
EVALUATION OF ARCHITECTURAL SUPPORTS FOR FINE-GRAINED
SYNCHRONIZATION MECHANISMS

Tiziano De Matteis, Fabio Luporini, Gabriele Mencagli and Marco Vanneschi
Department or Computer Science, University of Pisa

Largo B. Pontecorvo, 3, I-56127, Pisa, Italy
Email: {dematteis, luporini, mencagli, vannesch}@di.unipi.it

ABSTRACT
The advent of multi-/many-core architectures demands ef-
ficient run-time supports to sustain parallel applications
scalability. Synchronization mechanisms should be op-
timized in order to account for different scenarios, such
as the interaction between threads executed on different
cores as well as intra-core synchronization, i.e. involving
threads executed on hardware contexts of the same core.
In this perspective, we describe the design issues of two
notable mechanisms for shared-memory parallel computa-
tions. We point out how specific architectural supports, like
hardware cache coherence and core-to-core interconnec-
tion networks, make it possible to design optimized imple-
mentations of such mechanisms. In this paper we discuss
experimental results on three representative architectures:
a flagship Intel multi-core and two interesting network pro-
cessors. The final result helps to untangle the complex im-
plementation space of synchronization mechanisms.

KEY WORDS
Synchronization, Locking, Simultaneous Multi-Threading,
Busy-Waiting, Multi-cores, Network Processors.

1 Introduction

Recent technological advancements led to a number of ar-
chitectures that can be used to accelerate compute-intensive
applications. Parallel, possibly fine-grained applications
require specialized mechanisms to scale with parallelism
degrees that became significant even inside a single on-chip
platform. In this context, the problem of efficient thread
cooperation is a key factor for application performance.
Run-time supports for parallel computations should pro-
vide a set of highly optimized basic mechanisms such as
locks, notification primitives, barriers, semaphores as well
as lock-free data structures.

In current shared-memory architectures, the plethora
of different configurations in terms of cache hierarchies,
presence of multiple thread contexts per core, interconnec-
tion networks and other architectural facilities, renders the
problem of finding the best implementation of basic mech-
anisms extremely complex. Moreover, the best implemen-
tation might not exist, but alternative techniques should be
compared in a multidimensional space of metrics in which
the best trade-off solutions need to be clearly identified.

In order to explore alternative implementations, we
study two synchronization mechanisms. Consider two
threads that are running their own computation, but at a
certain point they need to synchronize in order to proceed
with the execution. In the first scenario, a thread waits un-
til a particular condition is satisfied. The role of the peer
thread is to inform it as soon as the condition becomes ver-
ified. We call this general type of interaction one-way no-
tification. In the second scenario, a pool of threads access
a critical section of code. In this case a lock is necessary
to preserve the computation consistency. In this paper we
do not cover all the synchronization mechanisms available
for building parallel applications, but we highlight the im-
portance of optimizing a common critical phase, i.e. the
busy-waiting of threads inside synchronization primitives.

To have a sufficiently large space of optimizations, we
study three test-bed architectures: a ”classic” Intel Xeon
multi-core and two novel network processors, the Tilera
Tile64Pro and the Broadcom XLP 432. We present differ-
ent versions of the mechanisms: using classic spin-loops
on shared flags, advanced assembler instructions to be no-
tified of a cache line modification, and core-to-core inter-
connection networks to exchange small messages directly
at the firmware level. As we will see, plain spin-wait loops
may be unsatisfying under certain circumstances, and the
presence of the Simultaneous Multi-Threading (SMT) tech-
nology exacerbates this problem. Other implementations,
though less effective from the responsiveness viewpoint,
are less resource consuming and, thus, able to provide a
”graceful” way to synchronize threads on different contexts
of the same core. In this paper we describe several exper-
iments and we try to provide a guideline to simplify the
jumble of alternative implementations by highlighting the
strengths and the weaknesses of different solutions.

The paper is organized as follows: Section 2 presents
the synchronization mechanisms we are studying; Sec-
tion 3 provides a description of the platforms we used in
our experiments; Section 4 shows the implementation de-
tails and the experimental results. Finally, Section 5 sum-
marizes the main findings and concludes the paper.

2 Synchronization mechanisms

Especially for highly parallel shared-memory architectures,
lightweight synchronization primitives are fundamental to

achieve scalable implementations of fine-grained parallel
programs. Therefore, these mechanisms require a clever
design in order to minimize the architectural overhead. To
approach this problem, we explore the space of optimiza-
tions and architectural supports for two mechanisms:

• a one-way notification, that enables threads to wait
until a particular event occurs. For instance, a pro-
ducer thread can notify a worker that a new task has
to be computed. Such mechanism can support oper-
ations to notify either a single or all threads that are
waiting on the same condition;

• a locking mechanism, that serializes the execution of
a critical section of code. Alternative implementations
can be compared against the impact on the memory
and caching sub-system, the number of invalidation
messages, and the fairness of the lock acquisition.

In the next section we describe the benchmark appli-
cations that we have used to compare different implemen-
tations of the aforementioned mechanisms.

2.1 Benchmark applications

We present two synthetic benchmark applications. The for-
mer application has been designed to assess one-way noti-
fication; a similar test is also used in [1] for analogous pur-
poses. The latter one targets locking mechanisms, and its
design has been inspired by [5]. To compare different im-
plementations, we define a set of meaningful metrics and
we collect the corresponding measurements.

First benchmark. A one-way notification mechanism
(generally named sync var in this paper) allows the in-
volved threads to perform the following set of operations:

• a wait primitive is used to make the calling thread
waiting for a given event. Since the scope of this
paper is to discuss fine-grained synchronization tech-
niques, we are interested in lightweight implementa-
tions based on busy-waiting, i.e. the waiting thread
is not suspended, but it continuously or periodically
checks the wait condition;

• a notify primitive is used to signal one of the waiting
thread that it can continue the execution. It is also
possible to wake up all threads waiting for the same
condition, by executing a collective notifyAll.

The first benchmark consists in a notifier thread that
executes the following sequence of actions: (i) a compu-
tation that involves a set of arithmetic operations over the
elements of an array; (ii) a notify call to wake up a thread
waiting on the sync var. The waiting thread performs a wait
primitive on the sync var. This test is repeated for a fixed
number of iterations N . For this benchmark we define the
following metrics:

• the mean wakeup time Twake, i.e. the average time to
advise a thread that an event occurred, starting from
the instant in which the notify primitive is executed
by a peer thread. This metric is extremely important
to assess the responsiveness of the mechanism;

• the mean call time Tcall, i.e. the average time to exe-
cute the notify primitive by the calling thread;

• the mean completion time TC , i.e. the total elapsed
time to complete the benchmark;

As an alternative yet similar experiment, we analyze
a second scenario wherein a group of nw threads is waiting
for an event and is collectively notified by a notifier thread.
In this case, we introduce another important metric:

• the mean wakeup-all time Twake-all(nw), i.e. the
average time to advise all nw threads that an event
occurred, starting from the instant in which the
notifyAll primitive is executed by a peer thread.

The crucial part of this mechanism is the busy-waiting
phase. The responsiveness of a specific implementation can
be evaluated according to the Twake metric. Implementa-
tions with lower Twake (or Twake-all(nw)) are usually pre-
ferred: after the notification, the awaken thread needs to re-
sume the execution as soon as possible. On the other hand,
there are also subtle situations in which faster implemen-
tations are not always the most effective solution. Think
about two threads executed on the same core (i.e. mapped
onto distinct physical contexts, as in a SMT-enabled ar-
chitecture). Besides considering Twake, it is important to
evaluate how much the waiting thread consumes the core
resources during the busy-waiting phase (e.g. pipe stages,
instructions and operands queues, and register renaming
logic), degrading the performance of the peer thread in ex-
ecution on the same core. In this case, the completion time
TC becomes a key metric to consider as well.

Second benchmark. The second benchmark aims to
compare different implementations of locking. In the lit-
erature there is a large number of studies comparing sev-
eral locking implementations targeting large-scale multi-
processors (e.g. [8, 2, 9, 7]). In this paper we investigate
the potential of advanced hardware facilities to implement
novel, lightweight locking mechanisms.

The benchmark consists in a pool of P threads that
attempt to acquire a lock, do a fixed amount of work sim-
ulating a critical section of length C, and release the lock.
The number of lock acquisitions N is maintained as the
number of threads increases. We are interested in the ex-
ecution time of the experiment and in the lock overhead,
captured by the following metric:

• the mean contention time Tlock, i.e. a measure of the
contention cost, defined as follows:

Tlock =
Execution Time

N
− C

Also for the locking mechanism the busy-waiting phase is
extremely critical: as demonstrated in [8, 7], aggressive
techniques generate a huge number of cache invalidation
messages. Other techniques try to reach a desired trade-
off between the mechanism responsiveness and the induced
network traffic on the interconnection structure.

3 Test-bed Architectures

Our experiments will be executed on three distinct on-chip
architectures.

Intel Xeon. Our Intel platform is composed of two Xeon
E5-2650 (the details of a single CPU are depicted in Fig-
ure 1). Each CPU exploits the Sandy Bridge technology
and consists in a multi-core architecture featuring 8 cores
operating at 2 Ghz clock rate. Each core enables the ex-
ecution of up to 2 SMT contexts (Hyper-Threading) and
has access to a private L1 and L2 cache of size 32 KB and
256 KB. A L3 cache of size 20 MB is shared among the
eight cores through a scalable ring interconnect. The two
CPUs use the QuickPath structure to communicate and im-
plement a unique shared-memory architecture.

Shared L3 Cache
scalable ring structure

L2
L1

Context
Context

Core 0

L2
L1

Context
Context

Core 1

L2
L1

Context
Context

Core 2

L2
L1

Context
Context

Core 3

L2
L1

Context
Context

Core 4

L2
L1

Context
Context

Core 5

L2
L1

Context
Context

Core 6

L2
L1

Context
Context

Core 7

4-channels
DDR3

Controller

QuickPath
Interconnect

Figure 1: Overview of an Intel Xeon E5-2650.

In this architecture the analysis of a mechanism is ob-
viously affected by the actual scope of the synchronization,
that may occur among two threads of the same core (SMT-
case), on different cores of the same CPU (intra-CPU), or
even on different CPUs (inter-CPU).

Tilera Tile64Pro. Tile64Pro is a NUMA network pro-
cessor consisting of 64 cores (also called tiles) having ac-
cess to a shared main memory among four distinct mem-
ory controllers as shown in Figure 2. Each core is a 32-bit
VLIW processor operating at 866 Mhz clock rate. It pro-
vides a single-thread context without floating-point unit, a
private L1 and L2 cache of size 16 KB and 64 KB, and a
switch unit to interface the on-chip network.

The architecture implements a directory-based cache-
coherence protocol. Each cache line may be allocated in
several caches, but it is associated with a single home core
which maintains its original copy and the directory infor-
mation. This technique aims at implementing a logical dis-

tributed L3 cache among the 64 cores of the architecture,
i.e. miss-after-read cache accesses are handled by asking
the home core for the desired cache line, rather than by is-
suing requests directly to the main memory.

DDR2 controller DDR2 controller

DDR2 controller DDR2 controller

L1

L2
cache

P

processor

Tile

UDN

Switch
Memory-
Caches UDN

Memory-
Caches

Figure 2: Tile64Pro Network Processor.

One of the most interesting features of this architec-
ture is the degree of freedom left to the programmer in
terms of caching strategies. When a data structure is dy-
namically allocated, the programmer can specify different
caching techniques, e.g.: (i) specify the home core to host
the directory information of all the cache lines of that data
structure; (ii) disable the local caching (all read/write re-
quests are issued directly to the home core); (iii) com-
pletely disable the cache (accesses become single-word
main memory accesses); (iv) disable the automatic coher-
ence (i.e. for incoherent memory areas, the coherence
should be manually provided by the programmer through
flush and invalidation primitives).

The Tile64Pro uses some mesh networks to intercon-
nect the various node components, each one carrying out
a specific purpose. One of this networks, called User Dy-
namic Network (UDN), may be exploited at the user-level
to perform a fast exchange of small messages (up to 20
words) between cores, through send and receive primitives
on hardware-level queues associated to the cores.

In Section 4 we will see how this architectural feature
paves the way to interesting implementations of the syn-
chronization mechanisms.

Broadcom XLP. The Broadcom XLP 432 is a SMP net-
work processor consisting of 8 identical cores. Figure 3
illustrates the main components of the architecture. Each
core is a MIPS 64-bit out-of-order processor operating at
1 Ghz clock rate and featuring a dedicated floating-point
unit. Each processor enables up to four SMT contexts
(called NxCPU) and has access to a private L1 and L2
cache of size 32 KB and 512 KB. Moreover, a 8 MB L3
cache is shared among the 8 cores. A small set of co-
processors (called engines) is provided to accelerate typical
networking functionalities (e.g. regular expressions, com-
pression, security and packet inspection).

A remarkable feature of this architecture is the
Fast Messaging Network (FMN), an interconnection sub-
system that enables a unified approach to the communi-

Memory Interconnection Network

L3 CacheDDR3
controller

Engine . . .

L2
L1

NxCPU
NxCPU
NxCPU
NxCPU

L2
L1

NxCPU
NxCPU
NxCPU
NxCPU

L2
L1

NxCPU
NxCPU
NxCPU
NxCPU

L2
L1

NxCPU
NxCPU
NxCPU
NxCPU

L2
L1

NxCPU
NxCPU
NxCPU
NxCPU

L2
L1

NxCPU
NxCPU
NxCPU
NxCPU

L2
L1

NxCPU
NxCPU
NxCPU
NxCPU

L2
L1

NxCPU
NxCPU
NxCPU
NxCPU

DDR3
controller

DDR3
controller

DDR3
controller

Engine Engine

Fast Messaging Network (FMN)

Figure 3: Broadcom XLP 432 Network Processor.

cation between NxCPUs and the co-processors. From an
abstract viewpoint, the network resembles the Tilera UDN:
it provides an alternative user-level communication mecha-
nism (instead of using shared variables). The rationale pro-
posed in the Broadcom architecture (and similarly on other
network processors like Tilera) is that under certain con-
ditions the synchronization efficiency can be improved by
a methodical use of the available on-chip interconnection
networks.

The Broadcom XLP architecture is an interesting
case. In fact, albeit it owns the typical features of other
network processors (e.g. the presence of co-processors
and dedicated interconnection sub-systems), the Broad-
com chip shares peculiar aspects of traditional off-the-shelf
multi-/many-core components, such as a complex memory
hierarchy composed of several cache levels (dedicated or
shared among the architectural cores).

4 Experiments

In this section we discuss the implementations and the ex-
periments on the three architectures described in Section 3.
We highlight that we are not looking for a mere compari-
son between the three architectures, which is certainly un-
fair due to their completely different nature. However, we
claim that such experiments are important to understand the
rationale behind the different technological choices and the
physical facilities provided on such platforms.

4.1 One-way notification

The general implementation of a synch var consists in a
data structure composed of the following fields:

• a circular buffer of identifiers that represent the cur-
rently waiting threads. Since we are interested in
the design of run-time supports for parallel programs,
the cores of a parallel architecture are not multipro-
grammed, i.e. a parallel computation is executed ac-
cording to a parallelism degree that implies the allo-
cation of n threads on n different cores (or physical
contexts on a SMT-enabled architecture). Therefore,

each thread identifier corresponds to a specific physi-
cal core/context on the underlying architecture;

• a set of additional variables that indicate: the head and
the tail fields of the circular buffer, and the actual and
the maximum number of waiting threads.

The notify, notifyAll and the wait primitives cause the
modification of the data structure. A synch var is always
used inside critical sections protected by a lock.

Intel Xeon. A ”careful” busy-waiting implementation is
extremely important for this mechanism. We tested three
different techniques for this architecture. The first two rely
on a classic spin-loop mechanism. The circular buffer is
composed of cache-aligned boolean flags, each of them as-
sociated to one waiting thread. In the wait primitive, the
calling thread chooses one of the free flags, sets its value to
false and cyclically tests it until it becomes true. The notify
primitive sets to true the flag associated to the first waiting
thread, in order to wake it up. The second implementation
is obtained as a slight modification of the first one, by in-
serting the pause instruction in the waiting loop. This is
an assembler instruction [6] that introduces a light delay in
the loop and de-pipelines its execution, preventing it from
aggressively consume processor resources.

The third version uses the monitor and mwait as-
sembler instructions, which have been already investigated
in [1]. These instructions can be used as an alternative way
to perform a busy-waiting on the flag associated to the wait-
ing thread. The monitor instruction takes a memory ad-
dress and supervises the referenced location for the occur-
rence of a write activity. The mwait instruction places the
calling processor in a ”performance-optimized” state until
either a write to the region supervised by monitor oc-
curs or a generic interrupt reaches the processor [6]. On
a hyper-threaded processor the mwait causes a thread to
relinquish all core resources that are shared with the other
contexts. In addition, it is worth to notice that since mwait
may return even in presence of a hardware interrupt, the
monitor/mwait instructions need to be executed in a
loop to ensure the content of the monitored location ac-
tually changed. Besides the basic semantics of these two
instructions, the Intel’s documentation [6] does not give
sufficient details about the effects and cost of executing
monitor/mwait instructions. However, when it is pos-
sible we will try to conjecture the reasons behind the col-
lected experimental results.

At the present moment monitor/mwait instruc-
tions are restricted to be executed solely in kernel space.
Thereby, in order to implement a sync var mechanism
based on these two instructions, there are two possible so-
lutions:

• extend the Linux Kernel with a pair of system calls
that wrap the privileged instructions;

• execute the whole program in kernel space.

0.01

0.1

2

16

128

1 5 10 15 20 25 31

Tw
ak
e-
al
l(
us
ec
.)

Number of waiting threads

NotifyAll experiment on Intel XEON.

Spin-Loop.
Spin-Loop + Pause.

Monitor/Mwait.

(a) Intel Xeon.

0.1

0.25

0.5

1

2

4

8

16

1 10 20 30 40 50 60

Tw
ak
e-
al
l(
us
ec
.)

Number of waiting thread

NotifyAll experiment on Tilera Tile64Pro.

Spin-Loop.
UDN.

(b) Tilera Tile64Pro.

0.1

0.2

0.5

1

2

4

8

16

32

64

1 5 10 15 20 27

Tw
ak
e-
al
l(
us
ec
.)

Number of waiting thread

NotifyAll experiment on Broadcom XLP.

Spin-Loop.
FMN.

FMN + MsgWait.

(c) Broadcom XLP.

Figure 4: NotifyAll experiments on the three test-bed architectures.

Unlike the authors of [1], we chose the second option be-
cause we feel monitor/mwait instructions will be re-
leased in user-space in the next future. To accomplish this,
we used a patched version of the Linux Kernel that allows
us to use these instructions without specific system calls
(see Kernel Mode Linux [10]).

Tables 1, 2 and 3 show the results of the first bench-
mark with one notifier thread and one waiting thread (τ
denotes the clock cycle).

Version Intra-Core Inter-Core Inter-CPU

Spin Loop 169 τ 460 τ 4197 τ
Spin+Pause 174 τ 605 τ 3255 τ

Monitor/Mwait 1052 τ 1069 τ 2339 τ

Table 1: Notify experiments on Intel: Twake.

The spin-loop implementation provides the best
Twake when the two threads are allocated on the same core
or the same CPU, whereas the variant with the pause in-
struction makes slightly worse the wakeup time. This is
an expected outcome, because spin-loop allows threads to
react immediately to the event triggered by a notify primi-
tive. The wakeup latency is smaller in the intra-core case
because the notification can be completed within the L1
cache, while in the inter-core case the flag modification
passes through the nearest shared level of cache (L3) to
be visible to the notified thread. The monitor/mwait
have to pay an extra-cost for re-obtaining the compu-
tational resources dynamically relinquished while in the
performance-optimized state (e.g. instruction schedulers
and reservation stations). In the intra-core case the wakeup
latency is one order of magnitude greater than using spin-
loops (in the inter-core case we have a 43% increase).
However, when threads are allocated on different CPUs the
monitor/mwait give strikingly better results. This is
probably due to the not clear behavior of the QuickPath in-
terconnection, though further investigations are still needed
to elucidate the precise nature of this result.

The completion time results demonstrate that the
spin-loop implementation is the most aggressive in term of

Version Intra-Core Inter-Core Inter-CPU

Spin Loop 2359 ms 1703 ms 1715 ms
Spin+Pause 1872 ms 1708 ms 1712 ms

Monitor/Mwait 1704 ms 1711 ms 1717 ms

Table 2: Notify experiments on Intel: completion time.

resource consumption. In fact, in the intra-core case it ex-
hibits the worst completion time: this is due to the fact that
in modern out-of-order processors a spin loop is unrolled
multiple times (since no data dependencies are found) and
the branch is easily predicted. Hence, the spinning thread,
though not performing useful work, fills the pipeline with
a significant number of instructions. These end up interfer-
ing with other threads in execution on the same core, caus-
ing an overall slow down. The use of the pause instruc-
tion mitigates the problem, but does not solve it completely.
The best solution is represented by the implementation that
utilizes the monitor/mwait instructions.

Version Intra-Core Inter-Core Inter-CPU

Spin Loop 42 τ 69 τ 472 τ
Spin+Pause 36 τ 63 τ 437 τ

Monitor/Mwait 46 τ 62 τ 98 τ

Table 3: Notify experiments on Intel: Tcall.

In terms of mean call time, the three solutions are
comparable in the intra- and inter-core cases, while the
monitor/mwait implementation performs surprisingly
better in the inter-CPU case. As previously mentioned, the
scarce knowledge about the QuickPath network does not
allow us to further explain this fact.

The same benchmark has been repeated with a para-
metric set of waiting threads collectively notified by a sin-
gle notifyAll call. Up to 15 waiting threads the affinity is
set such that only one context is used for all the cores of the
architecture. With more than 15 waiting threads, we use the
second context starting from the first core (the one in which

0

500

1000

1500

2000

2500

3000

3500

4000

1 5 10 15 20 25 31

C
om

pl
et
io
n
tim
e
(m
se
c.
)

Number of waiting thread

Completion time of the NotifyAll experiment on Intel XEON.

Spin-Loop.
Spin-Loop + Pause.

Monitor/Mwait.

Figure 5: Completion time TC of the NotifyAll experiment
on Intel.

the notifier thread is executed). The results are shown in
Figure 4a. Although the monitor/mwait implementa-
tion is the best one in terms of Twake between two threads
on different CPUs (Table 1), the notifyAll implementation
based on these two instructions provides a greater Twake-all
compared to the spin-loop alternatives. Regarding the com-
pletion time TC(nw), the results exposed in Figure 5 reflect
the ones of the first experiment. For spin-loop based mech-
anisms the TC(nw) shows a significant, fixed increment for
nw > 15, i.e. when one waiting thread is allocated on
the same physical core of the notifier thread. In the same
condition, the monitor/mwait implementation gives a
unique and not questionable advantage, being capable of
maintaining a constant completion time compared to the
other solutions.

Tile64Pro. We compare two implementations of the
synch var on the Tile64Pro. The first one implements the
busy-waiting through a classic spin-loop, as the one de-
scribed in the previous section for the Intel Xeon. The sec-
ond one proposes the exploitation of the UDN network.

Instead of using shared flags, in the UDN implemen-
tation we use the explicit communication between cores.
The synch var consists in a circular buffer of Dynamic-
Headers. A DynamicHeader is a data structure of 4 bytes
that represents the coordinates of a core on the mesh net-
work. During the wait primitive, the calling thread inserts a
DynamicHeader representing its core on the circular buffer,
and waits for the reception of a special message by execut-
ing the udn_receive() call. The calling thread is still
in execution, but it waits for the reception of a message
from one of its four hardware-level input queues (the queue
identifier is passed as an argument to the wait). During a
notify operation, the notifier extracts the DynamicHeader
of the first waiting thread and executes the udn_send()
call. The procedure transmits a single-word message to one
of the four message queue of the destination core.

Table 4 and Table 5 show the experimental results.
On the Tilera architecture the mean wakeup time is influ-
enced by the distance between the notifier and the awaken

Allocation Policy Twake (cycles) Tcall (cycles)

DEFAULT 216 τ 171 τ
NOTIFIER 171 τ 132 τ

NOLOCAL_CACHE 324 τ 311 τ
NO_COHERENCE 495 τ 559 τ

NO_CACHE 605 τ 599 τ

Table 4: Notify experiments on Tile64Pro: Spin-Loop im-
plementation.

thread on the mesh network. Therefore we execute the ex-
periment several times considering different allocation of
the two threads and providing the average measurements
of the wakeup time and the call time. Moreover, in order
to exploit the flexibility of the Tilera architecture, we study
the mechanism by considering the following caching poli-
cies of the synch var data structure:

• DEFAULT: the home tiles of the synch var cache lines
are distributed according to a default hashing strategy;

• NOTIFIER: the home tile of the synch var cache lines
is the core that hosts the notifier thread (we assume
that the notifier is fixed throughout the execution);

• NOLOCAL_CACHE: all the accesses to any synch var
cache line are routed to the corresponding home tile,
chosen according to the DEFAULT policy without tak-
ing an own copy on the local L1 and L2 caches;

• NO_COHERENCE: caching of the synch var is en-
abled without the automatic maintenance of the co-
herence. Coherence is explicitly provided by the pro-
grammer through the execution of flushing and inval-
idation operations;

• NO_CACHE: the caching of the synch var is com-
pletely disabled. All the accesses to the data structure
are routed to the main memory.

The best results (summarized in Table 4 and 5) in
terms of Twake and Tcall are obtained with the NOTIFIER
policy. In this way all memory accesses of a notify call are
executed by the notifier thread on its local caches, without
any remote access to update the home copy and the direc-
tory information. This is not the case when the home tile is
a third party between the notifier and the currently awaken
thread (as in the DEFAULT case). All other policies corre-
spond to a slower implementation of the mechanism. The
spin-loop implementation with the NO_CACHE policy im-
plies a Twake and a Tcall four times higher than with the
NOTIFIER policy.

From Table 4 and 5 emerges that the UDN implemen-
tation is in general faster than the classic spin-loop. The
UDN network provides an efficient way to exchange small
messages between cores without resorting on any level of
shared memory. Moreover, instead of continuously looping

Allocation Policy Twake (cycles) Tcall (cycles)

DEFAULT 148 τ 120 τ
NOTIFIER 98 τ 88 τ

NOLOCAL_CACHE 185 τ 194 τ
NO_COHERENCE 190 τ 267 τ

NO_CACHE 283 τ 361 τ

Table 5: Notify experiments on Tile64Pro: UDN imple-
mentation.

on a shared flag, the udn_receive()is a graceful way to
wait for an event, without producing additional remote ac-
cesses during the waiting phase. This is the reason because
the NOLOCAL_CACHE, NO_COHERENCE and NO_CACHE
policies are in general faster in the UDN implementation
w.r.t the spin-loop case.

In the second experiment we investigate the scalabil-
ity of the mechanism: at each iteration the notifier thread
performs a notifyAll instead of a single notify. We limit
the maximum number of waiting threads to 60, since in the
actual configuration three cores are outside our data-plane
and they are dedicated to operating system processes and
network management activities. The results are shown in
Figure 4b. As we can see the two implementations pro-
vide very similar results up to 30 waiting threads. For a
greater number of threads the UDN version outperforms
the spin-loop implementation. In fact, besides the cache
line of the head and tail fields, the spin-loop version re-
quires to modify a large set of flags allocated on distinct
cache lines, causing a non-negligible coherence traffic on
the mesh to update the single copies of the flags. With the
UDN approach the notifyAll can be implemented defini-
tively better, exploiting on a hardware facility that provides
an efficient way to exchange single-word messages instead
of whole cache lines as in the spin-loop case.

Broadcom XLP. Similarly to the Tilera architecture, on
the Broadcom XLP we compare the spin-loop implemen-
tation and a version that exploits the FMN interconnection
structure between NxCPUs.

The FMN implementation is very similar to the UDN
version on the Tile64Pro. A circular buffer of message
headers is provided in order to identify the NxCPUs of the
currently waiting threads. During a wait operation, the call-
ing thread inserts the header of its NxCPU on the circular
buffer. The identifier of the first thread to be awaken is
extracted during a notify call.

The FMN network accepts two kinds of messages
from an agent (i.e. a NxCPU or an engine): push and
pop requests. An agent can send a message by send-
ing a push request to a push queue coupled with the spe-
cific destination agent. Pop requests are a way to im-
plement a decoupled communication: an agent can is-
sue a push request to send a message to a pop queue.
Pop requests are used to retrieve messages from a pop

queue. In order to implement the synch var mechanism,
we exploit send and receive operations over push queues.
From a programming interface viewpoint, the FMN prim-
itives provide a non-blocking way to interact with the in-
terconnection structure. xlp_message_send() and
xlp_message_receive() are non-blocking opera-
tions: e.g. a receive returns 0 if a message has been read or
an error value if there is no message in the selected queue.

In the FMN case we consider two implementa-
tions. In the first one, the notifier thread performs a
xlp_message_send() using the first header extracted
from the synch var. The wait primitive consists in the in-
sertion of the header in the circular buffer and the execu-
tion of the xlp_message_receive(). Due to the non-
blocking semantics, the busy-waiting is implemented by
using the receive operation inside a while loop, in which we
test the result of the receive (the loop ends when a message
has been received). This waiting phase can be optimized as
described in the following pseudo-code:

while(xlp_message_receive(...)==-1){
xlp_message_wait(...);

}

Inside the loop phase we can execute the
xlp_message_wait() call. The semantics of this call
is to force the calling thread to release all the processor
resources until an event occurs, such that the presence of a
new message or the occurrence of a hardware interrupt. We
compare different FMN implementations of the synch var:
the first one does not use the xlp_message_wait(),
the second one (denoted by FMN+MsgWait) exploits this
optimization.

Version Intra-Core Inter-Core

Spin Loop 168 τ 386 τ
FMN 295 τ 399 τ

FMN+MsgWait 269 τ 387 τ

Table 6: Notify experiments on Broadcom XLP: Twake.

The comparison between the spin-loop and the FMN
implementations is described in Table 6 for the Twake and
in Table 7 for the Tcall. We consider the intra-core case,
in which the notifier and the awaken threads are executed
on different thread contexts of the same core, and the inter-
core case in which the two threads are executed on differ-
ent cores. As we can observe, while for the inter-core case
the three implementations behave similarly, the spin-loop
version provides the best Twake and Tcall results for syn-
chronizing two threads on the same core. In fact with the
spin-loop technique the shared flag is accessed by the two
threads on the same L1 cache, with a very small latency
than accessing a remote push queue on the FMN network.

Figure 4c depicts the notifyAll results. For a similar
reason to the Tilera experiments, we limit the number of
waiting threads to 27, since one core of the architecture is

Version Intra-Core Inter-Core

Spin Loop 100 τ 195 τ
FMN 193 τ 304 τ

FMN+MsgWait 190 τ 309 τ

Table 7: Notify experiments on Broadcom XLP: Tcall.

dedicated to operating system processes and interrupt han-
dling. Up to 7 waiting threads the three implementations
provide very similar results in terms of Twake-all. By in-
creasing the number of threads, the spin-loop implementa-
tion is still the best one (the FMN+MsgWait optimization
achieves slightly better results compared to the basic FMN
version). These results are diametrically different than the
Tile64Pro experiments. The two network processors are
extremely different, both in terms of core technology (sev-
eral SMT contexts on the Broadcom XLP and no SMT sup-
port on the Tile64Pro) and memory hierarchy (large shared
levels of cache on Broadcom XLP whereas Tilera features
very small local caches). Moreover, the on-chip network
topology is completely different, i.e. a mesh network on
the UDN case and a ring-based topology for the FMN. This
is a general reason for the different behavior of our imple-
mentations: shared flags are by far the most responsive way
on the Broadcom XLP, especially when we need to syn-
chronize a large number of threads. This means that “un-
der load” the response time of the Memory Interconnection
Network (Figure 3) is better than the message latency pro-
vided by the FMN network.

0

3000

6000

9000

12000

15000

18000

1 5 10 15 20 27

C
om

pl
et
io
n
tim

e
(m

se
c.
)

Number of waiting thread

Completion time of the NotifyAll experiment on Broadcom XLP.

Spin-Loop.
FMN.

FMN + MsgWait.

Figure 6: Completion time TC of the NotifyAll experiment
on Broadcom XLP.

As usual, we must be care that multiple thread con-
texts of the same core share processor resources. A highly
responsive busy-waiting technique might be ineffective if
the waiting thread makes slower the execution of other
threads by consuming processor resources unnecessarily.

Let us consider the results shown in Figure 6. We
measure the completion time of the notifyAll experiment.
The notifier thread is executed on the first context of the
first core. The waiting threads are mapped onto the cores
in a round-robin fashion. As we can observe the comple-

tion time abruptly increases in correspondence to 7, 14 and
21 waiting threads. This is due to the mapping strategy
onto the SMT contexts. From 7 to 13 threads, one wait-
ing thread is executed on the same core of the notifier.
From 14 to 20 threads, two waiting threads are executed
on two contexts of the same core of the notifier. Finally,
from 21 to 27 waiting threads, all the contexts of the first
core are completely used. As we can notice, the best re-
sults in terms of completion time are achieved by using
the FMN+MsgWait version. The completion time does
not increase independently from the number of threads
executed on the same core of the notifier thread. This
demonstrates that a waiting phase implemented through a
loop of xlp_message_receive() operations and the
xlp_message_wait() optimization represents a good
trade-off between: (i) mechanism responsiveness (however
lower than the spin-loop case), and (ii) “lightness” of the
waiting technique (spin-loop is a too aggressive and not
suitable to synchronize threads within the same core).

4.2 Locking mechanisms

The experiments of a generic one-way notification mecha-
nism gave us important insights about efficient ways to per-
form the wake up of a waiting thread. Careful busy-waiting
techniques are also important for the design of locking
mechanisms. Naive implementations tend to produce a
large memory and interconnect traffic [8], introducing bot-
tlenecks that become more pronounced with the number of
threads that contend for the lock acquisition. In this section
we apply the considerations emerged from Section 4.1 in
order to design a locking mechanism such that:

• it provides a reasonable latency to acquire the lock in
absence of contention;

• it is fair, i.e. each thread succeeds in acquiring the
lock in a finite time interval;

• it scales with the number of threads that simultane-
ously concur to acquire the lock;

• the used busy-waiting technique represents an accept-
able trade-off between responsiveness and resource
consumption, i.e. it can be used to protect a criti-
cal section from the simultaneous access of multiple
threads executed on different cores or executed on dis-
tinct thread contexts of the same core.

The mechanism that we are introducing is an exten-
sion of the Mellor-Crummey-Scott lock (shortly MCS) [8].
MCS lock is a well-known scalable approach based on a
lock-free queue that ensures the FIFO ordering of the lock
reception. It requires two atomic instructions to preserve
the correctness of the queue access: a swap operation that
atomically swaps the content of two memory locations, and
a compare-and-swap instruction that atomically performs a
comparison and a swap instruction.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 5 10 15 20 25 31

Tl
oc
k
(u
se
c.
)

Number of threads

Comparison of Lock implementations on Intel XEON.

Ticket Lock (0 usec).
Ticket Lock (5 usec).
MCS Lock (0 usec).

MCS Lock (5 usec).
MCS MW (0 usec).
MCS MW (5 usec).

(a) Intel Xeon.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

1 5 10 15 20 25 30 35 40 45 50 55 60

Tl
oc
k
(u
se
c.
)

Number of threads

Comparison of Lock implementations on Tilera Tile64Pro.

Ticket Lock (0 usec).
Ticket Lock (5 usec).

UDN Lock (0 usec).
UDN Lock (5 usec).

(b) Tilera Tile64Pro.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 5 10 15 20 28

Tl
oc

k
(u

se
c.

)

Number of threads

Comparison of Lock implementations on Broadcom XLP.

Ticket Lock (0 usec).
Ticket Lock (5 usec).

FMN Lock (0 usec).
FMN Lock (5 usec).

(c) Broadcom XLP.

Figure 7: Locking experiments on the three test-bed architectures.

In the MCS algorithm the lock and unlock operations
require an additional structure (called record) to be passed
in addition to the queue address. The record contains a
locally-accessible flag and a pointer to the next record. To
acquire the lock, the thread performs the atomic swap be-
tween the tail field and a pointer to its record. If the old tail
was NULL, the queue was empty and the thread acquires
the lock. Otherwise the calling thread links its record to
the next one and performs a busy-waiting on its local flag.
To release the lock, the holding thread resets the flag of its
successor. If no successor exists, the tail variable is set to
NULL with the compare-and-swap instruction.

In the traditional version of the MCS lock, the busy-
waiting phase is performed by spinning on a local flag.
However the waiting phase can be implemented in differ-
ent ways, by resorting on the techniques studied in Sec-
tion 4.1. We describe the results of the locking benchmark
presented in Section 2.1 on the three test-bed architectures.
In the benchmark we consider critical sections of differ-
ent lengths, i.e. 0 and 5 µsec, in order to evaluate the
lock behavior with different contention levels. In addition,
we compare the overhead and the scalability of different
MCS implementations with the classic fair technique called
Ticket Lock [2], in which two globally-accessible counters
are properly used to serialize the access to the critical sec-
tion.

Intel Xeon. For the Intel Xeon, an additional imple-
mentation of the MCS lock can be obtained perform-
ing the busy-waiting on the shared flag by means of the
monitor/mwait instructions. We have compared the
traditional ticket lock and the two versions of the MCS
lock; the results are collected in Figure 7a. Apart from an
increase on Tlock obtained when we start to allocate thread
on different CPUs (when we use more than 8 threads),
the ticket lock and the MCS lock with traditional spin-
loops exhibit a constant overhead. However, the Tlock
measured with the MCS lock is lower than the one ob-
tained with the ticket lock. This is due the classic ad-
vantage of MCS w.r.t other locking techniques [8]: spin-
ning on locally-accessible flags is extremely convenient in
terms of the inherent traffic on the interconnection struc-

ture to maintain the coherence of the flag lines. The Tlock
values obtained by the MCS lock implemented using the
monitor/mwait instructions are considerably higher,
reflecting the result obtained in the first benchmark. How-
ever, such implementation should be taken into account in
programs that heavily exploit Hyper-Threading, given that
traditional busy-waiting techniques based on spin-loops are
very resource consuming, as demonstrated in Section 4.1.

Tile64Pro. On the Tile64Pro we propose a MCS imple-
mentation that exploits the UDN network. Each record
stores a DynamicHeader. During the lock acquisition, the
busy-waiting is performed through a UDN_receive()
operation, i.e. the thread waits until a special message
is received. During the lock release, the holding thread
passes the lock to its successor by reading the Dynamic-
Header from the corresponding record, and transmitting a
one-word message with the UDN_send() operation. This
technique produces a small network traffic also in presence
of a large number of threads that contend for the lock (e.g.
no invalidation message is produced to pass the lock to the
successor thread). Atomic compare-and-swap and swap
operations are emulated through the primitives available in
the Tilera Multicore Library (TMC) [4].

The results are shown in Figure 7b. We have com-
pared our MCS lock with the ticket lock version available
on the TMC library. With a critical section of 5 µsec,
Tlock remains constant by increasing the number of threads.
However, with the MCS lock Tlock is half the contention
time measured with the ticket lock. The experiments with
a higher level of contention (i.e. a critical section of 0 µsec)
emphasize the effectiveness of our implementation. For the
ticket lock, Tlock slowly grows with the number of threads.
On the other hand the MCS lock features a near-constant
behavior, with a minimum peak near to 33 threads that re-
quires a further investigation in the future.

Broadcom XLP. On the Broadcom XLP the MCS
lock implementation is similar to the Tile64Pro. Each
record stores a Header that identifies a specific NxCPU.
The busy-waiting phase is implemented using a while-

loop in which we test the result of the non-blocking
xlp_message_receive(), and we release the proces-
sor resources through the xlp_message_wait() (see
Section 4.1). The holding thread passes the lock by execut-
ing a xlp_message_send() to the NxCPU addressed
by the header of the next record. Similarly to the Tile64Pro,
the exploitation of the FMN network avoids to generate ad-
ditional coherence traffic to pass the lock to the next thread,
leading to a fast and efficient notification between NxC-
PUs. The atomic instructions required by the MCS algo-
rithm have been emulated through the primitives available
in the HyperExec Broadcom library [3].

From Figure 7c, the scalability of our MCS imple-
mentation is evident. For both the experiments with critical
sections of 5 and 0 µsec, Tlock remains constant by increas-
ing the number of threads. A different behavior is measured
with the classic ticket lock version, in which the contention
time increases with the number of threads (especially with
a higher level of contention - i.e. with a critical section of
0 µsec). Moreover, as previously demonstrated, our MCS
lock is a suitable alternative to synchronize threads exe-
cuted on the four contexts of the same core.

5 Final discussion and Conclusions

In this paper, we studied two synchronization mechanisms:
a one-way notification and a locking mechanism. We
pointed out the importance of the busy-waiting phase to
realize implementations that represent a proper trade-off
between responsiveness and resource consumption. We
showed how to exploit hardware facilities of three test-bed
platforms to obtain alternative implementations.

For what concerns one-way notification, we high-
lighted the importance of Twake as a measure of the mech-
anism responsiveness. On the Intel platform we showed
that a plain spin-loop exhibits the best Twake. How-
ever, in case multiple SMT contexts are used within the
same core, a solution based upon the pause or (even
better) monitor/mwait instructions is preferable for a
smarter usage of the core resources. Unfortunately, the
monitor/mwait instructions can be currently used in
kernel mode only. A busy-waiting technique based upon
a direct exchange of firmware messages was implemented
on the Tile64Pro and the Broadcom XLP network proces-
sors. In the former case, a very low Twake and a good
scalability were obtained using the UDN network and a
proper caching policy. For the latter case, despite of val-
ues of Twake surprisingly higher than spin-loops, the FMN
network is the best solution when the notification involves
threads mapped onto the four SMT contexts of each core.

The results about different busy-waiting implementa-
tions were used to enhance a well-known locking algorithm
(MCS lock). The busy-waiting phase can be performed
using monitor/mwait instructions on Intel or, on net-
work processors, their core-to-core networks. These MCS
variants were compared with other traditional locking algo-
rithms (e.g. notably a classic Ticket Lock). The results on

the Intel platform confirm the high scalability of the MCS
algorithm. However, the monitor/mwait instructions,
introduced to hopefully lighten the busy-waiting cost, turn
out to be ineffective until multiple SMT contexts are en-
abled. The same kind of experiments were repeated on the
two network processors. Here, the alternative implementa-
tions of MCS lock exhibit attractive performance.

In the future we plan to extend this work by study-
ing the implications of our results on other synchronization
mechanisms, such as barriers and lock-free single-producer
single-consumer queues.

References

[1] Nikos Anastopoulos and Nectarios Koziris. Facilitat-
ing efficient synchronization of asymmetric threads
on hyper-threaded processors. In 22nd IEEE Inter-
national Symposium on Parallel and Distributed Pro-
cessing, IPDPS 2008, Miami, Florida USA, April 14-
18, 2008, pages 1–8. IEEE, 2008.

[2] T. E. Anderson. The performance of spin lock al-
ternatives for shared-memory multiprocessors. IEEE
Trans. Parallel Distrib. Syst., 1(1):6–16, 1990.

[3] BroadCom/Netlogic. Netlogic hyperexec,” 2012,
documentation from netlogic microsystems website
http://www.netlogicmicro.com/.

[4] Tilera Corporation. Tilera application reference
guide, 2012.

[5] David Culler, J.P. Singh, and Anoop Gupta. Paral-
lel Computer Architecture: A Hardware/Software Ap-
proach. Morgan Kaufmann, 1st edition, 1998.

[6] Intel Corporation. Intel R© 64 and IA-32 Architectures
Software Developer’s Manual, 2012.

[7] Shaoshan Liu and Jean-Luc Gaudiot. Synchroniza-
tion mechanisms on modern multi-core architectures.
4697:290–303, 2007. 10.1007/978-3-540-74309-5-
28.

[8] John M. Mellor-Crummey and Michael L. Scott.
Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Trans. Comput. Syst.,
9:21–65, 1991.

[9] Matteo Monchiero, Gianluca Palermo, Cristina Sil-
vano, and Oreste Villa. Efficient synchronization for
embedded on-chip multiprocessors. IEEE Trans. Very
Large Scale Integr. Syst., 14(10):1049–1062, October
2006.

[10] Maeda Toshiyuki. Kernel mode linux: Toward an op-
erating system protected by a type theory. In Ad-
vances in Computing Science – ASIAN 2003. Pro-
gramming Languages and Distributed Computation
Programming Languages and Distributed Computa-
tion. Springer Berlin Heidelberg, 2003.

	Introduction
	Synchronization mechanisms
	Benchmark applications

	Test-bed Architectures
	Experiments
	One-way notification
	Locking mechanisms

	Final discussion and Conclusions

