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Abstract: A new class of gap functions associated to the variational inequality
introduced by Minty is defined. Descent methods for the minimization of the
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algorithms for solving strictly and strongly monotone variational inequalities,
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1 INTRODUCTION

The gap function approach for Variational Inequalities (for short, V I) has al-
lowed to develop a wide class of descent methods for solving the classic V I
defined by the following problem:

find y∗ ∈ K s.t. 〈F (y∗), x− y∗〉 ≥ 0, ∀x ∈ K, (V I)

where F : IRn −→ IRn, K ⊆ IRn and 〈·, ·〉 is the inner product in IRn.
We recall that a gap function p : IRn −→ IR is a non-negative function on K,

such that p(y) = 0 with y ∈ K if and only if y is a solution of V I. Therefore
solving a V I is equivalent to the (global) minimization of the gap function on
K.
In the last years the efforts of the scholars have been directed to the study of
differentiable gap functions in order to simplify the computational aspects of
the problem. See Harker et al (1990), for a survey on the theory and algorithms
developed for V I.

The problem of defining a continuously differentiable gap function was first
solved by Fukushima (1992) whose approach was generalized by Zhu et al
(1994); they proved that

g(y) := max
x∈K

[〈F (y), y − x〉 −G(x, y)]

is a continuously differentiable gap function for V I under the following condi-
tions:
G(x, y) : IRn× IRn −→ IR, is a non–negative, continuously differentiable,

strongly convex function on the convex set K with respect to x, such that

G(y, y) = 0 and ∇xG(y, y) = 0, ∀y ∈ K.

In the particular case where G(x, y) := 1
2 〈x− y,M(x− y)〉, where M is a sym-

metric and positive definite matrix of order n, it is recovered the gap function
introduced by Fukushima (1992).

Mastroeni (1999) showed that the gap function approach for V I developed
by Fukushima (1992), Zhu et al (1994), can be extended to the variational
inequality introduced by Minty (1962):

find x∗ ∈ K s.t. 〈F (y), x∗ − y〉 ≤ 0, ∀y ∈ K. (V I∗)

The interest in the study of Minty Variational Inequality had, at first, theoret-
ical reasons, mainly in the analysis of existence results concerning the classic
V I. In fact, under the hypotheses of continuity and pseudomonotonicity of the
operator F , V I∗ is equivalent to V I (Karamardian (1976)). Recently, John
(1998) has shown that V I∗ provides a sufficient condition for the stability of
equilibrium solutions of autonomous dynamical systems:

dx

dt
+ F (x) = 0, x ∈ K,
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where x = x(t), t ≥ 0.
Moreover some algorithmic applications have been developed in the field of

bundle methods for solving V I (see e.g. Lemarechal et al (1995)).
In this paper, we will deepen the analysis of descent methods for V I∗ initi-

ated by Mastroeni (1999). In particular, we will define an inexact line-search
algorithm for the minimization of a gap function associated to the problem
V I∗.

In Section 2 we will recall the main properties of the gap functions related
to V I∗.
In Section 3 we will develop an inexact descent method for V I∗, in the hy-
pothesis of strong monotonicity of the operator F . Section 4 will be devoted to
a brief outline of the applications of Minty Variational Inequality and to the,
recently introduced, extension to the vector case (Giannessi (1998)).
We recall the main notations and definitions that will be used in the sequel. A
function f : IRn −→ IR is said quasi–convex on the convex set K iff:

f(λx1 + (1− λ)x2) ≤ max{f(x1), f(x2)}, (1.1)

∀x1, x2 ∈ K,∀λ ∈ [0, 1].
If f is differentiable on K, then f is quasi–convex on K iff:

f(x1) ≤ f(x2) =⇒ 〈∇f(x2), x1 − x2〉 ≤ 0, ∀x1, x2 ∈ K. (1.2)

A function f : K −→ IR is said strictly quasi–convex iff strict inequality holds
in (1.1), for every x1 6= x2 and every λ ∈ (0, 1). This last definition has been
given by Ponstein (1967). Different definitions of strict quasi–convexity can be
found in the literature ( see e.g. Karamardian (1967)): for a deeper analysis on
this topic see Avriel et al (1981) and references therein. A strictly quasi–convex
function has the following properties (Thomson et al (1973)):

(i)f is quasi–convex on K,
(ii) every local minimum point of f on K is also a global minimum point on

K,
(iii) if f attains a global minimum point x∗ on K then x∗ is the unique

minimum point for f on K.

Let X,Y be metric spaces. A point to set map A : X −→ 2Y is upper
semicontinuous (for short, u.s.c.) according to Berge at a point λ∗ ∈ X if, for
each open set B ⊃ Aλ∗, there exists a neighborhood V of λ∗ such that

Aλ ⊂ B, ∀λ ∈ V.

A is lower semicontinuous (for short, l.s.c.) according to Berge at a point λ∗ ∈
X if, for each open set B satisfying B ∩ Aλ∗ 6= ∅, there exists a neighborhood
V of λ∗ such that

Aλ ∩B, ∀λ ∈ V.
A is called closed at λ∗ ∈ X iff

λk −→ λ∗ ∈ X, yk −→ y ∈ Y,with yk ∈ Aλk ∀k, implies that y ∈ Aλ∗.
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A point to set map is called closed on S ⊂ X if it is closed at every point of S.

We will say that the mapping F : IRn −→ IRn is monotone on K
iff:

〈F (y)− F (x), y − x〉 ≥ 0, ∀x, y ∈ K;

it is strictly monotone if strict inequality holds ∀x 6= y.
We will say that the mapping F is pseudomonotone on K iff:

〈F (y), x− y〉 ≥ 0 implies 〈F (x), x− y〉 ≥ 0, ∀x, y ∈ K.

We will say that F is strongly monotone on K (with modulus µ > 0) iff:

〈F (y)− F (x), y − x〉 ≥ µ‖y − x‖2, ∀x, y ∈ K.

It is known (Ortega et al (1970)) that, if F is continuously differentiable on
K, then F is strongly monotone on K iff

〈∇F (y)d, d〉 ≥ µ‖d‖2, ∀d ∈ IRn, ∀y ∈ K,

where ∇F denotes the Jacobian matrix associated to F .

2 A GAP FUNCTION ASSOCIATED TO MINTY VARIATIONAL

INEQUALITY

In this section, we will briefly recall the main results concerning the gap function
theory for V I∗ (Mastroeni (1999)). Following the analysis developed for the
classic V I, we introduce the gap function associated to V I∗.

Definition 2.1 Let K ⊆ IRn. The function p : IRn −→ IR is a gap function
for V I∗ iff:
i) p(y) ≥ 0, ∀y ∈ K;
ii) p(y) = 0 and y ∈ K iff y is a solution for V I∗.

By means of a suitable regularization of the variational inequality, it is pos-
sible to define a continuously differentiable gap function for V I∗ (Mastroeni
(1999)).

Let H(x, y) : IRn× IRn −→ IR be a non-negative, differentiable function,
such that

H(x, x) = 0, ∀x ∈ K; (2.1)

∇yH(x, x) = 0, ∀x ∈ K. (2.2)

Proposition 2.1 Let K be a convex set in IRn. Suppose that H : IRn× IRn −→
IR, is a non negative, differentiable function on K that fulfils (2.1) and (2.2)
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and F : IRn −→ IRn is a differentiable and pseudomonotone operator on K.
Then

h(x) := sup
y∈K

[〈F (y), x− y〉 −H(x, y)]

is a gap function for V I∗.

Proof: We observe that h(x) ≥ 0, ∀x ∈ K. Suppose that h(x∗) = 0 with
x∗ ∈ K. This is equivalent to say that x∗ is a global minimum point of the
problem

min
y∈K

[〈F (y), y − x∗〉+H(x∗, y)].

The convexity of K implies that x∗ is a solution of the variational inequality

〈∇y[q(x∗, x∗) +H(x∗, x∗)], y − x∗〉 ≥ 0, ∀y ∈ K,

where q(x, y) := 〈F (y), y − x〉. From (2.2) we obtain

〈∇yq(x∗, x∗), y − x∗〉 ≥ 0.

Since ∇yq(x, y) = F (y) + ∇F (y)(y − x) then ∇yq(x∗, x∗) = F (x∗), which
implies that x∗ is a solution of V I. By the pseudomonotonicity of F , we obtain
that x∗ is also a solution of V I∗.
Now suppose that x∗ is a solution of V I∗. Since H(x, y) is non negative, we
have that

〈F (y), y − x∗〉+H(x∗, y) ≥ 0, ∀y ∈ K,

which is equivalent to the condition

max
y∈K

[〈F (y), x∗ − y〉 −H(x∗, y)] = 0.

Since h(x) ≥ 0, ∀x ∈ K, we obtain

h(x∗) = min
x∈K

max
y∈K

[〈F (y), x− y〉 −H(x, y)] = 0.

ut

Let us consider the differentiability properties of the function h(x).

Proposition 2.2 Let K be a nonempty compact convex set in IRn. Suppose
that F is continuous on an open set A ⊃ K, H : IRn× IRn −→ IR is continuously
differentiable on A × A and the function φ(x, y) := 〈F (y), y − x〉 + H(x, y)
is strictly quasi convex with respect to y, ∀x ∈ K, then h(x) is continuously
differentiable on K and its gradient is given by

∇h(x) = F (y(x))−∇xH(x, y(x))

where y(x) is the solution of the problem miny∈K φ(x, y).
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Proof: We observe that

h(x) = − inf
y∈K

φ(x, y) (2.3)

Since φ(x, y) is strictly quasi convex with respect to y then there exists a unique
minimum point y(x) of the problem (2.3) . Applying Theorem 4.3.3 of Bank et
al (1983) (see the Appendix), we obtain that y(x) is u.s.c. according to Berge
at x and, being y(x) single-valued, it follows that y(x) is continuous at x.

Since F is continuous and H is continuously differentiable then ∇xφ is con-
tinuous. Therefore, from theorem 1.7 Chapter 4 of Auslender (1976) (see the
Appendix), taking into account that (2.3) has a unique minimum point, it
follows that h is differentiable in the sense of Gateaux at x and

h′(x) = −∇xφ(x, y(x)).

From the continuity of F , y(x) and ∇xH, it follows that h′(x) is continuous
at x so that h is continuously differentiable and

∇h(x) = h′(x) = F (y(x)−∇xH(x, y(x)).

ut

3 EXACT AND INEXACT DESCENT METHODS

In the previous section we have shown, that under suitable assumptions on the
operator F and the function H, the gap function associated to the variational
inequality V I∗:

h(x) := sup
y∈K

[〈F (y), x− y〉 −H(x, y)]

is continuously differentiable on K. This considerable property allows us to
define descent direction methods for solving the problem

min
x∈K

h(x). (3.1)

After recalling an exact descent method proposed by Mastroeni (1999), we will
analyse an inexact line search method. We will assume that

1. K is a nonempty compact and convex set in IRn;

2. φ(x, y) := 〈F (y), y − x〉+H(x, y) is strictly quasi convex with respect to
y, ∀x ∈ K;

3. F is a continuously differentiable operator on an open set A ⊃ K;

4. H(x, y) : IRn× IRn −→ IR is a non negative function on K, which is
continuously differentiable on A×A. Moreover, we suppose that it fulfils
conditions (2.1) and (2.2) and the further assumption:

∇xH(x, y) +∇yH(x, y) = 0, ∀x, y ∈ K. (3.2)
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Remark 3.1 The hypothesis 4 is fulfilled by the function H(x, y) := 1
2 〈M(x−

y), x − y〉 where M is a symmetric matrix of order n. With this choice of the
functionH, the hypothesis 2 is fulfilled when 〈F (y), y−x〉 is convex with respect
to y, ∀x ∈ K, and M is positive definite; for example when F (y) = Cy+b where
C is a positive semidefinite matrix of order n and b ∈ IRn. A characterization
of strict quasi convexity, in the differentiable case, is given in Theorem 3.26 of
Avriel et al (1981).
In order to obtain a function H which fulfils (2.1),(2.2) and the condition (3.2),
as noted by Yamashita et al (1997), it must necessarily be

H(x, y) = ψ(x− y),

where ψ : IRn −→ IR is nonnegative, continuously differentiable and such that
ψ(0) = 0.

We recall that, from Proposition 2.2, h is a continuously differentiable func-
tion and ∇h(x) = F (y(x)) − ∇xH(x, y(x)), where y(x) is the solution of the
problem

min
y∈K

φ(x, y). P (x)

Lemma 3.1 Suppose that the hypotheses 1–4 hold and, furthermore, ∇F (y) is
a positive definite matrix, ∀y ∈ K. Let y(x) be the solution of P (x). Then x∗

is a solution of V I∗ iff x∗ = y(x∗).

Proof: Since ∇F (y) is a positive definite matrix, ∀y ∈ K, and F is con-
tinuously differentiable, then F is a strictly monotone operator (Ortega et al
(1970), Theorem 5.4.3). Therefore x∗ is a solution of V I∗ iff

0 = h(x∗) = −min
y∈K

φ(x∗, y)

and, by the uniqueness of the solution, iff y(x∗) = x∗. ut

Next result proves that y(x) − x provides a descent direction for h at the
point x, when x 6= x∗.

Proposition 3.1 Suppose that the hypotheses 1–4 hold and F is strongly mono-
tone on K (with modulus µ > 0). Let y(x) be the solution of the problem P (x)
and d(x) := y(x)− x. Then

〈∇h(x), d(x)〉 ≤ −µ‖d(x)‖2.

Proof: Since K is a convex set y(x) fulfils the condition

〈∇yφ(x, y(x)), z − y(x)〉 ≥ 0,∀z ∈ K,

that is, putting q(x, y) := 〈F (y), y − x〉,

〈∇yq(x, y(x)), z − y(x)〉+ 〈∇yH(x, y(x)), z − y(x)〉 ≥ 0, ∀z ∈ K.
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In particular for z := x we obtain

〈∇yq(x, y(x)), x− y(x)〉 ≥ −〈∇yH(x, y(x)), x− y(x)〉. (3.3)

Since ∇yq(x, y) = F (y) +∇F (y)(y− x), taking into account assumption 4 and
(3.3), we have
〈∇xh(x), y(x)− x)〉 = 〈F (y(x)), y(x)− x〉 − 〈∇xH(x, y(x)), y(x)− x〉 ≤
〈F (y(x)), y(x)− x〉+ 〈∇yq(x, y(x)), x− y(x)〉 = 〈F (y(x)), y(x)− x〉 +
〈F (y(x)), x− y(x)〉 + 〈∇F (y(x))(y(x)− x), x− y(x)〉 =

〈∇F (y(x))(y(x)− x), x− y(x)〉 ≤ −µ‖d(x)‖2,

and the proposition is proved.

Remark 3.2 If we replace the hypothesis of strong monotonicity of the op-
erator F , with the one of strict monotonicity, we obtain the weaker descent
condition:

〈∇h(x), d(x)〉 < 0,

provided that y(x) 6= x.

The following exact line search algorithm has been proposed by Mastroeni
(1999):

Algorithm 1.

Step 1. Let x0 ∈ K, ε be a tolerance factor and k = 0. If h(x0) = 0, then
STOP, otherwise go to step 2.

Step 2. Let dk := y(xk)− xk.

Step 3. Let tk ∈ [0, 1] be the solution of the problem

min{h(xk + tdk) : 0 ≤ t ≤ 1}; (3.4)

put xk+1 = xk + tkdk.
If ‖xk+1 − xk‖ < ε, then STOP, otherwise let k = k + 1 and go to step 2.

The following convergence result holds (Mastroeni (1999)):

Theorem 3.1 Suppose that the hypotheses 1–4 hold and ∇F (y) is positive def-
inite, ∀y ∈ K. Then, for any x0 ∈ K the sequence {xk} defined by Algorithm 1
belongs to the set K and converges to the solution of the variational inequality
V I∗.

Proof: Since ∇F (y) is positive definite ∀y ∈ K, and F is continuously differ-
entiable then F is a strictly monotone operator (Ortega et al (1970), Theorem
5.4.3) and therefore both problems V I and V I∗ have the same unique solution.
The convexity of K implies that the sequence {xk} ⊂ K since tk ∈ [0, 1]. It
is proved in the Proposition 2.2 that the function y(x) is continuous, which
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implies the continuity of d(x). It is known (see e.g. Minoux (1986), Theorem
3.1) that the map

U(x, d) := {y : y = x+ td, 0 ≤ t ≤ 1, h(y) = min
0≤t≤1

h(x+ td)}

is closed whenever h is a continuous function. Therefore the algorithmic map
xk+1 = U(xk, d(xk)) is closed, (see e.g. Minoux (1986), Proposition 1.3). Zang-
will’s convergence theorem (Zangwill (1969)) (see the Appendix) implies that
any accumulation point of the sequence {xk} is a solution of V I∗. Since V I∗

has a unique solution, the sequence {xk} converges to the solution of V I∗. ut

Algorithm 1 is based on an exact line search rule: it is possible to consider
the inexact version of the previous method.

Algorithm 2.

Step 1. Let x0 be a feasible point, ε be a tolerance factor and β, σ parameters
in the open interval (0, 1). Let k = 0.

Step 2. If h(xk) = 0, then STOP, otherwise go to step 3.

Step 3. Let dk := y(xk) − xk. Select the smallest nonnegative integer m such
that

h(xk)− h(xk + βmdk) ≥ σβm‖dk‖2,

set αk = βm and xk+1 = xk + αkdk.
If ‖xk+1 − xk‖ < ε, then STOP, otherwise let k = k + 1 and go to step 2.

Theorem 3.2 Suppose that the hypotheses 1–4 hold, F is a strongly monotone
operator on K with modulus µ, σ < µ/2, and {xk} is the sequence defined in
the Algorithm 2.

Then, for any x0 ∈ K, the sequence {xk} belongs to the set K and converges
to the solution of the variational inequality V I∗.

Proof: The convexity of K implies that the sequence {xk} ⊂ K, since αk ∈
[0, 1]. The compactness of K ensures that {xk} has at least one accumulation
point. Let {x̃k} be any convergent subsequence of {xk} and x∗ be its limit
point.
We will prove that y(x∗) = x∗ so that, by Lemma 3.1, x∗ is the solution of
V I∗.

Since y(x) is continuous (see the proof of Proposition 2.2) it follows that d(x)
is continuous; therefore we obtain that d(x̃k) −→ d(x∗) =: d∗ and h(x̃k) −→
h(x∗) =: h∗. By the line search rule we have

h(x̃k)− h(x̃k+1) ≥ σα̃k‖d(x̃k)‖2, ∀k ∈ N, (3.5)

for a suitable subsequence {α̃k} ⊆ {αk}.
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Let us prove the relation (3.5). We observe that, by the line search rule, the
sequence {h(xk)} is strictly decreasing. Let k ∈ N and xk̄ := x̃k, for some
k̄ ∈ N ; we have

h(x̃k)− h(x̃k+1) ≥ h(xk̄)− h(xk̄+1) ≥ σαk̄‖d(xk̄)‖2.

Putting α̃k := αk̄, we obtain (3.5).
Therefore,

α̃k‖d(x̃k)‖2 −→ 0.

If α̃k > βm0 > 0, for some m0, ∀k > k̄ ∈ N , then ‖d(x̃k)‖ −→ 0 so that
y(x∗) = x∗.
Otherwise suppose that there exists a subsequence {αk′} ⊆ {α̃k} such that
αk′ −→ 0. By the line search rule we have that

h(xk′)− h(xk′ + ᾱk′d(xk′))
ᾱk′

< σ‖d(xk′)‖2, (3.6)

where ᾱk′ = αk′
β .

Taking the limit in (3.6) for k −→ ∞, since ᾱk′ −→ 0 and h is continuously
differentiable, we obtain

−〈∇h(x∗), d∗〉 ≤ σ‖d∗‖2. (3.7)

Recalling Proposition 3.1, we have also

−〈∇h(x∗), d∗〉 ≥ µ‖d∗‖2.

Since σ < µ
2 , it must be ‖d∗‖ = 0, which implies y(x∗) = x∗. ut

4 SOME APPLICATIONS AND EXTENSIONS OF MINTY

VARIATIONAL INEQUALITY

Besides the already mentioned equivalence with the classic V I, Minty varia-
tional inequality enjoys some peculiar properties that justify the interest in the
development of the analysis. We will briefly recall some applications in the
field of optimization problems and in the theory of dynamical systems. Finally
we will outline the recently introduced extension to the vector case (Giannessi
(1998)).

Consider the problem

min f(x), s.t. x ∈ K, (4.1)

where f : IRn −→ IR is a continuously differentiable function on the convex set
K.

The following statement has been proved by Komlosi (1999).

Theorem 4.1 Let F := ∇f . If x∗ is a solution of V I∗ then x∗ is a global
minimum point for (4.1).
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In some particular cases, the previous result leads to an alternative charac-
terization of a global minimum point of (4.1).

Corollary 4.1 Let F := ∇f and suppose that f is a quasi–convex function on
K. Then x∗ is a solution of V I∗ if and only if it is a global minimum point for
(4.1).

Proof: Suppose that x∗ is a global minimum point of (4.1). By the equivalent
characterization (1.2) of the quasi-convexity, in the differentiable case, it follows
that x∗ is a solution of V I∗. The converse implication follows from Theorem
4.1. ut

A further interesting application can be found in the field of autonomous
dynamical systems:

dx

dt
+ F (x) = 0, x ∈ K, (DS)

where x = x(t), t ≥ 0.

Suppose that ∇F is continuous on the set

Ω := {x ∈ K : ‖x‖ < A},

where A > 0, so that there exists a unique solution x(t) of DS with x(t0) = x0.
Consider an equilibrium point x∗ ∈ Ω, which fulfils the relation F (x∗) = 0. It
is obvious that

x(t) = x∗, ∀t ≥ 0, x(t0) = x∗,

is a solution for DS. The following definition clarifies the concept of stability
of the previous solution.

Definition 4.1 The equilibrium point x∗ is said stable for DS if, for every
0 ≤ ε < A, there exists 0 ≤ δ ≤ ε such that if ‖x0−x∗‖ ≤ δ, then ‖x(t)−x∗‖ ≤
ε,∀t ≥ 0, where x(t) is the solution of DS with the initial condition x(t0) = x0.

Minty Variational Inequality provides a sufficient condition for the equilibrium
point x∗ to be stable.

Theorem 4.2 (John (1998)) Let x∗ be an equilibrium point for DS. If

〈F (y), x∗ − y〉 ≤ 0, ∀y ∈ Ω,

then x∗ is stable.

Giannessi (1998) has extended the analysis of V I∗ to the vector case and has
obtained a first order optimality condition for a Pareto solution of the vector
optimization problem:

minC\{0}f(x) s.t. x ∈ K, (4.2)
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where C is a convex cone in IR`, f : K −→ IR` and K ⊆ IRn.
The Minty vector variational inequality is defined by the following problem:

find x ∈ K such that

F (y)(x− y) 6≥C\{0} 0, ∀y ∈ K, (V V I∗)

where, a ≥C\{0} b iff a− b ∈ C \ {0}, F : IRn −→ IR`×n.
We observe that, if C := IR+, then Minty vector variational inequality collapses
into V I∗.

In the hypotheses that C = intIR`+, F = ∇f and f is a (componentwise)
convex function, Giannessi (1998) proved that x is an optimal solution for (4.2)
if and only if it is a solution of V V I∗.
Further developments in the analysis of V V I∗ can be found in Giannessi (1998),
Komlosi (1999), Mastroeni (2000).

5 CONCLUDING REMARKS

We have shown that the gap function theory developed for the classic V I, intro-
duced by Stampacchia, can be extended, under further suitable assumptions, to
the Minty Variational Inequality. These extensions are concerned not only with
the theoretical point of view, but also with the algorithmic one: under strict or
strong monotonicity assumptions on the operator F , exact or inexact descent
methods, respectively, can be defined for V I∗ following the line developed for
V I.

It would be of interest to analyse the relationships between the class of gap
functions associated to V I and the one associated to V I∗ in the hypothesis of
pseudomonotonicity of the operator F , which guarantees the equivalence of the
two problems. This might allow to define a resolution method, based on the
simultaneous use of both gap functions related to V I and V I∗.

6 APPENDIX

In this appendix we recall the main theorems that have been employed in
the proofs of the results stated in the present paper. Theorem 6.1 (Bank
et al (1983)) is concerned with the continuity of the optimal solution map
of a parametric optimization problem. Theorem 6.2 (Auslender (1976)) is a
generalization of well-known results on directional differentiability of extremal-
value functions. Theorem 6.3 is the Zangwill convergence theorem for a general
algorithm formalized under the form of a multifunction.

Consider the following parametric optimization problem:

v(x) := inf{f(x, y) s.t. y ∈M(x)},

where f : Λ× Y −→ IR, M : Λ −→ 2Y , Y ⊆ IRn and Λ is a metric space.
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Let ψ : Λ −→ 2Y be the optimal set mapping

ψ(x) =
{
y ∈M(x) : f(x, y) = v(x)

}
.

Theorem 6.1 ( Bank et al (1983), Theorem 4.3.3 ) Let Y := IRn and x0 ∈ Λ.
Suppose that the following condition are fulfilled:

1. ψ(x0) is non-empty and bounded;

2. f is lower semicontinuous on {x0}×Y and a point y0 ∈ ψ(x0) exists such
that f is upper semicontinuous at (x0, y0);

3. f(x, ·) is quasiconvex on Y for each fixed x ∈ Λ;

4. M(x) is a convex set, ∀x ∈ Λ;

5. M(x0) is closed and the mapping M is closed and lower semicontinuous,
according to Berge, at x0.

Then ψ is upper semicontinuous according to Berge at x0.

We observe that, if M(x) = K, ∀x ∈ Λ, where K is a nonempty convex and
compact set in IRn, then the assumptions 1,4 and 5, of Theorem 6.1, are clearly
fulfilled and it is possible to replace the assumption Y := IRn with Y := K.

Next result is well-known and can be found in many generalized versions:
we report the statement of Auslender (1976). We recall that a function h :
IRp −→ IR is said to be ”directionally differentiable” at the point x∗ ∈ IRp in
the direction d, iff there exists finite:

lim
t→0+

h(x∗ + td)− h(x∗)
t

=: h′(x∗; d).

If there exists z∗ ∈ IRp suct that h′(x∗, d) = 〈z∗, d〉 then h is said to be differ-
entiable in the sense of Gateaux at x∗, and z∗ is denoted by h′(x∗).

Theorem 6.2 (Auslender (1976), Theorem 1.7, Chapter 4) Let

v(x) := inf
y∈Y

f(x, y),

where f : IRp×Y −→ IR. Suppose that

1. f is continuous on IRp×Y ;

2. ∇xf exists and is continuous on Ω× Y , where Ω is an open set in IRp;

3. Y is a closed set in IRn;

4. For every x ∈ IRp, ψ(x) := {y ∈ Y : f(x, y) = v(x)} is nonempty and
there exists a neighbourhood V (x) of x, such that ∪z∈V (x)ψ(z) is bounded.
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Then, for every x ∈ Ω, we have:

v′(x; d) = inf
y∈ψ(x)

〈∇xf(x, y), d〉.

Moreover, if for a point x∗ ∈ Ω, ψ(x∗) contains exactly one element y(x∗), then
v is differentiable, in the sense of Gateaux, at x∗ and

v′(x∗) = ∇xf(x∗, y(x∗)).

We observe that, when Y is a nonempty compact set, then the assumptions 3
and 4, of Theorem 6.2, are obviously fulfilled.

The reader can also refer to Hogan (1973) and references therein for similar
versions of the previous theorem.

Finally, we recall the statement of Zangwill Convergence Theorem as re-
ported in Minoux (1986). Given an optimization problem P defined on X ⊆
IRn, let M be the set of the points of X that fulfil a suitable necessary opti-
mality condition. Suppose that, in order to solve P , it is used an algorithm
represented by a point to set map A : X −→ 2X .

Definition 6.1 We say that z : X −→ IR is a descent function (related to the
algorithm A) if it is continuous and has the following properties:

1. x 6∈ M implies z(y) < z(x) ∀y ∈ A(x),

2. x ∈M implies z(y) ≤ z(x) ∀y ∈ A(x).

Theorem 6.3 ( Zangwill (1969)) Let P be an optimization problem on X and
M be the set of the points of X that fulfil a certain necessary optimality condi-
tion.
Let A : X −→ 2X be the algorithmic point to set mapping and consider a
sequence {xk} generated by the algorithm, i.e. satisfying xk+1 ∈ A(xk).
Suppose that the following three conditions hold:

1. Every point xk is contained in a compact set K ⊂ X;

2. There exists a descent function z;

3. The point to set map A is closed on X \M and ∀x ∈ X \M, A(x) 6= ∅.

Then, for every x which is the limit of a convergent subsequence of {xk}, we
have that x ∈M.
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