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Abstract

The image space approach is applied to the study of vector variational inequal-
ities. Exploiting separation arguments in the image space, Lagrangian type
optimality conditions and gap functions for vector variational inequalities are
derived.
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1 Introduction

The theory of variational inequalities finds applications in many fields of optimiza-
tion: from the classical optimality conditions for constrained extremum problems to
the equilibrium conditions for network flow, economic and mechanical engineering
equilibrium problems [8, 10]. In recent years, variational inequalities, that were first
introduced in a scalar form, have been generalized to the vector case [7].

In this paper, by means of the image space analysis, we extend the theory of the
gap functions [5, 16] to vector variational inequalities (in short, V V I) defined by the
following problem:

find x ∈ K s.t. F (x)(y − x) 6≤C\{0} 0, ∀y ∈ K,

where F : X −→ Rp×n, K ⊆ X ⊆ Rn, C is a convex cone in Rp; in the definition of
a V V I we have used the notation: x 6≥C y iff x− y 6∈ C. When p = 1 and C = R+,
the V V I collapses to the classic variational inequality (V I).
Given the vector optimization problem:

minC\{0} h(x) s.t. x ∈ K, (P )
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where h : X −→ Rp, in the hypotheses that h is a (componentwise) convex differen-
tiable function on the convex set K, it is known [6] that, if we put F := ∇h, then
the V V I is a sufficient optimality condition for (P ).

The image space analysis can be applied everytime the problem, we want to deal
with, is expressed under the form of the impossibility of a suitable system

f(x, y) ∈ C \ {0}, g(y) ∈ D, y ∈ X, S(x)

where f : X ×X −→ Rp, X ⊆ Rn, C is a convex cone in Rp, g : X −→ Rm, D is a
closed convex cone in Rm. The space Rp+n in which the function (f, g) runs, is called
the image space associated to S(x). The impossibility of S(x) is stated by means
of separation arguments in the image space, proving that two suitable subsets of the
image space lie in disjoint level sets of a separating functional.

We recall that a gap function p : K −→ R is a non-negative function that fulfils
the condition p(x) = 0 if and only if x is a solution of V I on K. This definition,
which originally has been given for scalar variational inequalities, can be extended
to the vector case, so that solving a V V I is equivalent to minimize p on the feasible
set K. In Section 2 we will analyse the general features of the image space approach
for generalized systems. In Section 3 we will consider the general applications to the
V V I while, in Section 4, following the approach introduced in [8], we will show how
the separations tecniques in the image space, allow to define a gap function for a
V V I.

We recall the main notations and definitions that will be used in the sequel. Let
M ⊆ Rp. intM, clM, will denote the interior and the closure of M , respectively.
Let y ∈ Rp, y := (y1, . . . , yp); y(1−) := (y2, . . . , yp) ,
y(i−) := (y1, . . . , yi−1, yi+1, . . . , yp), i = 2, . . . , p− 1, y(p−) := (y1, . . . , yp−1) .
〈·, ·〉 is the scalar product in Rp, y ≥ 0 iff yi ≥ 0, i=1,. . .,p. Rp

+ := {x ∈ Rp : x ≥ 0}.
Let D ⊆ Rm be a convex cone, the positive polar of D is the set D∗ := {x∗ ∈ Rm :
〈x∗, x〉 ≥ 0, ∀x ∈ D}. A closed convex cone D is said pointed if D ∩ (−D) = {0}.
Let g : Rn −→ Rm. g is said D–function on the convex set K ∈ Rn iff:

g(λx1 + (1− λ)x2)− λg(x1)− (1− λ)g(x2) ∈ D, ∀x1, x2 ∈ K, ∀λ ∈ (0, 1).

x∗ ∈ K is said a vector minimum point (in short v.m.p.) for (P ) iff the following
system is impossible:

h(x∗)− h(y) ∈ C \ {0}, y ∈ K.

2 A separation scheme for generalized systems

In this section we will present the image space analysis for the generalized system
S(x), giving particular attention to the linear separation arguments and the regularity
conditions that will allow to state the impossibility of S(x). Suppose that the feasible
set is defined by K := {y ∈ X : g(y) ∈ D}, and consider the following problem:
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find x∗ ∈ K, s.t. S(x∗) is impossible.

It is easy to see that vector optimization problems and vector variational inequal-
ities can be formulated as the impossibility of the system S(x) choosing a suitable
function f(x, y).

The following result is an immediate consequence of the definition of an optimal
solution of a vector optimization problem and the statement of a V V I.

Proposition 2.1 1. Let f(x, y) := h(x) − h(y), then x∗ is a v.m.p. for (P) iff
S(x∗) is impossible.

2. Let f(x, y) := F (x)(x− y), then x∗ is a solution of VVI iff the system S(x∗) is
impossible.

Define the following subsets of the space Rp+m, that we will call ”the image space”
associated to the system S(x):

K(x) := {(u, v) ∈ Rp+m : u = f(x, y), v = g(y), y ∈ X},

H := {(u, v) ∈ Rp+m : u ∈ C \ {0}, v ∈ D}.
The impossibility of S(x) can be formulated in terms of the sets K(x) and H.

Proposition 2.2 S(x) is impossible iff

K(x) ∩H = ∅. (1)

Let E(x) := K(x)− clH;

Proposition 2.3 [4] If the cone H fulfils the condition H = H + clH, then (1) is
equivalent to the condition

E(x) ∩H = ∅. (2)

Remark 2.1 In [3] it has been proved that if C is an open or closed convex cone,
then H = H + clH, provided that D is a closed convex cone.
Moreover, it is known ([9], Lemma 3.1) that E(x) is a convex set when g is a D–
function and f(x, y) is a (clC)–function with respect to y.

Condition (2) can be proved showing that E(x) and H lie in two disjoint level sets
of a suitable functional; when the functional can be chosen to be linear we say that
E(x) and H admit a linear separation.

Definition 2.1 The sets E(x) and H admit a linear separation iff ∃(µ∗, λ∗) ∈ C∗ ×
D∗, (µ∗, λ∗) 6= 0, such that

〈µ∗, f(x, y)〉+ 〈λ∗, g(y)〉 ≤ 0, ∀y ∈ X. (3)
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The existence of a separating hyperplane doesn’t guarantee that E(x) ∩ H = ∅. In
order to ensure the disjunction of the two sets, some restrictions on the choice of the
multipliers (µ∗, λ∗) must be imposed.

Proposition 2.4 Let clC be a pointed cone and assume that the sets E(x) and H
admit a linear separation.
i) If µ∗ ∈ intC∗ then E(x) ∩H = ∅.
ii) Suppose that C is an open cone. If µ∗ 6= 0 then E(x) ∩H = ∅.

Proof. We recall (see e.g. [2]) that clC is pointed iff intC∗ 6= ∅ and that

intC∗ = {x∗ ∈ C∗ : 〈x, x∗〉 > 0, ∀x ∈ clC, x 6= 0}.

i) Ab absurdo, suppose that E(x) ∩ H 6= ∅. This implies that K(x) ∩ H 6= ∅ and,
therefore, ∃z ∈ K such that f(x, z) ∈ C \ {0}, then, taking into account that µ∗ ∈
intC∗, we have 0 < 〈µ∗, f(x, z)〉 ≤ 〈µ∗, f(x, z)〉 + 〈λ∗, g(z)〉 ≤ 0, and we achieve the
absurdity.
ii) Ab absurdo, suppose that E(x) ∩ H 6= ∅. Following the proof of part i) ∃z ∈ K
such that f(x, z) ∈ C = intC, then, taking into account that µ∗ 6= 0 , we have
0 < 〈µ∗, f(x, z)〉 ≤ 〈µ∗, f(x, z)〉+ 〈λ∗, g(z)〉 ≤ 0, and we achieve the absurdity. 2

Remark 2.2 In particular, if we define f(x, y) := h(x) − h(y), C = Rp
+ (resp. C

open cone), and E(x) and H admit a linear separation with µ > 0 (resp. µ 6= 0), then
x is a v.m.p. for (P ).

The following Theorem gives sufficient conditions that guarantee that the hypotheses
of the Proposition 2.4 are fulfilled.

Theorem 2.1 Suppose that the sets E(x) and H admit a linear separation.

1. Let C := Rp
+. Assume that, for every i = 1, . . . , p, the following system is

possible:
fi−(x, y) > 0, g(y) ∈ intD, y ∈ X. Si(x)

then in (3) we can suppose that µ > 0.

2. If there exists ȳ ∈ X such that g(ȳ) ∈ intD, then in (3) we can suppose that
µ 6= 0.

Proof. 1. Ab absurdo, suppose that, ∃i ∈ {1, . . . , p} such that µ∗i = 0; then
(µ∗i− , λ

∗) 6= 0 and, since Si(x) is possible, ∃ȳ ∈ X such that

0 < 〈µ∗i− , fi−(x, ȳ)〉+ 〈λ∗, g(ȳ)〉 ≤ −〈µ∗i , fi(x, ȳ)〉 = 0,

which is absurd.
2. Ab absurdo, suppose that µ∗ = 0 in (3); then, λ∗ 6= 0 and, since g(ȳ) ∈ intD, it is

0 < 〈λ∗, g(y)〉 ≤ 0,

which is absurd. 2
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Remark 2.3 The condition given in the statement 1, which has been also considered
in [12], in a slightly different form, is a generalization of the Slater condition for scalar
optimization problems [13, 14] taken as the assumption of the statement 2.

3 Linear separation and saddle point conditions

As observed in [3, 4], linear separation is closely related to the Lagrangian–type
optimality conditions. Following the line considered in [3, 4] we will characterize
the linear separation in terms of a saddle point condition of the Lagrangian function
associated to the system S(x∗), defined by L : C∗ ×D∗ ×X −→ R,

L(x∗;µ, λ, y) := −[〈µ, f(x∗, y)〉+ 〈λ, g(y)〉].

Proposition 3.1 Suppose that f(x∗, x∗) = 0 and g(x∗) ∈ D. Then E(x∗) and H
admit a linear separation iff ∃(µ∗, λ∗) ∈ C∗ × D∗, (µ∗, λ∗) 6= 0, such that the point
(µ∗, λ∗, x∗) is a saddle point for L(x∗;µ, λ, y) on (C∗ ×D∗)×X.

Proof. Suppose that E(x∗) and H admit a linear separation. From (3) we obtain
that 〈λ∗, g(x∗)〉 ≤ 0, which implies that 〈λ∗, g(x∗)〉 = 0, since g(x∗) ∈ D and λ∗ ∈ D∗.
Therefore

0 = L(x∗;µ∗, λ∗, x∗) ≤ L(x∗;µ∗, λ∗, y), ∀y ∈ X.

It remains to show that L(x∗;µ, λ, x∗) ≤ 0, ∀(µ, λ) ∈ (C∗ × D∗). We have that
L(x∗;µ, λ, x∗) = −〈λ, g(x∗)〉 which is negative, ∀λ ∈ D∗, and the necessity part of
the statement is proved.

Sufficiency. Suppose that (µ∗, λ∗, x∗) is a saddle point for L(x∗;µ, λ, y) on (C∗ ×
D∗)×X, that is
−〈λ, g(x∗)〉 ≤ −〈λ∗, g(x∗)〉 ≤ −[〈µ∗, f(x∗, y)〉 + 〈λ∗, g(y)〉], ∀(µ, λ, y) ∈ (C∗ ×

D∗)×X.
Computing the first inequality for λ = 0, we obtain 〈λ∗, g(x∗)〉 ≤ 0 and, therefore,
〈λ∗, g(x∗)〉 = 0. The first inequality coincides with (3) and the proposition is proved.
2

Remark 3.1 We observe that the saddle value, L(x∗;µ∗, λ∗, x∗), is equal to zero.
This property will be useful in the analysis of the gap function associated to a vector
variational inequality defined in Section 5.

Proposition 3.2 Let X be an open convex set in Rn. Assume that

1. f(x∗, y) is a differentiable C–function, with respect to y, such that f(x∗, x∗) = 0;

2. g is a differentiable D–function;
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Then (µ∗, λ∗, x∗) is a saddle point for L(x∗;µ, λ, y) on (C∗×D∗)×X iff it is a solution
of the following system (S)

∇yL(x∗;µ, λ, y) = 0
〈λ, g(y)〉 = 0
g(y) ∈ D,µ ∈ C∗, λ ∈ D∗, y ∈ X.

Proof. Suppose that (µ∗, λ∗, x∗) is a saddle point for L(x∗;µ, λ, y) on (C∗×D∗)×
X, that is

−〈λ, g(x∗)〉 ≤ −〈λ∗, g(x∗)〉 ≤ −[〈µ∗, f(x∗, y)〉+ 〈λ∗, g(y)〉], ∀(µ, λ, y) ∈ (C∗ ×
D∗)×X.
First of all we prove that g(x∗) ∈ D. Ab absurdo suppose that g(x∗) 6∈ D = (D∗)∗;
then ∃λ̄ ∈ D∗ such that 〈λ̄, g(x∗)〉 < 0. Since D∗ is a cone, then αλ̄ ∈ D∗, ∀α ≥ 0
and −α〈λ̄, g(x∗)〉 −→ +∞, α −→ +∞; this contradicts the first inequality in the
saddle point condition.

Computing the first inequality for λ = 0, we obtain 〈λ∗, g(x∗)〉 ≤ 0 and, therefore,

〈λ∗, g(x∗)〉 = 0. (4)

The second inequality implies that x∗ is a global minimum point of L(x∗;µ∗, λ∗, y),
since f(x∗, x∗) = 0. Then

∇yL(x∗;µ∗, λ∗, x∗) = 0. (5)

(5), together with (4) and the relation (µ∗, λ∗) ∈ (C∗ × D∗), allows to achieve the
necessity part of the statement.

Sufficiency. Suppose that (µ∗, λ∗, x∗) is a solution of (S). Since L(x∗;µ∗, λ∗, y) is
a convex function in the variable y, then ∇yL(x∗;µ∗, λ∗, x∗) = 0 implies that

L(x∗;µ∗, λ∗, x∗) ≤ L(x∗;µ∗, λ∗, y), ∀y ∈ X.

Taking into account the complementarity relation 〈λ∗, g(x∗)〉 = 0 and the condition
λ ∈ D∗, we obtain

−〈λ, g(x∗)〉 ≤ −〈λ∗, g(x∗)〉, ∀(µ, λ) ∈ (C∗ ×D∗),

and the statement is proved. 2

4 Separation methods for Vector Variational In-

equalities

The results stated in the previous sections can be applied in the analysis of a V V I,
allowing to obtain Kuhn–Tucker type optimality conditions. Consider the vector
variational inequality:

find x ∈ K s.t. F (x)(y − x) 6≤C\{0} 0, ∀y ∈ K := {y ∈ X : g(y) ∈ D},
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where F : X −→ Rp×n, g : X −→ Rm, D is a closed convex cone in Rm, g is a
D–function and clC is a convex pointed cone in Rp.

Following the scheme introduced in Section 2, we define the following subsets of
the space Rp+m, that we will call the image space associated to V V I:

K(x) := {(u, v) ∈ Rp+m : u = F (x)(x− y), v = g(y), y ∈ X},

H := {(u, v) ∈ Rp+m : u ∈ C \ {0}, v ∈ D}.

The next result is analogous to Propositions 2.2 and 2.3.

Proposition 4.1 i) x∗ ∈ K is a solution of V V I iff

K(x∗) ∩H = ∅. (6)

ii) If H is a convex cone that fulfils the condition H := H+clH, then (6 ) is equivalent
to the condition

E(x∗) ∩H = ∅, (7)

where E(x∗) := K(x∗)− clH.

As observed in the Remark 2.1, if g is a D–function, then E(x∗) is a convex set
[9]. Therefore, using separation tecniques in the image space, it is possible to obtain
necessary and (or) sufficient Lagrangian–type optimality conditions for V V I.
Let f : X ×X −→ Rp, f(x, y) = F (x)(x− y).

Theorem 4.1 Assume that C := Rp
+, X is an open convex set in Rn, and

1. g is a differentiable D–function;

2. for every i = 1, . . . , p, the following system is possible

fi−(x∗, y) > 0, g(y) ∈ intD, y ∈ X. Si(x
∗)

Then x∗ ∈ K is a solution of V V I iff ∃(µ, λ) ∈ (C∗ × D∗), (µ, λ) 6= 0, such that
(µ, λ, x∗) is a solution of the following system (S)

µF (x)− λ∇g(x) = 0
〈λ, g(x)〉 = 0
g(x) ∈ D, µ ∈ C∗, λ ∈ D∗, x ∈ X.

Proof. We observe that C∗ = Rp
+. Suppose that x∗ is a solution of V V I. Then (7)

holds. Since f(x, y) is a linear function in the variable y and g is a D-function, the set
E(x∗) is convex (see Remark 2.1). Therefore E(x∗) and H admit a linear separation.
By Proposition 3.1, we have that ∃(µ∗, λ∗) ∈ C∗×D∗ such that the point (µ∗, λ∗, x∗) is
a saddle point for the Lagrangian function L(x∗;µ, λ, y) = −[〈µ, f(x∗, y)〉+ 〈λ, g(y)〉].
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By Proposition 3.2, we obtain that (µ∗, λ∗, x∗) is a solution of the system (S).

Sufficiency. Let (µ∗, λ∗, x∗) be a solution of the system (S); by Proposition 3.2 we
get that (µ∗, λ∗, x∗) is a saddle point for L(x∗;µ, λ, y), and, therefore, E(x∗) and H
admit a linear separation. Taking into account Theorem 2.1, condition 2 implies that
µ∗ > 0. Proposition 2.4 ensures that E(x∗)∩H = ∅ and, therefore, x∗ is a solution of
V V I. 2

In the last part of the section we will consider the, so called, weak case, in which
C is an open convex cone. We will see that much less restrictive conditions are
required in order to obtain an analogous result to Theorem 4.1 for the weak case.
In particular, we will show that the classical Slater condition will be a sufficient
regularity assumption on the constraint function g.

Theorem 4.2 Assume that C is an open convex cone, X is an open convex set in
Rn and that

(a) g is a differentiable D–function;

(b) there exists y ∈ X such that g(y) ∈ intD.

Then x∗ is a solution of V V I iff ∃(µ, λ) ∈ C∗ ×D∗, (µ, λ) 6= 0, such that (µ, λ, x∗)
is a solution of the system

µF (x)− λ∇g(x) = 0
〈λ, g(x)〉 = 0
g(x) ∈ D, µ ∈ C∗, λ ∈ D∗, x ∈ X.

Proof. Necessity. The proof is analogous to the one of Theorem 4.1.

Sufficiency. The proof is analogous to the one of Theorem 4.1, replacing the
hypothesis 2 with the hypothesis (b), and µ∗ > 0 with µ∗ 6= 0. 2

5 Gap functions for Vector Variational Inequali-

ties

Given the variational inequality:

find x∗ ∈ K s.t. 〈F (x∗), y − x∗〉 ≥ 0, ∀x ∈ K, (V I)

where F : K −→ Rn, K ⊆ Rn, a gap function p : K −→ R is a non-negative function
that fulfils the condition p(x) = 0 if and only if x is a solution of V I. Therefore,
solving a V I is equivalent to the minimization of the gap function on the feasible set
K. A first example of gap function was given by Auslender [1] who considered the
function p(x) := supy∈K〈F (x), x−y〉. Similarly to the scalar case, a gap function can
be defined for a vector variational inequality.
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Definition 5.1 A function p : K −→ R is a gap function for V V I iff
i) p(x) ≥ 0, ∀x ∈ K;
ii) p(x) = 0 if and only if x is a solution of V V I.

Consider the following function ψ : K −→ R:

ψ(x) := min
(µ,λ)∈S

sup
y∈X

[〈µ, f(x, y)〉 + 〈λ, g(y)〉],

where S := {(µ, λ) ∈ (C∗ ×D∗) : ‖(µ, λ)‖ = 1}.
Let F : X −→ Rp×n, f : X × X −→ Rp, f(x, y) = F (x)(x − y), and Ω := {x ∈
K : ψ(x) = 0}. The saddle point condition, that characterizes the separation in the
image space (see the Proposition 3.1), allows to prove that ψ(x) is a gap function for
V V I.

Theorem 5.1 Let g be a D–function on the convex set X ⊆ Rn.

1. Assume that C := Rp
+ and that, for every i = 1, . . . , p and ∀x∗ ∈ Ω, the following

system is possible

fi−(x∗, y) > 0, g(y) ∈ intD, y ∈ X; Si(x
∗)

then ψ(x) is a gap function for V V I.

2. Assume that C is an open convex cone and that

∃ȳ ∈ X such that g(ȳ) ∈ intD; (8)

then ψ(x) is a gap function for V V I.

Proof. 1. It is easy to prove that ψ(x) ≥ 0, ∀x ∈ K; in fact, if (µ, λ) ∈ (C∗×D∗),
then

〈µ, f(x, x)〉+ 〈λ, g(x)〉 = 〈λ, g(x)〉 ≥ 0.

Suppose that x∗ is a solution of V V I. Since f(x, y) is a linear function in the variable
y and g is a D–function, the set E(x∗) is convex (see Remark 2.1). Therefore E(x∗)
and H admit a linear separation. Without loss of generality we can suppose that the
coefficients of the separating hyperplane (µ∗, λ∗) ∈ S. From Proposition 3.1, we have
that (µ∗, λ∗, x∗) is a saddle point for L(x∗;µ, λ, y) := −[〈µ, f(x∗, y)〉 + 〈λ, g(y)〉] on
(C∗×D∗)×X and the saddle value L(x∗;µ∗, λ∗, x∗) = 0 (see Remark 3.1). Recalling
that the saddle point condition can be characterized by suitable minimax problems
[15], we have

min
(µ,λ)∈C∗×D∗

sup
y∈X

[〈µ, f(x, y)〉 + 〈λ, g(y)〉] = L(x∗;µ∗, λ∗, x∗) = 0. (9)

Since (µ∗, λ∗) ∈ S, taking into account (9), we obtain that ψ(x∗) = 0.
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Vice–versa, suppose that ψ(x∗) = 0. Then ∃(µ∗, λ∗) ∈ S, such that

〈µ∗, f(x∗, y)〉+ 〈λ∗, g(y)〉 ≤ 0, ∀y ∈ X.

For Theorem 2.1, the possibility of the system Si(x
∗) for i = 1, . . . , p, implies that

µ∗ > 0. Applying Proposition 2.4 , we obtain that x∗ is a solution of V V I.
2. The proof is analogous to the one of 1 using (8) instead of the fact that Si(x

∗) is
possible for i = 1, . . . , p and replacing the condition µ∗ > 0 with µ∗ 6= 0. 2

Remark 5.1 We observe that hx(µ, λ) := supy∈X [〈µ, f(x, y)〉 + 〈λ, g(y)〉], being the
supremum of a collection of linear functions, is a convex function, so that ψ(x) =
min(µ,λ)∈S hx(µ, λ) is the optimal value of a parametric problem on a compact set,
with a convex objective function.

The gap function ψ that we have analysed in this section, in general, is not
differentiable. Following the line adopted in [5, 16], adding a suitable regularizing
term H(x, y) : X ×X −→ R to the function 〈µ, f(x, y)〉 + 〈λ, g(y)〉, it is possible to
obtain a differentiable gap function for V V I. To this aim, scalarization methods (see
e.g. [11]) for V V I can be a further useful tool to carry out the analysis.
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