Premise. This homework is optional but warmly advised to check the understanding of the student lecture-by-lecture. It should be used to improve the student preparation during the course. All the answers must be properly and clearly explained.

Exercise 1. This exercise refers to the example studied during the lecture of last Thursday 20/10/2016, i.e. “evaluation of a parallel program on a single-CMP architecture”. The initial computation consists in a $Prod \rightarrow Q \rightarrow Cons$ pipeline where Q needs to be internally parallelized, and the system is executed on a single-CMP architecture:

- both for the $farm$ and the map parallelization of Q, study the under-load memory latency cost model with the original architectural specifications, i.e. the memory sub-system is composed of four mutually interleaved macro-modules directly interconnected with the four MINFs of the CMP;
- do the same analysis at the previous point by changing the architectural specification as follows: the memory sub-system consists of four macro-modules with a sequential organization.

In the analysis of the under-load memory latency cost model, you have to determine the values of the (R_{Q-0}, p, T_p, T_S) parameters and to solve the client-server system of equations according to the M/D/1 queuing model.

Exercise 2. Explain in which way the abstract CC architecture (with centralized GC and GSK) is implemented in a concrete directory-based architecture. Is the GSK implemented by the union of the LSKs of all the system PEs?

Exercise 3. Consider the following computation executed on a directory-based cache coherent multiprocessor:

```
shared S;

P:: { while (true) do { S = f (R, S); notify (go); < local comp. > } }
Q:: { while (true) do { wait (go); S = g (V, S); < local comp. > } }
```

Is the following semantics (represented informally by the figure below) respected owing to the cache coherence invalidation-based mechanism and the use of synchronous store instructions?

<table>
<thead>
<tr>
<th>P</th>
<th>S1 = f (R, S0)</th>
<th>...</th>
<th>S3 = f (R, S2)</th>
<th>...</th>
<th>S5 = f (R, S4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>S2 = g (V, S1)</td>
<td>...</td>
<td>S4 = g (V, S3)</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

S0, S1 and S2 denote the sequence of values assumed by the shared variable S.