSP with its
workflow. § IV describes the DSL in Python. § V shows the
code generation approach and the implementation. § VI shows
the experimental evaluation, § VII provides the related works
and § VIII draws the conclusions of this paper.

II. BACKGROUND

In this part, we briefly summarize the main concepts of the
DSP paradigm and FPGA devices.

A. Data Stream Processing

DSP applications are data-flow graphs where arcs model
unbounded streams while vertices are operators doing interme-
diate computations applied over the inputs to produce outputs.
In relational streaming applications (i.e., the ones that can be
developed using SQL-like formalisms [3]), operators are the
ones of linear algebra (e.g., projection, selection, joins) while
graphs have regular structures (e.g., trees). In general-purpose
DSP, which is the paradigm of interest in this paper, graphs
are generic while operators do generic computations.

DSP applications expose different parallelism exploitation
patterns. Operators usually work in parallel on different inputs,
while each operator can be internally replicated, with replicas
doing the same processing logic on different inputs distributed
by the previous operator in the graph (the so-called data
parallelism [4]). Distributions can follow different dispatching
policies: round-robin tries to assign the same number of inputs
to the replicas, while key-by assigns all the inputs having the
same key (e.g., a specific field of the input) to the same replica.

Furthermore, operators can be satateless if outputs depend
on the inputs only, without keeping any state information of
the stream history. Otherwise, operators are stateful if they
maintain a state used to compute outputs. A very used pattern
in DSP is to use stateful operators with a key-by dispatching
policy (partitioned-stateful operators), where each distinct key
value is associated with a separated state object accessed
privately by the replica receiving inputs having that key.

B. FPGA Architectures

Field Programmable Gate Arrays (FPGAs) are integrated
circuits consisting of an array of configurable hardware blocks
connected via programmable interconnects. The main blocks
are Basic Logic Elements (BLEs), which are composed of a
look-up table (LUT), a flip-flop, and a multiplexer. Modern
FPGAs have higher-level functionality blocks, including mem-
ory blocks (BRAM), which are used to store data and transfer
data between on-chip resources, dedicated hard blocks such as
Digital Signal Processing (DSP) blocks that have dedicated

circuitry implementing multiply and accumulate operations,
and I/O blocks used to communicate with external devices
such as microcontrollers or external memories.

Developers are in charge of providing a description of
the functionality they want to accelerate at hardware using a
proper formalism, which will be translated into a bitstream file
(i.e., describing the configuration of the FPGA blocks) by a so-
called offline compiler. In recent years, both Intel and Xilinx
have proposed OpenCL [5] for FPGA programming to ease the
effort spent by developers. OpenCL increases programmability
by abstracting the complexity of direct hardware programming
with Hardware Description Languages like Verilog or VHDL.

The default OpenCL model is called NDRange (NDR),
which employs multiple work-items grouped into work-
groups. Although NDRange kernels are well suited for GPU
programming, this execution model does not always guarantee
optimal hardware design for FPGAs [6]. Single Work-item
(SWI) kernels, instead, allow developers to avoid partitioning
of data across work-items, while the whole kernel code is
developed using a sequential programming model (with loops)
similar to C programming. Such kind of kernels enables the
offline compiler to extract pipeline parallelism at compile time,
in order to run loop iterations in parallel.

The Intel FPGA SDK for OpenCL [6] provides a mech-
anism for kernel-to-kernel communication based on FIFO
queues called Intel Channels, which are directly implemented
using the embedded memory blocks of the FPGA. This feature
decouples data movements between executing kernels, allevi-
ating the memory pressure on the off-chip FPGA memory and
removing synchronization overheads with the host program.

III. FSP OVERVIEW

FSP1 is a framework prototype to leverage FPGA devices
to accelerate DSP applications. This prototype aims to ease
the development of streaming applications by offloading part
or the whole computation of a pipeline of streaming operators
onto an FPGA device. The development of an application with
FSP starts by describing the pipeline of operators through a
DSL as shown in Fig. 1. Such a DSL provides an easy-to-
use way for high-level programmers to structure the applica-
tion DAG (i.e., a pipeline) by expressing different kinds of
operators, with different input dispatching policies and state
management properties, and connecting them according to the
logical dataflow driven by the application semantics.

The DSL is expressed in the Python programming language
and provides a basic set of operators which run on the FPGA:

• the Filter operator removes from the streams all inputs
not respecting a user-defined predicate;

• the Map operator applies a user-defined function on each
input by producing a corresponding output having the
same or a different data type.

In addition to these operators, FSP provides some built-in
operators (still run by the FPGA) that interact with the host

1The source code is available at https://github.com/blackwut/FSP.
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Fig. 1. FSP workflow to develop a DSP application leveraging FPGA.

application to receive a stream of inputs to be consumed, or
to produce a stream of output results:

• the Source operator produces an input stream feeding
the other operators on the FPGA by forwarding data
continuously arriving from a host application;

• the Sink operator collects the streams of results and makes
them continuously available to a host application.

Each FSP operator can be internally parallelized by run-
ning more functionally equivalent replicas that will work on
different inputs in parallel, according to the data-parallelism
paradigm introduced in § II. From the DSL perspective, the
FSP programmer specifies the degree of parallelism of each
operator (i.e., number of replicas), and the dispatching policy
to route inputs produced by the previous operator to such
destination replicas. The dispatching policies provided by FSP
are the following:

• the round-robin policy allows inputs to be dispatched to
the replicas of the next operator in a circular manner, thus
balancing the number of inputs assigned to each replica
of the next operator;

• the key-by policy allows inputs having the same key (i.e.,
an attribute of the input data structure or the result of a
function that computes the key based on some fields of
the input) to be always sent to the same replica of the
next operator;

• the broadcast policy allows sending a copy of each input
to each destination replica.

After defining the structure of the operator pipeline, the
number of replicas, and the dispatching policies, FSP gener-
ates an OpenCL code for the device (pipeline skeleton) using
Jinja2 [7]. In the pipeline skeleton (see Fig. 1), the code
generated for each operator replica consists of an OpenCL
kernel doing the following logical steps:

• it handles the gathering of inputs received from the
replicas of the previous operator by polling from a set
of Intel Channels FIFO queues implemented directly on
the FPGA memory resources;

• for each input, it calls the user-defined function associated
with the operator;

• it handles the transmission of the computed outputs to the
replicas of the next operator according to the specified
dispatching policy chosen by the programmer;

• it handles the End-of-Stream (EoS) propagation logic to
terminate the pipeline correctly.

Therefore, the generated code contains several pieces of the
pipeline logic that are efficiently implemented for the device
without any programming effort by the FSP user. However,
since FSP is aimed at supporting general-purpose streaming
applications with operators doing arbitrary computations ex-
pressed in imperative code, the produced pipeline skeleton
is not ready to run, but it must be complemented by the
programmer with the user-defined functions (one per operator)
that must respect a given signature based on the operator type
(denoted as operator functions in Fig. 1).

FSP generates also the code to be used by the host
application (a set of C++ header files). It consists of a set
of functions containing the so-called OpenCL boilerplate to
launch all the OpenCL kernels as they are defined in the
generated device code as well as all the runtime calls to
instantiate the memory buffers. Furthermore, the header files
implement an API that will be used by the host application to
push and pop batches of inputs/outputs to be read/consumed
by the device (so transparently interacting with the Source and
Sink operators on the FPGA).

IV. DSL

This section introduces the basic feature of our DSL. The
first step to declare an application is to create an instance of
the FApplication class as shown in Listing 1.
app = FApplication(’./myApp’, ’input_t’, FTransferMode.SHARED)

Listing 1. Example of declaring an application with FSP.

The programmer can specify the destination folder of the
generated code (i.e., a directory named myApp), the input
datatype of the pipeline (i.e., the Source operator will accept
inputs with input_t as datatype), and the transfer protocol
used to perform the host-to-device (H2D) and device-to-host
(D2H) data transfers (see § V-C).

Operators are declared by instantiating the FOperator
class. Listing 2 shows the declaration of a Map operator
using a key-by dispatching policy. The programmer can tune
some options provided at the implementation level about the
way in which inputs are retrieved from the incoming buffers
(e.g., using the non-blocking policy as it will be described in
the following sections). In this example, the Map operator is
parallelized with two internal replicas to increase throughput
and it produces a stream of output results having a new
datatype output_t.
map = FOperator(’map’, # Name

2 # Parallelism degree
FOperatorKind.MAP, # Base operator kind
FGatherMode.NON_BLOCKING,# Policy for reading inputs
FDispatchMode.KEYBY, # Policy for sending outputs
’output_t’) # Output datatype

Listing 2. Map operator with key-by dispatching policy.

A stateless operator, excluding Source and Sink operators,
becomes stateful by adding a buffer to it. Such a buffer is
a memory space that the user decides to make available to
the operator, where it can save historical information about



the received inputs, and can be used to compute results in a
generic stateful manner. Listing 3 shows the methods to add
a buffer residing in the three different memory spaces (i.e.,
private, local, and global according to the OpenCL standard).
Private buffers are implemented by the offline compiler with
registers and should be used to store variables or arrays with
few elements. A local buffer is implemented in dedicated
memory blocks inside the FPGA and should be used to store
a small state. Global buffers are stored in external memory
(i.e., DDR and HBM) and can hold large states. Private and
local buffers are visible only by a replica of an operator. Global
buffers can instead be accessed by a single replica or by all the
replicas of the operator depending on the access type specified
with the DSL. A global buffer can be specified as read only,
write only, or read-write, while private buffers are implicitly
read-write.
map.add_private_buffer(’char’, ’array’, size=16)
map.add_local_buffer(’float’, ’matrix’, size=(32, 128))
map.add_global_buffer(’int’, ’img’, size=2⋆⋆30, FBufferAccess.RW_ALL)

Listing 3. Add private, local, and global states to an operator.

After the declaration of all the operators, they are inserted
in the right order to the pipeline as shown in Listing 4. By
calling the generate_code() method, FSP generates the
device code and the host header-only library.
app.add_source(source)
app.add(map)
app.add_sink(sink)
app.generate_code()

Listing 4. Adding operators and device/host code generation.

V. FSP IMPLEMENTATION

This section shows the implementation of FSP, i.e., the
choices we made to generate the OpenCL code of the device
program as well as of the generated API to interact with the
FPGA pipeline through a host C/C++ application.

Each operator is an active running component on the FPGA
whose logic is split into three phases: 1) a begin phase
in which the operator initializes its internal state (if any);
2) a compute phase in which the operator processes each
input received from its incoming FIFO queues by running
the business logic code provided by the FSP user for that
operator; 3) and the end phase, which can be used to finalize
the operator state. The three phases are functions that have
complete access to all the buffers declared for that operator.

A. Operator Replication

As said in § II, operators can be replicated to increase their
processing throughput. Each replica runs the same business
logic of the operator on a subset of inputs distributed by the
preceding operator of the pipeline.

In the FSP generated device code, each operator replica
is implemented as an OpenCL SWI kernel. The structure
of a kernel is shown in Listing 5 in which each function
represents a component that is generated according to the
DSL. The first two attributes instruct the offline compiler to
infer the SWI model. As a result, the offline compiler reduces

the logic utilization needed for NDRange kernels and applies
additional performance optimizations. Before the main loop,
the kernel calls the begin phase function of the operator.
Inside the main loop, a generated gather component applies
the gather policy to receive inputs from the replicas of the
preceding operator of the pipeline. This component is also
in charge of updating the done variable to true once the
stream ends. After an input has been received, the compute
phase function is called to process it. At the end of the main
loop, the dispatch component sends the computed result to
the next operator replica(s) according to the dispatch policy
chosen by the programmer through the DSL. Once the EoS
signal arrives, the kernel calls the end phase function and
propagates the EoS signal to each of its destinations. The EoS
is a mechanism to signal that the stream is closed and the
receiving operator replicas can terminate its execution.
__attribute__((uses_global_work_offset(0)))
__attribute__((max_global_work_dim(0)))
__kernel void op_kernel(...) {

op_begin();
while (!done) {

gather_input();
op_compute();
dispatch_result();

}
op_end();
propagate_EoS();

}

Listing 5. Stucture of a kernel running an operator replica.

The logic of an operator needs to be replicated in the device
code based on the number of replicas specified for the operator
(i.e., its parallelism degree). To implement this, two main
strategies can be followed:

• replicas of the same operator can be implemented by
generating the code of a unique SWI kernel composed
by multiple compute units, one per replica;

• the whole kernel code can be replicated during the code
generation phase in order to have one full definition of
the kernel for each replica (each having a unique name
in the code and the same implementation).

Although the first approach is quite natural in OpenCL
programming, and the offline compiler implements each com-
pute unit as a unique pipeline, only autorun kernels can
be used to exploit such a feature. Autorun kernels run on
their own without any host interaction and receive no input
arguments from the host. This is a limiting factor since they
have no access to global memory buffers and cannot receive
any information from the host program. For this reason, FSP
follows the second approach to replicate operators.

B. Inter-operator Data Distribution

Let us consider the case of two consecutive operators, the
left-hand side operator (LHS) and the right-hand side one
(RHS). Each replica of LHS is connected to each of the RHS
replicas by dedicated Intel Channels FIFO queues. A datatype
(see Listing 6) is generated in the device code to wrap the
user datatype with information used by FSP.

The struct name is generated as the concatenation of the two
operator names and contains the data type of the output mes-



sage produced by LHS and delivered to LHS (data_type),
and a boolean flag that carries the EoS signal.
typedef struct {

data_type data;
bool EoS;

} <LHS>_<RHS>_t;

Listing 6. Datatype wrapping a user-defined datatype exchanged between two
consecutive operators.

Each of the M > 0 RHS replicas receives inputs from the
N > 0 previous LHS replicas according to a blocking or a non-
blocking gathering policies. Listing 7 shows the RHS operator
replica adopting the latter policy using the non-blocking read
functions to poll each input channel coming from all the
LHS replicas. The use of non-blocking reads allows the
operator replica to poll one channel at each loop iteration.
This implementation is useful to avoid kernel stalls because
the polling phase keeps going even when no data is present in
some channels. We also support a blocking gathering policy,
which uses blocking read functions. In this case, the read
call can cause the kernel to stall until at least one element
becomes available in that specific channel.
channel <LHS>_<RHS>_t ch[N][M];

__kernel void operator_<RHS>(...) {
uint id = 0;
uint r = 0;
while (!done) {

<LHS>_<RHS>_t in;
bool v = false; // valid flag
switch (r) {

case 0: in = read_channel_nb_intel(ch[ 0][id], &v); break;
case 1: in = read_channel_nb_intel(ch[ 1][id], &v); break;
...
case N-1: in = raed_channel_nb_intel(ch[N-1][id], &v); break;

}
r = (r + 1) % N;
if (v) { // check valid flag

op_compute(in);
}

}
}

Listing 7. Non-blocking gathering implementation.

Listing 8 shows the implementation of the key-by dispatch-
ing policy. The destination to deliver a new output result
depends on the value of the key obtained by calling a user-
provided function (e.g., get_key()), modulo the number of
the next operator replicas. Doing so, outputs with the same
key are sent to the same replica of the next operator.
channel <LHS>_<RHS>_t ch[N][M];

__kernel void operator_<LHS>(...) {
uint id = 0;
while (!done) {

gather_input();
<LHS>_<RHS>_t out = op_compute();
const uint w = result_get_key(out.data) % M;
switch (w) {

case 0: write_channel_intel(ch[id][ 0], out); break;
case 1: write_channel_intel(ch[id][ 1], out); break;
...
case M-1: write_channel_intel(ch[id][M-1], out); break;

}
}

}

Listing 8. Key-by dispatching policy implementation.

C. H2D and D2H Data Transfers

FPGAs can improve the performance of streaming appli-
cations by accelerating the computation of operator pipelines.

However, the performance gain can be nullified by the over-
head of H2D and D2H data transfers. Therefore, FSP supports
several techniques to mitigate the communication overhead,
including data batching, the K-buffering optimization, and
a custom protocol designed for SoCs with shared memory
between CPU and FPGA.

1) Data batching: transferring inputs one by one to the
FPGA can result in low communication bandwidth, which may
drastically reduce the application throughput. Therefore, FSP
adopts a strategy that groups inputs together to form batches
and transfers them to the FPGA as a whole. The batch size is a
user-configurable parameter exposed by the host API for both
the H2D and D2H communications. If the batch size is set
to one, once a new input arrives it is immediately transferred
to the FPGA to be processed. By setting the batch size to
be greater than one, inputs are buffered and transferred once
the batch has been entirely filled. The batch size obviously
impacts the application performance. Small batches (a few
tens of inputs) can lower the computational latency but can
drastically reduce throughput because of the communication
overhead. Large-sized batches (e.g., thousands of inputs) often
increase throughput at the expense of latency.

2) K-buffering: when a kernel is executed multiple times
over different input batches, batch transfers occur between
successive kernel executions. Therefore, there is a gap in
time between one kernel execution and the next one. We call
this time interval kernel downtime. To minimize the kernel
downtime, FSP employs a generalization of the well-known
double-buffering optimization that we call the K-buffering
technique. The idea is to overlap the data transfers of the
next up to K − 1 batches while the kernel is computing the
previous one. This can be done by using separated buffers (one
per batch), or a single properly aligned buffer large enough to
host K distinct batches.

3) Shared-memory protocol: on SoC CPU+FPGA devices,
read and write operations from the CPU to the FPGA DDR
memory (i.e., memory accessible only by the FPGA) are
often very slow because they do not use Direct Memory
Access (DMA) hardware capabilities. However, such devices
are often equipped with a physically shared memory that can
be simultaneously accessed by both CPU and FPGA. When
this memory is used, OpenCL memory calls are done as zero-
copy transfers for buffer reads, writes, maps, and unmaps.
Therefore, we design a shared-memory synchronization pro-
tocol to take full advantage of this feature. This protocol
adopts two shared buffers, allocated once at the beginning
of the application to store K > 1 batches (to implement
the K-buffering technique previously described) and their
corresponding headers. A header is a 32-bit unsigned integer
that contains information about the number of inputs contained
in a batch, a flag to signal the EoS, and a ready flag to
synchronize the access to the shared memory space.

Let us consider the example of an H2D communication in
which a thread on the host CPU pushes data to a Source
operator running on the FPGA. The host thread performs
active waiting on the ready flag of the header through a spin



loop. Once the ready flag is set to false by the Source
operator, the host obtains access to the corresponding batch
and can fill it with arriving inputs of type input_t. Then,
it executes a memory barrier to ensure that all the writes are
completed and updates the header by setting the number of
inputs in the batch, the ready flag to true, and the QoS
flag to true if the stream is ended, false otherwise.

On the device side, the Source operator waits until the value
of the ready flag goes from false to true, then reads
and dispatches the inputs of the batch to the next operator
according to its dispatching policy, and after a memory barrier,
it resets the header again (Listing 9).
__kernel source(__global volatile header_t *restrict headers,

__global const volatile input_t *restrict data) {
uint idx = 0;
while (!done) {

header_t h;
while (!header_ready(h = headers[idx]);
const uint batch_size = header_size(h);
for (uint i = 0; i < batch_size; ++i) {

dispatch_inputs();
}
done = header_close(h);
mem_fence(CLK_GLOBAL_MEM_FENCE | CLK_CHANNEL_MEM_FENCE);
header_reset(headers[idx]);
idx = (idx + 1) % N;

}
}

Listing 9. Source implementing the shared-memory protocol.

VI. EXPERIMENTS

We evaluate FSP on the Han Pilot Platform SoC shipped
by Terasic, depicted in Fig. 2. The SoC includes an In-
tel Arria 10 FPGA and a 1.5GHz dual-core ARM Cortex-
A9 processor with 1GB on-board DDR4-2400 with 32-
bit data width (shared with the FPGA), running Angstrom
GNU/Linux v2014.12. The Intel Arria 10 FPGA includes
660K Logic Elements, 250K Adaptive Logic Modules (ALM),
1M Registers, 42,620 M20K, 5,788 MLAB, and 1,687 DSPs,
and access 1GB on-board DDR4-2400 with 32-bit data
width (FPGA DDR). Host programs are compiled with the
arm-linux-gnueabihf-g++ cross-compiler with -O3
optimizer flag. To compile device programs, we use the Intel
FPGA SDK for OpenCL Offline Compiler aoc Version 19.1
Build 240 Pro Edition, compiling with -g0 flag, and the
-board=a10s_ddr flag that instructs the compiler to use
the HAN Pilot Platform OpenCL Board Support Package 19.1.

Fig. 2. Han Pilot Platform SoC by Terasic.

We have chosen two applications in DSPBench [2]. The first
application, SpikeDetection (SD), processes a stream of sensor

readings to monitor spikes. It is a pipeline of four operators: a
Source, a stateful Map computing a moving average, a stateless
Filter evaluating if the current sensor reading is a spike, and a
Sink. We implemented the Map by keeping key-partitioned
windows in local memory (BRAM), and it computes the
moving average by using the shift register pattern [6]. The
Filter is implemented with a simple Boolean predicate.

The second application, FraudDetection (FD), processes
a stream of credit card transactions to detect fraud. It is
composed of a pipeline of four operators: a Source, a stateful
Map applying a Markov model to calculate the probability
of fraud, a Filter evaluating if the current transaction is a
fraud, and a Sink. We implemented the Map operator such
that, for each input, it reads the Markov model (a matrix
of floating-point probabilities) from global memory (FPGA
DDR) to increase the granularity of the computation.

A. Shared-memory Protocol Evaluation

To assess the effectiveness of the shared-memory protocol,
we consider three different data transfer methods:

• Copy: the host allocates buffers on the FPGA memory
and transfers data from the host buffers to the FPGA
buffers with the clEnqueueWriteBuffer() and
back using the clEnqueueReadBuffer() OpenCL
functions. A Source kernel is launched after transferring
each new batch, to start reading its inputs and distributing
them to the next FPGA operator of the pipeline. The Sink
kernel is instead launched at the beginning, to start filling
the first batch of results, and then re-started each time a
new output batch is consumed by the host application;

• Hybrid: buffers directly accessible by host and FPGA
are allocated in shared memory. Kernels are launched
as for Copy, but the host employs memory barriers to
ensure that all writes are completed before launching each
Source kernel and reads are complete before launching
each Sink kernel. So, with this approach, we avoid the
overhead of additional OpenCL copies, but we still pay
the cost of launching Source/Sink kernels;

• Shared: buffers are allocated in shared memory and
managed with the shared-memory protocol in V-C3.
Source and Sink kernels are launched once at the begin-
ning of the application and they run until the EoS signal
is received from the host.

SD is a fine-grained application. To exploit the H2D band-
width, we evaluate SD with one and two replicas for the
Source, while we fix all the other operators to have one replica
only. The host program spawns a dedicated thread responsible
for writing batches read by each Source on the FPGA (so we
can have one or two of these threads), and a thread reading
output data batches from the Sink operator on FPGA. Fig. 3
shows the impact of the data transfer methods, the Source
parallelism degree (SP ), and the Sink batch size (BSizesink)
on the overall application throughput. In each case, we report
the throughput by varying the Source batch size (BSizesource)
from 16 inputs to 4, 096 inputs per batch.
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Fig. 3. Impact of the transfer methods with different configurations of
Source Parallelism (SP ), and the Sink Batch Size (BSizesink) on throughput
(inputs/sec) for the SD application.

With one Source replica and with the two considered
BSizesink values (256 and 1, 024), the maximum through-
put is of 8.9M inputs/sec achieved by Shared with a
BSizesource of 4, 096, which is 1.6× and 1.2× higher than
the maximum throughput with Copy and Hybrid.

With small BSizesource (< 128 inputs), Shared obtains
39× to 117× higher throughput than Copy and 19× to 56×
than Hybrid. With larger BSizesource, this gap is reduced
but Shared is still the better transfer method as it achieves
up to 20× higher throughput than Copy and Hybrid.

With two Source replicas on FPGA, the application is
composed of a total of three host threads that compete for
the two cores of the ARM CPU. The Copy method is
negatively affected by thread concurrency in all scenarios,
while the throughput using Hybrid is reduced up to 73%
with BSizesink of 256, and up to 22% with BSizesource
of 1, 024. The Shared method shows an improvement from
10% to 40% with BSizesink of 256, and 50 − 70% with
BSizesink of 1, 024. The BSizesink has a positive impact on
the throughput of the application using the Shared method,
gaining from 11% to 62% with the larger BSizesink, reaching
a peak of 15.2M inputs/sec in the best case.

Fig. 4 shows the impact of the transfer methods, the Source
parallelism degree, and the BSizesink on the latency. With
one Source replica, increasing the BSizesink leads to a higher
latency because it needs more time to fill the batch of output
results. The latency with the Shared method is under the
millisecond with BSizesource < 2, 048 inputs. With small
BSizesource (< 64), Shared outperforms Copy by 20×
to 59× and 17× to 98× with BSizesink of 256 and 1, 024
respectively, and 9× to 28× Hybrid with both BSizesink
values, on average. The gap between the three methods is
reduced by using large BSizesource as the overheads of the
Copy and Hybrid methods became negligible.

By employing two Source replicas, the input rate of the
application doubles and thus improving the latency in all
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Fig. 4. Impact of the transfer methods with different configurations of
Source Parallelism (SP ), and the Sink Batch Size (BSizesink) on latency
(milliseconds) for the SD application.

configurations. Despite the latency by using the Copy and
Hybrid methods being under 10 milliseconds for 32, 64,
and 128 values of the BSizesource, both methods are out-
performed by Shared, which shows latencies under 100
microseconds in the same configurations. In particular, the
Copy method, on average, registers 27× and 20× higher
latency compared to Shared with BSizesink of 256 and
1, 024, respectively. The Hybrid method performs better with
BSizesource > 64 compared to the Copy method. However,
Shared obtains 2× lower latency on average, even with large
BSizesource (> 512) compared to the Hybrid method.

B. Replication Evaluation

We use the FD application to show the impact of replication
since it exposes a more coarse-grained computation. Fig. 5
shows the throughput resulting from varying the number
of replicas of the Map operator under several BSizesource
configurations. In these experiments, we run the application
by fixing the BSizesink to 32 and using the Shared transfer
method. The baseline is the application with parallelism set to
one for each operator on FPGA, which reaches a maximum
throughput of 1.2M inputs/sec with batches greater than 32
inputs. With small input batches (< 64), the replication of
the Map operator has a low impact on throughput. However,
by increasing the BSizesource, and thus the input rate, we
obtained 1.69×, 3.29×, and 3.97× of peak throughput with
2, 4, and 6 replicas of the Map operator, respectively, which
is the most compute-intensive operator of the pipeline.

Operator replication can have a significant impact on latency
too, as shown in Fig. 6. With a BSizesource of 16, we obtain
a minimum latency of 71 microseconds by using 4 and 6 Map
replicas, which is 2× lower than using one replica only. With
larger BSizesource, the baseline experiences from 2.29× to
3.76× more latency than using 4 and 6 Map replicas.
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VII. RELATED WORKS

DSP on heterogeneous resources is a promising research
direction to speed up streaming tasks with an effective
performance-to-energy ratio. Although some papers have in-
vestigated how to support GPUs for relational stream process-
ing [8], [9], the space of FPGA solutions is still small.

The most complete FPGA-oriented framework for DSP is
Glacier [10] to support relational SQL streaming queries.
Although not comparable with FSP, because we target non-
relational computations, Glacier is no longer maintained and
is hard to be smoothly ported on modern FPGA resources.
Another work is F-Storm [11], a version of Apache Storm to
support FPGA. The approach is interesting, although it does
not support the offloading of whole pipelines like FSP does.

Other research papers have focused on the FPGA acceler-
ation of specific well-known relational streaming operators.
The work described in [12] presents an efficient and scalable
FPGA-based acceleration of sliding-window aggregates. The
implementation proposed in that paper applies a combination
of previously studied techniques such as window panes [13].
This technique is used to avoid replicating a large number of
aggregation modules for overlapping sliding windows by di-
viding each window into non-overlapping sub-windows called
panes. The implementation has been evaluated using a Xilinx
FPGA and directly developed using VHDL. Our FSP currently
supports basic general-purpose streaming operators only. Ex-
tensions to include window-based operators are ongoing.

Other accelerated operators are joins, a computationally
expensive class of stateful operators. An FPGA implemen-
tation has been proposed in [14] with the name of StreamJoin
targeting the Convery HC-2ex hybrid computer featuring an

Intel CPU and a Xilinx FPGA. A generic high-throughput
architecture for DSP targeting FPGAs has been proposed
in [15]. It is oriented to data stream mining problems but
actually covers join operators and their porting on FPGAs.

VIII. CONCLUSIONS AND FUTURE WORKS

This paper presented FSP, a programming framework to
develop DSP applications exploiting FPGAs. The approach
generates code in OpenCL starting from a pipeline description
provided in Python. The generated code adopts several opti-
mizations for efficient kernel-to-kernel communications and
to optimize H2D and D2H data transfers. The experiments
show interesting results in terms of latency and throughput.
In the future, we plan to extend FSP to support FlatMap
and window-based operators. Furthermore, the code generation
approach can be extended to support Xilinx FPGAs.
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