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Abstract—Cloud Computing is a paradigm that enables the
access to a set of shared networking and computing resources
and high-level platforms and services through the exploitation
of virtualization technologies. On Clouds, it is of relevant im-
portance to make applications adaptive and reconfigurable, in
the sense that the optimal configuration (satisfying desired QoS
levels) should be dynamically changed in response to variations
in the workload conditions and in the resource availability. Due
to this fact, adaptation strategies have gained much attention
over the last years. Properties like control optimality (finding
proper trade-offs between contrasting QoS goals), reconfiguration
stability (expressed as a function of the average time between
consecutive reconfigurations) and reconfiguration amplitude (per-
forming sequences of small modifications of the current configu-
ration) are important aspects to consider. In order to meet these
needs, we present a control-theoretic approach and we provide
a first validation of our proposals, giving an insight about its
applicability to Cloud environments.

Keywords—Autonomic Computing, Parallel Computations, Re-
configurations, Model-based Predictive Control, Distributed Coop-
erative Optimization.

I. INTRODUCTION

Cloud Computing is an emerging paradigm encouraging
the diffusion of large-scale heterogeneous distributed environ-
ments and their efficient and transparent interaction through
virtualization technologies. In addition to the maintenance of
performance constraints required by the users when execut-
ing their applications, economic aspects become increasingly
challenging on Clouds [18], where computing and networking
resources are dynamically provisioned on-demand to the users
against the payment of a monetary charge [7], [4].

For this reason, the dynamic provisioning needs to be
automated and integrated through intelligent strategies able
to observe the application execution and promptly respond
to dynamic modifications of the workload conditions and of
execution environment. To do that, applications should be
designed as compositions of adaptable parallel components,
whose algorithms and parallelizations can be changed by an
efficient interaction with Cloud providers.

Adaptation strategies need to be qualitatively and quanti-
tatively compared using specific metrics able to capture their
effectiveness. Examples are the stability of control decisions,
i.e. how long the effects of a reconfiguration last before a new
modification of the application configuration should be applied,

and their optimality, i.e. achieve desired trade-offs between
contrasting requirements (e.g. performance, memory usage,
storage and power consumption). These properties have gained
great importance in Clouds. However, applications and their
run-time supports are still not mature enough for supporting
adaptiveness in such environments [4]. To improve the actual
state-of-the-art, this paper presents formal adaptation strategies
based on sound theoretical foundations such as the ones of
Control Theory and Distributed Optimization.

This paper is organized as follows. Section II provides
a brief review of the existing literature. Section III presents
a general description of adaptive parallel applications, and
outlines the interesting properties that we require to evaluate
and compare adaptation strategies. Section IV introduces our
methodology: we present our notion of adaptive components
and a control-theoretic adaptation strategy to drive the re-
configuration selection. The cooperation between application
controllers is enforced using a distributed cooperative opti-
mization method. Section V presents a first validation of our
methodology by discussing results obtained in a simulation
environment. Although at the present state our work has not
been evaluated in real Cloud platforms, we claim that the
methodological work presented in this paper is interesting
to improve the existing approaches and will be able to be
integrated with real frameworks in the future.

II. RELATED WORK

Providing distributed systems with run-time supports to
dynamic reconfigurations has been the subject of researches
in different fields like Mobile, Grid and Cloud Computing.
On Clouds [17], [12], provisioning mechanisms of virtual
machines are developed to accelerate compute-intensive jobs
submitted into Cloud platforms. On more general distributed
parallel programming frameworks, adaptiveness has been in-
troduced by exploiting dynamic modifications of structured
parallelism forms, expressed parametrically w.r.t the paral-
lelism degree. Notable examples are the Behavioral Skeleton
approach [1] to the definition of autonomic algorithmic skele-
tons for Grid applications, and the ASSIST [16] model for
adaptive high-performance computations.

Besides efficient run-time supports, emerging computing
environments raise critical problems related to when reconfig-
urations should be executed in order to optimize both perfor-
mance and economic aspects. Therefore, adaptation strategies



have gained much attention. In addition to classic approaches
based on logic policy rules [9] (e.g. event-condition-action
rules), control-theoretic techniques represent a potential al-
ternative. Over the last years, Control Theory application
to computer systems [8] has moved beyond the preliminary
stage. Especially the pro-active adaptation to future workload
variations [10] seems to be a suitable approach to optimize
performance requirements and operating costs by avoiding
unnecessary reconfigurations. Along this line Model-based
Predictive Control [6] and Adaptive Control [11] are valuable
research directions still requiring further investigations espe-
cially in fields like distributed parallel computations.

III. ADAPTIVE APPLICATIONS

In this section we focus on the concept of adaptive appli-
cations and the issues related to Cloud environments. The goal
of the discussion is to state the fundamental properties that we
want to address with advanced adaptation strategies.

Distributed parallel applications (e.g. scientific compu-
tations, emergency management and intelligent surveillance
systems) are composed of several interacting components,
exchanging messages representing tasks and (partial) results.
Each component applies a computation on each received
element: to remove or reduce bottleneck conditions, each
component can be internally parallelized in order to sustain
the current arrival rate and/or to provide acceptable levels of
computation latency.

In our approach we model distributed parallel applications
as directed graphs (work-flow) of components. We can distin-
guish between two different levels of parallelism:

• inter-component parallelism: the decomposition of
a complex application in several phases, each one
associated with a distinct software component, is a
first way to decompose the problem and solve it by a
set of multiple processing entities distributed over the
computing environment;

• intra-component parallelism: each component can
implement a parallel computation, activated by receiv-
ing messages from a set (or a sub-set) of sources.
In our approach we suppose that intra-component
parallelizations are instances of structured parallelism
forms [3], [5] (e.g. task-farm, data-parallel and divide-
and-conquer schemes), which can be expressed para-
metrically w.r.t the parallelism degree (number of
threads/processes of the current implementation).

An application configuration indicates a precise decision
about the way in which components perform the distributed
processing. For example a configuration can indicate that some
of the application components should be internally parallelized
using a specific parallelism form and a parallelism degree.

Due to unexpected execution conditions, a static config-
uration may not be able to achieve the desired QoS goals
throughout the execution. Such variability can be caused by
the application semantics, e.g. in presence of time-varying
workload conditions due to irregular parallel problems. In
dynamic environments also the execution platform can play
a decisive role, by making the QoS achieved by the same
configuration variable over the execution. As an example, the

dynamic availability of computing and networking resources
can lead to variable calculation times to process similar tasks
as well as high-variance communication latencies.

A reconfiguration implies a dynamic modification of the
application configuration: components need to stop the current
computation and reach a consistent state (if it is required by the
reconfiguration granularity or by the computation semantics -
e.g. if it operates on an internal state). Then, a new parallel
version can be activated or the same parallelization can be
instantiated using a different number of processing nodes
(parallelism degree variations).

On Cloud environments the problem of dynamic recon-
figurations introduces new issues peculiar to this comput-
ing paradigm. In elastic Cloud infrastructures, computing re-
sources are usually delivered on-demand to the users in terms
of virtual machines deployed in remote provider data centers.
When executing adaptive applications, the modification of the
application configuration leads to significant changes in the
used infrastructure by frequently creating and shutting down
virtualized resources (Figure 1 shows a representation of this
problem). Creating virtual machines through traditional tech-
nologies takes from tens of seconds up to several minutes to
complete [18], [15], and parallel components could be blocked
waiting for the reconfiguration process to complete. As an ex-
ample a component should reach a consistent computation state
before re-distributing data on the newly allocated resources
and then restart the execution [16]. Therefore, reconfigurations
induce performance overhead on the computation, and should
be executed only when they bring real benefits in terms of QoS.

Fig. 1: Example of dynamic deployment of a parallel compo-
nent on a Cloud environment.

Moreover, Cloud providers manage the infrastructures and
the platforms making them available to the users on a pay-per-
use basis. Therefore, during a switching from a configuration
to another, it is important to take into account the monetary
cost of the newly selected configuration. For instance the cost
can be dependent on the classes of dynamically provisioned
computing resources [4], but it can also depend on the ”am-
plitude” of the switch [7], e.g. a monetary charge proportional
to the amount of allocated/deallocated virtualized computing
resources. For these reasons, we need to define adaptation
strategies able to target the desired QoS goals by reducing
reconfigurations and operating costs.

This paper introduces formal strategies to dynamic adap-
tation and evaluates them according to three important prop-
erties:



• control optimality: the capability of a strategy to
achieve the desired trade-off between different QoS
objectives over the entire execution (e.g. performance
and resource consumption);

• reconfiguration stability: we express the stability of
an adaptation strategy in terms of the total amount
of performed reconfigurations, and the average time
between two consecutive reconfigurations of the same
component (informally how long the effects of a
reconfiguration last);

• little reconfiguration amplitude: it could be useful
to compare adaptation strategies in terms of recon-
figuration amplitude. Between strategies able to meet
the desired QoS goals, we could prefer a strategy
that avoids a large ”difference” between consecutive
configurations, e.g. in the case of parallelism degree
variations, a little amplitude means that few resources
are involved in the reconfiguration.

In the next section we will present and evaluate our
methodology and different adaptation strategies.

IV. METHODOLOGY

The adaptation strategy of large-scale distributed parallel
applications is executed by a set of control entities associated
with each application component. In our approach each parallel
component is structured in terms of two interconnected parts:

• the Operating Part performs a parallel computation
instantiating a structured parallelism pattern [16]. The
computation is activated whenever an input element
is received from one of the input streams. According
to the computation semantics, the result of each acti-
vation is transmitted onto one of the output streams
directed to a specific destination;

• the Control Part (controller) observes the Operating
Part execution and implements an adaptation strategy
that drives the reconfiguration selection. Reconfig-
urations can change implementation aspects of the
parallel computation, notably the number of used
processing nodes - i.e. the parallelism degree of the
component.

Our approach follows a control-theoretic modeling in
which controllers are time-driven, i.e. adaptation strategy is
executed every fixed time interval. Therefore, we model the
passage of time in discrete time intervals of a fixed length
(each interval is called control step). At each control step the
controllers perform the following sequence of actions:

• they acquire the updated monitoring information from
their Operating Part (e.g. actual performance levels);

• they evaluate the adaptation strategy possibly exchang-
ing control messages with other controllers of the
application;

• each Control Part performs the reconfiguration actions
on the corresponding Operating Part, changing the
current configuration of the component.

A. Distributed Model-based Predictive Control

To apply control-theoretic strategies, we need to define a
local model of each controlled component able to capture the
effects of reconfigurations on the QoS. This model formalizes
the relationship between the following set of variables:

• a local QoS variable describes the steady-state average
time between two successive result departures from
a component. We call this measure the mean inter-
departure time. We denote with TDi(k) the inter- de-
parture time of the i-th component at the beginning of
control step k (it refers to the average value assumed
during the last step k − 1);

• a local control variable identifies the parallelism
degree ni(k) ∈ Ui used by the i-th component during
step k, where Ui is the closed interval [1, nmaxi ];

• local disturbance variables model exogenous uncon-
trollable factors influencing the relationship between
control and QoS variables. Examples are the mean
calculation time per task Tcalc-i(k) and the proba-
bilities of task transmission, i.e. pi,j(k) denotes the
probability to transmit a task from component i to
component j during control step k.

The performance of a parallel component can be measured
without considering the interaction with other components of
the application. This ideal behavior is modeled by the concept
of mean service time, which depends on the performance
model of structured parallelism schemes [16]. For the sake
of generality, we initially express the service time of a com-
ponent as a simple function of its parallelism degree, i.e.
TSi

(k) = Tcalc-i(k)/ni(k) (perfect scalability assumption).

Since components are interconnected in a graph structure,
their inter-departure time depends on their local configuration
but it is also influenced by the presence of other components
that can act as a bottleneck. To model this fact, we use an
approach presented and demonstrated in [13] (Chapter 4 from
page 47). The method is valid for a large class of computation
graphs, i.e. acyclic graphs with a single source component.
The main result is summarized by the following theorem:

Theorem 1 (Performance Modeling): Given a single
source acyclic graph G of N components, the inter-departure
time TDi from component Ci can be expressed in the
following way:

TDi
(k + 1) = max

{
fi,1

(
TS1

(k)
)
, fi,2

(
TS2

(k)
)
, . . . , fi,N

(
TSN

(k)
)}

(1)

Each fi,j with j = 1, 2, . . . , N expresses the inter-departure
time of Ci if component j is currently the bottleneck. fi,j is
defined as a function of the service time of Cj :

fi,j
(
TSj (k)

)
= TSj (k)

∑
∀π∈P(Cs→Cj)

( ∏
∀(u,v)∈π

pu,v(k)

)
∑

∀π∈P(Cs→Ci)

( ∏
∀(u,v)∈π

pu,v(k)

)
(2)

where Cs denotes the source component, P(Cs → Ci) is the
set of all the paths starting from Cs and reaching Ci, and



(u, v) is an edge of the path π. Since we do not know which
component will be the bottleneck, the inter-departure time is
calculated as the maximum between the functions fi,j for j =
1, . . . , N .

In this paper we apply this performance modeling with a
strategy based on a control-theoretic technique named Model-
based Predictive Control (shortly MPC) [6] . MPC is a method
in which reconfiguration decisions are taken by solving, at the
beginning of each control step, a finite-horizon optimization
problem using statistical multiple-step ahead predictions of
future disturbances. To be robust in dynamic and uncertain
environments, only the first element of the optimal reconfig-
uration sequence (trajectory) is passed to the Operating Part,
and the same procedure is repeated at the next control step
(following the so-called receding horizon principle).

Besides a model of QoS variables, we need to introduce
a proper set of local objective functions associated with each
application component. We study two different formulations
of the MPC strategy. In the first one we do not model any
abstract term related to the reconfiguration cost (we refer to
this as Non-Switching Cost Formulation for brevity):

Definition 1 (Non-Switching Cost Formulation): Each
component has a local cost function defined over a horizon
of one future control step:

Ji(k) = αi TDi

(
k + 1

)︸ ︷︷ ︸
performance cost

+ βi ni(k)︸ ︷︷ ︸
resource cost

(3)

The first part discourages configurations that compromise the
capability to process incoming tasks. The second part expresses
a cost proportional to the number of used nodes. αi and βi are
positive coefficients establishing the desired trade-off between
the two contrasting aspects of the cost function. TDi

(k+ 1) is
calculated using Theorem 1.

As said, in Cloud environments the reconfiguration process
can induce costs on the computation, both in terms of a
performance degradation as well as in terms of a monetary
charge due to the dynamic provisioning of resources. In the
second formulation we account for an abstract cost term:

Definition 2 (Switching Cost Formulation): The local cost
function of each component Ci is defined over a prediction
horizon of h control steps (with h ≥ 1):

Ji(k) =

k+h−1∑
q=k

αi · TDi
(q + 1)

︸ ︷︷ ︸
performance cost

+

k+h−1∑
q=k

βi · ni(q)

︸ ︷︷ ︸
resource cost

+

k+h−1∑
q=k

γi · ∆i(q)
2

︸ ︷︷ ︸
switching cost

(4)
where ∆i(k) = ni(k) − ni(k − 1). The switching cost term
is defined as a function of the square of parallelism degree
variations (γi is a positive coefficient). Its goal is to discourage
reconfigurations with large amplitude and avoid fluctuating
behaviors due to disturbances with high variance.

B. A Cooperative Interaction between Controllers

As we have seen, the control problem of distributed parallel
applications consists in several coupled sub-problems each
one formed by a local objective function and a local model.
In a cooperative scenario, instead of optimizing their local
cost functions selfishly, controllers cooperate in order to select

optimal control actions in a system-wide sense, i.e. reconfig-
urations that optimize a notion of global objective function,
e.g. defined as the (weighted) sum of the local cost functions
of each component.

We solve the cooperative distributed MPC problem us-
ing the Distributed Subgradient Method, originally proposed
in [14] for multi-agent environments. The method addresses
the problem of optimizing the sum JG(k) =

∑
Ji(k) of non-

smooth convex functions known only by their agents. This
method suits particularly well our needs, since:

• each Control Part knows only its local cost function
and the model to predict the steady-state performance
of its Operating Part;

• in both of our formulations, each local cost is ex-
pressed by a non-differentiable convex function (the
inter-departure time is defined as the point-wise max-
imum of a set of convex functions fi,j);

• for scalability and feasibility reasons, Control Parts
are directly interconnected only between neighbors.

Each Control Part computes and maintains an estimate of
the optimum strategy profile matrix S(k) ∈ Rh×N , where
each column i corresponds to the parallelism degree trajectory
of component Ci (parallelism degrees are considered real
values for feasibility reasons) and h is the horizon length.
Neighboring controllers iteratively exchange their local esti-
mates (control messages) and compute the next estimate using
the following rule:

S(q+1)
[i] (k) = PU∫

 N∑
j=1

(
W[i, j]S(q)[j] (k)

)
− a(q) Gi

 (5)

where q is the current iteration, a(q) > 0 is the step-size and Gi
is a subgradient of Ji at point S(q)[i] (k)1. PU∫ is the Euclidean
projection onto the convex set of admissible strategy profiles
defined by: U∫ = Uh1 × Uh2 × . . .× UhN .

Each controller maintains a set of weights representing the
importance given to the estimates received by the controllers
(zero is assigned to non-neighbor controllers). To prove the
convergence to the global optimum, in [14] the authors state
a condition about how the weights should be assigned: the
weight matrices W ∈ RN×N should be doubly stochastic, i.e.
all the columns and rows sum to 1.

The MPC strategy based on the Distributed Subgradient
Method consists in a sequence of actions performed by the
controllers at each control step k:

• each controller acquires monitoring information from
its Operating Part and calculates statistical predictions
of disturbances over the prediction horizon;

• each controller uses a specific initial estimate of
the strategy profile matrix and applies the iterative
protocol for a fixed number of iterations;

1the subscript [i] denotes that S(q)

[i] (k) is the estimate of the i-th
controller.



• at each iteration, controllers receive the local estimates
from their neighbors, apply the update rule (5) and
transmit the next estimate;

• after the last iteration, each controller knows its op-
timal reconfiguration trajectory and applies the first
element of that trajectory (properly rounded to the
nearest integer) as the new parallelism degree for
control step k.

This method allows us to consider also non-ideal perfor-
mance behaviors of parallel components, providing that the
mean service time is modeled as a convex function of the
parallelism degree. An example is when the service time stops
to decrease or even increases using parallelism degrees larger
than a specific value.

V. EXPERIMENTS

To provide a first evaluation of our methodology, we have
developed a simulation environment based on the OmNeT++
discrete event simulator2. An adaptive parallel component is
simulated by two simulation modules which implement the
Operating Part and the Control Part. OmNeT makes it possible
to define the behavior of a simulation module following an
event-driven programming style. A module receives different
classes of messages. Every time a new message is received, the
handlemessage() handler routine is called. Modules ex-
change messages through communication ports (see Figure 2).
The reception of a message invokes a corresponding event
handler function defined by the programmer. To reproduce a
blocking communication semantics, we have implemented a
communication protocol based on the exchange of send and
ack messages. The Operating Part can adopt two working
logics: (i) a task-farm semantics, in which at most p tasks in
parallel can be executed, where p is the current parallelism
degree; (ii) a data-parallel semantics, in which only one task
at a time can be processed with an execution time equal to the
calculation time divided by the parallelism degree.

Adaptive Parallel Component
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tasks from 

other 
Operating 
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other 

Operating 
Parts

control 
messages from 
other Control 

Parts
(interconnecting 

variables)

control 
messages to 
other Control 

Parts
(interconnecting 

variables)

reconf.
messages

Control Part

self-messages

.

.

.

.

.

.

.

.

.

.

.

.

monitoring
messages

Fig. 2: Simulation of an Adaptive Parallel Component.

As a benchmark case, we consider an abstract computation
composed of five distributed components organized in the
computation graph depicted in Figure 3. The source component
implements a sequential computation (i.e. its parallelism de-
gree is fixed to 1 throughout the execution) and transmits tasks
to components C1 and C2 according to a discrete probability
distribution.

2visit http://www.omnetpp.org/ for further details about this open-source
simulator.
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Fig. 3: Computation graph of the experiment.

A. Multi-disturbance Scenario

The application components need to dynamically adapt
their parallelism degree in order to sustain the current ar-
rival rate and to avoid using computing nodes unnecessarily.
We exemplify a dynamic situation characterized by a multi-
disturbance scenario: during the execution, the optimal ap-
plication configuration changes in response to the following
sources of variability:

• there are time intervals in which the source component
generates tasks faster/slower than other periods. In
other words, the mean service time of the source may
change significantly. Since the source component is
sequential, its service time coincides with its calcula-
tion time, i.e. Tcalcsrc(k) = TSsrc(k);

• components C1, C3 and C2 correspond to different
sub-systems able to process tasks of different types.
The source transmits tasks to C1 with probability
p(k) and to C2 with probability 1− p(k). Due to the
application semantics, probability p(k) changes during
the execution, and influences the arrival rates to the
application components.

We simulate a scenario in which the source’s service time
and the transmission probability change following the time-
series depicted in Figure 5. The execution consists of 600
control steps each one of 60 seconds.
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Fig. 5: Multi-disturbance scenario of the experiment.



To apply the MPC strategy, we need to predict the values
assumed by disturbances over a limited horizon of few control
steps in the future. To do that, history-based forecasting
techniques can be applied to our time-series. We exploit the
well-known Holt-Winters filtering technique [2], an effective
method accounting for time-series featuring non-stationarities
such as trends and seasonal components. For the probability
time-series, we adopt a classic Holt-Winters scheme able to
estimate the trend component using two EWMA filters, one for
the smooth component and the other for the trend. For the ser-
vice time we adopt a seasonal Holt-Winters scheme in which
we use a third EWMA filter to estimate the seasonal behavior
of the time-series. Table I shows the global relative errors
between the real trajectories and the predicted ones averaging
between all the control steps of the execution and considering
a horizon length from 1 to 3 control steps (multiple-step ahead
predictions). As we can see, this forecasting method is effective
for our time-series, leading to a global error bounded by 12%.

Hor. 1 Hor. 2 Hor. 3
Probability

Series 10.17% 10.66% 11.18%

Service Time
Series 8.57% 9.27% 9.83%

TABLE I: Global relative errors over the entire execution.

B. Simulation Results

In this section we compare the Non-Switching Cost and the
Switching Cost Formulations using different horizon lengths.
The cost parameters and the mean calculation times are
summarized in Table II. For all the components (except the
source), the calculation time is modeled as a normal random
variable with a given mean and a small variance. User-defined
cost parameters for the resource cost and the switching cost
term are taken in order to simulate a heterogeneous scenario
in which our application is executed on a federation of Cloud
providers, applying different billing models.

1) Reconfigurations over Executions: Figure 4 shows the
reconfiguration sequence of component C3 and C4 (the results
for the other components are qualitatively similar). The recon-
figuration sequence of C3 depends on the combined effect of

C1 C2 C3 C4

Tcalc 90 sec. 100 sec. 70 sec. 35 sec.
α 10 10 10 10
β 0.3 0.8 0.3 0.4
γ 1.5 1.2 1.5 1.2

nmax
i 64 32 48 48

TABLE II: Configuration parameters of the experiment.

the source’s service time variability and the probability p(k).
In fact, both of them influence the arrival rate to the sub-
system composed of components C1 and C3. During phases in
which the arrival rate increases, we expect that the parallelism
degree increases too. The contrary happens during phases
characterized by a lower pressure of incoming tasks to such
components. As we can observe from Figures 4a, 4b and 4c,
the parallelism degree of the third component follows the
general trend of the probability (Figure 5b). In the first part
of the execution (from step 0 to 200) tasks are transmitted
more frequently to C1 and C3, while from step 350 to 600 the
arrival rate to C2 becomes much more higher than the other
components. Therefore, significant changes in the probability
p(k) dominates the variability of the arrival rates to C1, C2

and C3 which adapt by modifying their parallelism degree
correspondently.

C4 is characterized by a different behavior. Here, the
reconfiguration sequence follows the variability of the source’s
service time and it is not influenced by the probability p(k).
However this is an expected phenomenon. As we can observe
from Figure 3, the last component is responsible to receive
tasks from C2 and C3. The semantics is that whenever a task is
received from the input queue, component C4 starts its parallel
computation on the current stream element (received either
from C3 or from C2). Therefore, the two input streams are
selected non-deterministically, based on the presence of input
elements. The total arrival rate to C4 is given by the sum of
the two arrival rates from C2 and C3. Provided that the other
components are not bottlenecks, this means that the arrival rate
to C4 corresponds to the inverse of the source’s service time.

We compare the reconfigurations with the Switching Cost
Formulation and the sequence using the Non-Switching Cost
Formulation. As we can observe the switching cost term acts as
a disincentive to parallelism degree variations. During phases
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(c) Component 3 - Horizon = 3.
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(d) Component 4 - Horizon = 1.
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(e) Component 4 - Horizon = 2.
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(f) Component 4 - Horizon = 3.

Fig. 4: Reconfiguration sequence of the third and the fourth component.
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(b) Component 3 - Horizon = 1.
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(c) Component 3 - Horizon = 2.
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(d) Component 3 - Horizon = 3.
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(e) Component 4 - Non-Switching.
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(f) Component 4 - Horizon = 1.
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(g) Component 4 - Horizon = 2.
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Fig. 6: Reconfiguration amplitude of the third and the fourth component.

in which the arrival rate is lower, it slows down the release
of computing resources, while in phases of higher rates it
slows down the allocation of new resources. As we consider
longer horizons, controllers have a better degree of foresight
and can more precisely evaluate if the release/acquisition of a
certain set of resources is effectively useful (e.g. avoiding to re-
acquire/release them nearly in the future). Using a sufficiently
long horizon, the sequence of parallelism degrees tends to
the one obtained optimizing the cost functions without the
switching cost, but avoiding many reconfigurations of little
amplitude due to high-variance disturbances.

2) Reconfigurations Amplitude and Stability: Figure 6 de-
picts the histograms of the reconfiguration amplitude, i.e. the
absolute value of the difference between consecutive par-
allelism degree variations. In the histograms related to the
Non-Switching Cost Formulation, reconfigurations are almost
equally distributed throughout the execution and reach peaks
of amplitude 4 and 5 for the third and the fourth component.
The Switching Cost Formulation produces a drastic reduction
in terms of number of reconfigurations (parallelism degree
variations are less frequent) but also a smaller amplitude
(using a one-step horizon all the reconfigurations of the third
component are unitary increase or decrease in the parallelism
degree). With longer horizons the strategy is more responsive
to disturbances: as the horizon becomes longer as the per-
formance part of the cost functions becomes more dominant
giving more reconfigurations with a slightly larger amplitude.

The concept of reconfiguration frequency can be more
formally studied by introducing the following metric:

Definition 3: We denote as Mean Stability Index (shortly
MSI) the average number of control steps for which a config-
uration remains active.

Table III shows the total number of reconfigurations per-
formed by the application components and the global MSI.
The Non-Switching Cost Formulation accurately adapts the
parallelism degrees to disturbance variations without any con-
straint in releasing or allocating resources. In this way the

amount of reconfigurations is higher than the other strategies.
By introducing the switching cost, and therefore a break in the
resource allocation/deallocation, we can drastically reduce the
reconfigurations performed over the execution. The reduction
is of 56%, 40% and 37% using a horizon of 1, 2 and 3
steps respectively. The MSI gives also a clear insight about
how long a configuration remains active in the average case.
Using a horizon of 3 steps, the effects of a reconfiguration
last for more than three steps on average (better than using
the Non-Switching Cost Formulation, in which we have a
reconfiguration every two steps).

Strategy Reconfigurations MSI
Non-Switching Cost 1238 1.97
Switch. Cost h = 1 544 5.08
Switch. Cost h = 2 741 3.55
Switch. Cost h = 3 784 3.32

TABLE III: Reconfigurations and Mean Stability Index.

3) Performance and Efficiency evaluations: Besides the
number of reconfigurations and their amplitude, an adaptation
strategy should be evaluated by considering the performance
achieved by the distributed parallel application. In order to
have a quantitative result, we compare different strategies using
the number of tasks that leave the system - i.e. tasks completely
processed by the application components - as a measure of the
global achieved performance.

In order to simulate a scenario in which reconfigurations
affect on the application performance, we have simulated
a performance overhead correlated with parallelism degree
variations. To complete the reconfiguration process consis-
tently with the computation’s semantics, we suppose that the
Operating Part of a parallel component suspends to receive
and process incoming tasks for an amount of time modeled
by a random variable delay with a normal distribution and a
given mean and variance. For the sake of simplicity, in this



experiment we apply the same mean reconfiguration delay for
all the components, equal to 15 seconds (which corresponds
to 25% of the control step length). The results in terms of
completed tasks are outlined in Figure 7a. In order to compare
our strategies with a performance upper-bound, we consider
the static case (named MAX) in which parallel components do
not perform any reconfiguration (their parallelism degree is
fixed to the maximum value nmaxi throughout the execution).
As we can observe from Figure 7a, the MAX configuration is
the best one in terms of completed tasks. The Non-Switching
Cost Formulation, which accurately follows the disturbance
predictions, provides the worst results since it applies a large
number of reconfigurations. Using the Switching Cost we
are able to achieve a better performance behavior avoiding
unnecessarily reconfigurations. The best result is achieved with
a horizon of one step (the performance loss is of 15% w.r.t the
MAX configuration).
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Fig. 7: Completed tasks and efficiency of resource utilization.

As we use longer horizons, although this implies more
reconfigurations and a lesser MSI, we can improve the effi-
ciency of resource utilization, measured as the ratio between
the ideal service time of a component and its inter-departure
time (see Figure 7b). An efficiency lower than 1 means that the
parallelism degree is over-sized. In this case the MAX configu-
ration provides the worst results in terms of resource utilization
(in the average case only 60% of the allocated resources are
effectively utilized). On the other hand the best efficiency is
achieved using the Non-Switching Cost Formulation, in which
components quickly adapt to the current disturbances and avoid
to use over-sized or under-sized parallelism degrees. With a
short horizon, the Switching Cost Formulation is penalized
during the releasing phases of computing resources. Using
longer horizons we mitigate this effect, reaching acceptable
levels of efficiency also with the Switching Cost Formulation.

VI. CONCLUSION

The efficient exploitation of heterogeneous platforms like
Grids and Clouds poses serious problems of adaptiveness and
reconfigurability of applications. In this paper we presented a
theoretical work based on formal adaptation strategies inherited
from Control Theory and Optimal Control. We proposed the
application of a Distributed Model-based Predictive Control
strategy and different formulations to address a switching
cost due to changes in the application configuration. Optimal
control problems were solved in a cooperative fashion en-
forcing the Distributed Subgradient Method. First experiments
performed in a simulation environment provided encouraging
results in terms of control optimality, reconfiguration stability

and little reconfiguration amplitude, that we claim are impor-
tant properties in Cloud environments.
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