Homework 1

Premise: This homework is optional but warmly advised to check the understanding of the student lecture-by-lecture. It should be used to improve the student preparation during the course. All the answers must be properly and clearly explained.

Exercise 1: A system is composed of two processes \(Σ = (P, Q) \). Process \(P \) generates a stream of \(10^6 \) pairs \((A, B)\) where \(A \) and \(B \) are two arrays of size \(M = 4K \) integers. The ideal service time of the process is \(T_{id-P} = M^2 \tau \). The second process \(Q \) executes the following computation on each pair:

\[
Q :: \text{int } A[M], B[M], C[M]; \text{ input channel } ch_{in}(1); \text{ output channel } ch_{out};
while \text{ true } do
\]

\[
\text{ receive}(ch_{in}, (A, B));
\]

\[
\text{ for } i=0 \text{ to } M-1 \text{ do}
C[i]=0;
\]

\[
\text{ for } j=0 \text{ to } M-1 \text{ do}
C[i] = F(A[i], B[j], C[i]);
\]

\[
\text{ send}(ch_{out}, C);
\]

Function \(F \) is available as a library with average computation time \(T_F = 10^2 \tau \). The parameters of the inter-process communication cost model are \(T_{setup} = 200 \tau \) and \(T_{transm} = 100 \tau \). Analyze the system by focusing on the following points:

- a) Evaluate the ideal/effective service time, the ideal/effective processing bandwidth and the relative efficiency of process \(Q \).
- b) Evaluate the ideal/effective service time, the ideal/effective processing bandwidth, the relative efficiency, the latency (per stream element) and the completion time of system \(Σ \).
- c) Determine whether process \(Q \) is a bottleneck or not, and in case evaluate its optimal parallelism degree.

In the analysis assume the following architectural specifications:

1. multiprocessor with \(N = 32 \) PEs and 32 shared memory macro-modules;
2. D-RISC CPU with mean service time per instruction equal to \(4\tau \);
3. each PE has on-demand 32K primary cache (16K instruction cache + 16K data cache) with block size equal to 8 words;
4. the base memory access latency per cache block is equal to \(L_{read-C1}(\sigma) = 320 \tau \);
5. the architecture provides a communicator processor per PE.

Exercise 2: A process \(P \) receives a stream of integers (let \(x \) be a generic input element) and encapsulates an integer variable \(s \) initialized to one. For each input \(x \) the process executes the following computation: \textbf{ while true do} \{receive(ch_{in}, x); y = x \cdot s; s = s + 1; send(ch_{out}, y); \}. Explain whether this computation can be correctly parallelized as a \textit{farm}, i.e. by using several functionally equivalent instances of the process \(P \).

Exercise 3: Explain the meaning of the following phrases, proving that both statements are true under proper additional specifications: a) “no object is shared by processes \(P \) and \(Q \)”;
 b) ”the communication channel descriptor is shared by \(P \) and \(Q \)."