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A MARKOV CHAIN MODEL FOR TRAFFIC EQUILIBRIUM PROBLEMS

G. Mastroeni1

Abstract. We consider a stochastic approach in order to define an equilibrium model for a
traffic-network problem. In particular, we assume a Markovian behaviour of the users in their
movements throughout the zones of the traffic area. This assumption turns out to be effective
at least in the context of urban traffic, where, in general, the users tend to travel by choosing
the path they find more convenient and not necessarily depending on the already travelled part.

The developed model is a homogeneous Markov chain, whose stationary distributions (if any)
characterize the equilibrium.

Keywords: Traffic assignment problems, Markov chains, network flows.

Résumé. Nous considérons une approche stochastique pour définir un modèle d’ équilibre
pour un problème de circulation sur des réseaux. En particulier, nous supposons aux usagers
une attitude markovienne dans leurs déplacements dans l’aire de circulation. Cette hypothèse
est réaliste au moins dans le contexte de la circulation urbaine, dans laquelle les usagers ont
tendance à se déplacer en choisissant l’itinéraire successif qu’ils trouvent le plus favorable, et
pas forcément celui qui dépend du chemin déjà parcouru. Le modèle que nous proposons est une
chaine de Markov homogène, dont les distributions stationnaires (si elles existent) caractérisent
l’ équilibre.

1. Introduction

The complexity of the analysis of vehicular and pedestrian mobility in an urban area has the
natural consequence that the related problems cannot be treated by means of a single mathe-
matical model. In fact, traffic assignment problems are characterized by several aspects among
which we mention the knowledge of the vehicular (pedestrian, etc.) demand, the management
of the road network (streets to be made one-way only, numbers of lanes needed, semaphorical
times, etc.) and the definition of the equilibrium flows.

In the literature, there exists a very wide variety of models employed for the description
of the traffic assignment problem, often related to the same aspect of the analysis: from the
classic minimum-cost flow model up to variational inequality and stochastic queuing models (see
e.g. [1, 4, 7, 12,13,15] and references therein).
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In this paper we propose a discrete probabilistic approach to the traffic assignment problem
for at least an urban area, based on the theory of Markov chains.

The model that we present can be particularly useful for a more accurate estimate of the
traffic demand between two arbitrary (not necessarily adjacent) zones in the urban area that we
suppose to be divided in n zones

Z1, . . . , Zn,

which are assumed to be homogeneous in the sense that the subdivision is made in such a way
that the traffic inside each zone is less relevant than that between distinct zones.

The traffic demand is in general characterized by two distinct components: the trend and the
fluctuations in the short period. The trend can be obtained by means of a statistical census,
while the fluctuations are mainly evaluated by means of real time observations. Unfortunately,
the data of a statistical census are not always very close to the actual conditions of the observed
phenomenon, owing to the long time needed for the elaboration of the informations collected
by means of the statistical sampling. On the contrary, the input data of the proposed model
can be obtained, in real time, by detecting the passages of the users between adjacent zones.
These data allow us to construct the transition matrix of a homogeneous Markov chain whose
entries can be regarded as the conditional probabilities of passing from the zone Zi to the zone
Zj , given the event of being in Zi.

Fixed a suitable interval (of time) [T0, T1], we suppose to know the numbers

sij , i, j = 1, . . . , n; (1)

the generic of them gives the number of movements between Zi and Zj during [T0, T1]. Put
si :=

∑n
j=1 sij , the total number of movements originating from Zi, if T := T1−T0 is sufficiently

small we can suppose that sij is proportional to si, so that

sij = aijsi, i, j = 1, . . . , n, (2)

where aij is a constant which represents the proportion of traffic from Zi to Zj , for i, j = 1, . . . , n.
The quantities sij can be determined by means of real observations of the traffic: each road may
be provided with sensors that detect the number of passages of vehicles between the various
zones. Equations (2) allow us to determine the constants aij . We will show that the matrix
A := [aij ] is a powerful tool in order to develop the analysis of the behaviour of the traffic. By
definition it is immediate to observe that

0 ≤ aij ≤ 1 and
n∑

j=1

aij = 1, i, j = 1, . . . , n. (3)

These properties suggest to adopt a homogeneous Markov chain as the model that describes
the traffic in the urban area: actually, the constants aij can be considered as the conditional
probabilities of passing from the zone Zi to the zone Zj , given the event of being in Zi. As it
is evident from the definition, such probabilities depend only on Zi and Zj ; this is equivalent to
assume that a user tends to travel a path which is mainly determined by the amount of traffic
that he finds in each zone he has to cross in order to get to his destination: this is very likely in
the short travels through an urban area. Furthermore, from the theory of the Markov chains, it
follows that the equilibrium distribution of the model can be obtained (if any exists) computing
a suitable eigenvector of the matrix A.
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The model analysed in the paper has been successfully experimented on the urban area of
Pisa, within a co-operation among Italian National Research Council, the County of Pisa, and
the University of Pisa.

The paper is organized as follows. In Section 2 we will state the general features of the
model and point out the assumptions that allow us to prove that the classic relations, which
characterize finite Markov chains, are fulfilled (Section 3). Section 4 will be devoted to the
analysis of the dispersion of the traffic among the zones.

2. Basic setting

Let [T0, L] be an interval of time in which the behaviour of the traffic is homogeneous (for
example, related to the early, the middle, or the final part of the day) and consider and a set of
subintervals [T0, T1], [T1, T2], . . ., each of lenght T � L. Each interval [Tk−1, Tk] will be called
the k−th period of the process, for k = 1, . . . , and we will suppose that, due to the homogeneity
of the traffic condition during [T0, L], it can be characterized by the relations introduced in the
previous section considering the interval [T0, T1].

Let us summarize the assumptions (denoted by A1,A2,...) and definitions (D1,D2,...) that
will be used in what follows:

D1. S := {1, . . . , n} is the set of indexes related to the zones Z1, . . . , Zn, in which we suppose
that the urban area is divided.

The subdivision of the urban area into zones can be made at several levels, each related
to the accuracy of the analysis that we aim to reach. First of all it can be considered a
macro subdivision of the whole area in order to have a general description of the traffic.
Subsequently a refinement of the subdivision of the central zones, where we suppose that
the major part of the traffic is concentrated, could be performed. Moreover, the output
related to the macro or to the micro subdivisions may suggest different ways of splitting
the area into zones: for example, if it results that the movements from the zone Z1 are
mainly directed to the zone Z2 and vice versa, then these two zones could be grouped
together in a new subdivision.

A1. We suppose that the total number of users present in the urban area is a constant M .

This assumption is not restrictive, since our analysis is related to a precise interval of
time [T0, L], and we have assumed to consider only the traffic related to the urban area.
Therefore, the external zones must be chosen in such a way that they are only origin of
movements.

D2. m
(k)
i is the number of users present in the zone Zi in the period k, for i ∈ S and

k = 1, 2, . . .
D3. xk ∈ [0, 1]n is the vector of the traffic distribution in the set of the zones Z1, . . . , Zn in

the k−th period: we put

xk
i =

m
(k)
i

M
, i ∈ S; (4)

By definition, x0 is the initial distribution at time T0.
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The probability distribution xk is a simple uniform distribution on the set S of the
zones: by A1, it follows that

n∑
i=1

m
(k)
i = M, k = 1, 2, . . .

which implies

n∑
i=1

xk
i = 1, k = 1, 2, . . .

D4. s
(k)
ij is the number of the movements between Zi and Zj during the period k.

A2. We assume that the total number of movements originating from Zi in the period k

coincides with m
(k)
i . From the mathematical point of view, it means that the following

relation holds:
n∑

i=1

s
(k)
ij = m

(k)
i , k = 1, 2, . . . (5)

A consequence of the assumption A2 is that all the users are supposed to be moving
during a period: the stationary users in a given zone, are actually moving inside the
same zone.

This might seem a drawback of the model because of the difficulty of the evaluation
of the number of movements s

(k)
ii inside the zone Zi: in fact, these numbers must be

obtained by means of statistical data, since they cannot be detected by means of the
sensors as it happens for the movements between different zones. Anyway, in order
to overcome this problem, we have supposed that the traffic inside each zone is much
less relevant than the one between different zones, so that the error in this particular
evaluation can be neglected.

A3. We assume that

s
(k)
ij = aijm

(k)
i , i, j ∈ S, k = 1, 2, . . . (6)

where aij are constants independent on k.

The relations (6) are obtained assuming that the considerations made in Section 1 for
the interval [T0, T1] are extended to a generic period. Note that, by A2, the total number
of movements originating from the zone Zi coincides with the numbers of users present
in Zi, in the period k. Therefore (6) follows from (2) replacing si with m

(k)
i .

The assumption (6) is of crucial importance in the development of the analysis since
it is the key tool in order to prove that the proposed model can be represented by a
Markov chain.

D5. A := [aij ] ∈ IRn×n will be called the (one period) transition matrix.
D6. A(k) := [a(k)

ij ] ∈ IRn×n is the (k−periods) transition matrix.

The meaning of the matrix A has been widely described in the previous section: each
component aij represents the conditional probability that a user, that in the period k

finds himself in the zone Zi, is in the zone Zj at the period k + 1. The matrix A(k) has
an analogous meaning, with the only difference that the transition time from one zone
to another is given by exactly k periods. Therefore a

(k)
ij is the conditional probability of
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passing from the zone Zi to the zone Zj in exactly k periods, given the event of being in
Zi at the beginning of the first of the k periods: this will be proved in the Proposition
3.1.

Since A is independent on k, the model is completely determined by the matrix A and the
vector x0 (see Proposition 3.1), so that it will be denoted by the couple (x0, A).

Finally, we mention a minor drawback of the model, that can be easily overcome.
It lies on the fact that there is not the possibility to distinguish the behaviour of different

users. In order to clarify this aspect, consider the following situations:
i) At the period k the user 1 goes from the zone Zi to Zj and at the period k + 1, from Zj

to Zk;
ii) At the period k the user 2 goes from the zone Zi to Zj and at the period k + 1, the user 3

goes from Zj to Zk.

We observe that the model cannot detect the two different occurences since only the transitions
between the zones are considered without taking into account the users that perform them.

3. Analysis of the model

The first step in our analysis consists in showing that the model (x0, A) coincides with a
homogeneous Markov chain having A as transition matrix and x0 as initial distribution: next
result shows that the classic relations which characterize finite Markov chains actually hold.

Proposition 3.1. The following relations hold for k = 1, 2, . . . :

xk+1 = xkA, (7)

A(k) = Ak. (8)

Proof. Fixed any k = 1, 2, . . . and j ∈ S, it results

m
(k+1)
j = m

(k)
j +

n∑
i=1

s
(k)
ij −

n∑
i=1

s
(k)
ji = m

(k)
j +

n∑
i=1

aijm
(k)
i −

n∑
i=1

ajim
(k)
j .

Therefore, it follows that

m
(k+1)
j =

n∑
i=1

aijm
(k)
i , j ∈ S.

Dividing both members by M and recalling the definition (4), we obtain (7).
As regards (8), we observe that from (7) it follows that for each q = 0, 1, . . .

xk+q = xqAk, k = 1, 2, . . . (9)

Therefore Ak represents the transition matrix related to k successive periods. �

The relation (9) is a direct generalization of (7) and states the Markov property of lack of
memory of the process. This roughly means that once that the process has reached the period q,
the distributions related to the successive periods do not depend on the conditions of the process
before the period q. This assumption fits particularly well in the context of a traffic problem:
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actually, if it is known the distribution xq of the traffic at the period q, we expect that that the
distributions xq+k do not depend on the distributions related to the periods which precede q,
but only on xq.

By (7), we can easily compute the probability distributions of the traffic related to each
period: the question that arises is if these distributions converge to some probability vector, in
order that the traffic process tends to a precise configuration. The following definition clarifies
the concept of equilibrium distribution for the traffic model.

Definition 3.1. The traffic model (x0, A) is said consistent iff there exists

lim
k→∞

xk = x̄. (10)

x̄ is said the equilibrium distribution of the model.

Next result provides a simple necessary condition in order to compute the eventual equilibrium
distribution.

Proposition 3.2. If x̄ is an equilibrium distribution for (x0, A) then x̄ is a left (probability)
eigenvector of the matrix A corresponding to the eigenvalue 1.

Proof. In order to prove our statement, it is enough to pass to the limit for k → ∞ in (7),
taking into account (10). �

Remark 3.1. We observe that the matrix A always admits the eigenvalue 1. In fact, since A
is stochastic (i.e. the relations (3) hold) we have that det(I − A) = 0 so that the solution set,
say M, of the system

xA = x,
n∑

i=1

xi = 1, x ∈ [0, 1]n. (11)

is nonempty.
M can be considered as the set of absorbing distributions for the model. Actually from (7)

it follows that if there exists k ≥ 0 such that xk ∈M, then xk is an equilibrium distribution.

The consistency of the model is a necessary condition in order to have some practical utility
from the output solution: anyway this is not enough to be able to affirm that such a solution
really reflects the real situation. The equilibrium distribution in general depends on the value
of the initial distribution x0 as can be easily seen taking, for example A = I, the identity
matrix. Therefore, if there is any mistake in the evaluation of x0, then, even though the model
is consistent, we will obtain a not satisfactory solution.

We will say that the model is stable when this circumstance does not occur.

Definition 3.2. The traffic model (x0, A) is said to be stable iff it is consistent and the equilib-
rium point x̄ does not depend on the choice of x0.

The concept of stability is of great importance in our particular context. Actually in the
analysis of the urban traffic, it is very difficult to estimate the initial distribution x0, except for
particular periods of the day as early morning or late evening. On the contrary, it is likely to
have a good approximation of the transition matrix A in real time.

We remark that a stable model can be a powerful tool in order to estimate the fluctuations
of the demand in the short period.
A sufficient condition for the stability of the model is given by the following theorem.
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Theorem 3.1. Suppose that the following condition holds:

there exists k ∈ N such that Ak > 0. (12)
Then the model (x0, A) is stable.

Proof. It is a consequence of a well-known result concerning positive matrices obtained by
Perron and Frobenius (see e.g. [6] Theorem 4.2). �

Remark 3.2. Condition (12) characterizes regular positive matrices and, in the theory of
Markov processes, regular Markov chains.

In the next section we will deepen the analysis of the meaning of the single components of
the matrix Ak in the context of our traffic model.

4. Dispersion of the traffic among the zones

In this section we analyse more in details the traffic between two specific zones of the urban
area. This will allow us to have a better understanding of the behaviour of the users and of
the nature of the equilibrium distribution. To this aim, it will be useful to consider a further
representation of our model given by the directed graph G := (N ,A), where

N := {1, . . . , n} and A := {(i, j) ∈ N ×N : aij > 0, i, j ∈ N}.

The graph G is the classic auxiliary graph associated to the Markov chain having A as transition
matrix.

Let Zi and Zj be fixed distinct zones.

Definition 4.1. We say that Zj is connected to Zi iff

there exists k ∈ N such that a
(k)
ij > 0. (13)

Using the graph interpretation of the model, it is possible to show that the connection between
the zones Zi and Zj is equivalent to the existence of a path in G between the node i and the
node j (see e.g. [5], Theorem 1.12).

Let us consider the asymptotic behaviour of the traffic between Zi and Zj ; to this end suppose
that there exists

lim
k→∞

a
(k)
ij = πij , ∀i, j ∈ S. (14)

Let Π := [πij ]i,j∈S be the limit matrix of the sequence {A(k)}k∈N .

Remark 4.1. It is possible to show that Π is a stochastic matrix and that all the rows of Π
belong to the set M of the absorbing distributions for the model (x0, A) (see e.g. [6] and Remark
3.1).

If (14) holds then, passing to the limit (for k →∞) in (9), we obtain that

x̄ := x0Π (15)

is the equilibrium distribution of the model (x0, A).
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Definition 4.2. We will say that Zj is a transit zone iff

πij = 0, ∀i ∈ S. (16)

We observe that a transit zone is a zone where no user is expected to be after a sufficiently
large number of periods. By definition 4.2 and taking into account (15), we infer that

x̄j = 0, for every transit zone j.

We have shown (see Theorem 3.1 and Remark 3.2) that the regularity of the matrix A is a
sufficient condition for the stability of the model. It also guarantees that no transit zone exists.

Theorem 4.1. Suppose that the matrix A is regular. Then (14) holds and

πij > 0, ∀i, j ∈ S. (17)

Proof. See e.g. [6], Theorem 4.2. �

The regularity of the matrix A can be interpreted saying that, in a sufficiently large number
of periods, the traffic has a complete diffusion in the urban area; actually (17) ensures that there
exists a certain percentage of movements from any zone Zi to any Zj , whatever i and j may be
chosen.

Let us turn our attention on the traffic related to a suitable subset S′ ⊂ S of the zones of the
urban area. It may occur that there exists a subset of zones S′ that is not connected with the
remaining zones: in this case we say that the set S′ is closed. An index of the presence of closed
subsets of zones is

det(I − T ),
where T is a principal submatrix of A.

Proposition 4.1. Let T be the principal submatrix of A obtained by selecting the rows (and
columns) of indexes in the subset S′ ⊂ S. If there exists a closed subset of zones S′′ ⊆ S′, then

det(I − T ) = 0. (18)

Proof. Since S′′ is a closed set of zones then the submatrix B ⊂ A obtained by selecting the
rows and the columns of indexes in S′′ is stochastic. Therefore T contains a principal stochastic
submatrix which implies (18). In fact |det(I − T )| = |det(I − T ′)| where

T ′ =
(

B 0
0 C

)
has been obtained by a permutation of the rows and the columns of T in order to let B coincide
with the first |S′′| rows and columns of T ′ and C is a suitable square matrix of order |S′| − |S′′|.
Let I1 and I2 be the identity matrices of order |S′′| and |S′| − |S′′|, respectively. Since B is
stochastic then

det(I − T ′) = det(I1 −B)det(I2 − C) = 0,

and, therefore det(I − T ) = 0. �

Remark 4.2. If |S′| = 2 then it is simple to prove that (18) is a sufficient condition for the
existence of a closed subset of zones S′′ ⊆ S′.
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Example 4.1 Consider the matrix

A =

 1 0 0
1/2 1/4 1/4
1/3 1/3 1/3


Obviously any principal submatrix T containing the first row and the first column of A fulfils
(18). In fact the zone Z1 is absorbing, since no movements towards any other zone are registered.

Going into details in our analysis, fixed a zone Zi we may be interested in evaluating the
dispersion of the traffic related to this zone.
Denote by Drs the submatrix of I −A obtained by deleting the row r and the column s.

Definition 4.3.

αij :=
det(Djj)
det(Dii)

is called the index of dispersion of the traffic of the zone Zi with respect to Zj, i, j ∈ S and j 6= i.
If det(Dii) = 0 we assume αij = +∞, ∀j 6= i.

Observe that, whenever there exists a closed subset of zones S′′ then it results αij = +∞, for
every couple (i, j) with i 6∈ S′′ and j ∈ S′′, since, by Proposition 4.1, we have that det(Dii) = 0,
for every i 6∈ S′′. This means that there is a possibility not to come back anymore to Zi.

Of particular interest is the case where A is a regular matrix: actually under this hypothesis
we have that

det(Dii) 6= 0, ∀i ∈ S.

In this case αij is a finite number, for every i,j ∈ S and the meaning of the indexes of dispersion
is closely related to the concept of recurrence time in the zone Zi:

τi = min(k ≥ 1 : a user is in Zi)

Remark 4.3. The condition ”k ≥ 1” implies that the value τi does not take into account the
initial distribution x0, therefore, if x0

i 6= 0, then τi indicates the first period when the user comes
back to the zone Zi: that’s why we talk about recurrence time.

Assume that at time T0 the traffic is concentrated in the zone Zi, and denote by Ei(τi) the
mean value of τi under the probability obtained supposing x0

i = 1. The following proposition
relates the indexes of dispersion αij with the mean recurrence time in Zi.

Proposition 4.2. Suppose that the matrix A is regular. The mean recurrence time in the zone
Zi is given by

Ei(τi) =
n∑

j=1

αij , i ∈ S.

Proof. When the matrix A is regular it is possible to show that (see e.g. [10])

Ei(τi) =
1
x̄i

, i ∈ S.

and
x̄i =

det(Dii)∑n
j=1 det(Djj)

, i ∈ S.
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Eliminating the dependence on x̄i in the previous equalities we prove the statement. �

We observe that αij is an index of the contribution that the zone Zj gives to the value of the
mean recurrence time in the zone Zi.

5. Concluding remarks

We have considered a Markov chain model for the traffic assignment problem in an urban area.
The analysis has been carried out under the main assumption that the users adopt a Markovian
behaviour in their movements, which amounts to say the paths they use is determined more
by the traffic conditions they find while travelling, than by a previously determined rule. This
assumption is particularly effective in the analysis of the urban traffic characterized by frequent
and short travels.

The proposed model is particularly relevant in view of the applications to the estimate of
the fluctuations in the traffic demand in a short period. As we observed, the input data sij

can be obtained in real time by counting the movements from the zone Zi to the zone Zj ,
for every i, j. These data, collected electronically by means of the sensors collocated at street
crossings, can be instantaneously elaborated by the computational program. It is known that
a homogeneous Markov chain converges to an equilibrium distribution in a substantially short
number of iterations, which allows us to have immediately a faithful description of the behaviour
of the traffic at that moment.

A further nice feature of our approach is that it does not necessarily require the use of
simulation techniques that are often needed in probabilistic models for road traffic problems.

6. Appendix A

We now outline the possible developments of the analysis of traffic equilibrium problems,
based on the theory of Markov chains:

• Models based on more general definitions of the states of the process;
• Dynamic models formalized as continuous Markov processes;
• Markovian models with control;
• Distinction of different types of traffic (i.e. car traffic, bus traffic, etc.) by means of

appropriate Markov chains;
• Connections with others equilibrium models as the input-output Leontief models [9] and

the Wardrop equilibrium model.

Models based on more general definitions of the states of the process

In order to consider a greater accuracy in the analysis, the states of the process may be defined
in the following way.

Definition 6.1. We will say that a vehicle is in the state sij if in the period k is in the zone
Zj, and in the period k − 1 is in the zone Zi.
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Obviously, the only possible states will be those related to adjacent zones. Denote by S(k)
the state of the process at the period k and by Z(k) the zone in which the process is at period
k.
Let πihj the probability of transition from sih to shj . We have

πihj = P (Zh → Zj |Zi → Zh) = P (S(k) = shj |S(k − 1) = sih).

If we suppose that the Markov property

P (S(k) = shj |S(k − 1) = sih, S(k − 2) = ski, ...) = P (S(k) = shj |S(k − 1) = sih),

holds, then we have

P (Z(k) = Zj |Z(k − 1) = Zh, Z(k − 2) = Zi, Z(k − 3) = Zk, ...) =

P (Z(k) = Zj |Z(k − 1) = Zh, Z(k − 2) = Zi).
Therefore, the process defined by the sequence {Z(k)} is characterized by the fact that the

conditional probabilities of being in a certain zone depend on the two preceding states, instead
of one (as in the model presented in the paper).

A drawback in this approach is certainly given by the estimate of the transition probabilities
πihj . Actually, in this case an observer situated in the zone Zh should distinguish the veichles
passing in transit from the zone Zi to Zj .

Dynamic models

Consider the fundamental relation

xk+1 = xkA. (19)

Suppose that we want to replace the discrete parameter k ∈ N with the continuous parameter
t ∈ IR+. In this case (19) becomes

x(t + ∆t) = x(t)A(t, ∆t), (20)

where A(t, ∆t) is the transition matrix related to the interval of time [t, t + ∆t]. Set

aij = bij(t)∆t, i 6= j

aii = 1 + bii(t)∆t.

Substituting the previous relations in (20) and letting ∆t → 0, we obtain

dx

dt
= x(t)B(t), x(0) = c, (21)

where B(t) := [bij(t)], i, j = 1, . . . , n and c ∈ [0, 1]n.
The differential system (21) is the continuous counterpart of (19).

Markovian models with control
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A first important application of the continuous processes is given by dynamic models with
control. It is assumed that the matrix A depends on the further control variable q = q(t), so
that

aij = bij(q, t)∆t, i 6= j

aii = 1 + bii(q, t)∆t.

q is a parameter that, at each stage of the process, is chosen in order to maximize the
probability of being in a given zone, say Z1.
With these positions the differential system (21) can be rewritten in the following way:

dx1

dt
= max

q

n∑
j=1

b1j(q, t)xj(t), x1(0) = c1, (22)

dxi

dt
=

n∑
j=1

bij(q∗, t)xj(t), xi(0) = ci, i = 2, . . . , n. (23)

where q∗ = q∗(t) is one of the control functions which maximizes (22).

An exhaustive analysis of the properties of the differential system (22), (23) can be found
in [2].

Distinction of different types of traffic by means of appropriate Markov chains

An important aspect of the Markov chain model lies in the fact that it allows to study
separately and (or) simultaneously the equilibrium of different ways of transport (for example
by car or by bus). Actually the number sij of movements between the zone Zi and the zone Zj

might be related only to a certain kind of means of transport. In this way, we could define a set
of transition matrices

A1, . . . , As

such that Ai represents the percentage of movements of the i − th mean of transport. For
example, A1 could be related to only cars, A2 to buses, A3 to two wheels vehicles up to a certain
weight T, A4 greater than T, and so on.
Therefore, we have s parallel Markov chains which can be separately analysed. The main
question that arises adopting this setting is the relation between the single Markov chain (y0, Ai)
with the (global) chain (x0, A). A comparison between the stationary distributions of the various
chains with that of (x0, A) leads us to understand the influence that the traffic due to a specific
mean of transport has in the global equilibrium.

Connections with the Leontief input-output model

The open Leontief model [9] considers an economy in which there are r industries producing
exactly one kind of goods each.
This model can be represented in terms of the following notations:

• qij is the amount of the output of the industry j needed by the industry i in order to
produce a unit of output;
Q is the r × r matrix with entries qij .
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• xi is the output of the i-th industry and x := (x1, . . . , xr) is the row vector of outputs;
• γ := (c1, . . . , cr) is the demand vector.

The fundamental relation that characterizes the open Leontief model is:

x(I −Q) = γ. (24)

The system (24) has a solution if the matrix I −Q has an inverse that will be denoted by N .
The entries of the matrix N have a direct interpretation in the context of the economy: nij is
the amount of output that the industry j must produce in order to fill a unit order for industry
i (i.e. γ = ei, the i-th unit vector).

Recalling the analysis developed in section 4, it is of interest to interpret the results obtained
by means of the Leontief model in terms of the Markov traffic equilibrium model. In section 4,
we turned our attention to the principal submatrices T , of the transition matrix A, such that
det(I − T ) 6= 0. Suppose to replace the matrix Q with T in the relation (24).

We conjecture that the entry nij of the matrix (I − T )−1 represents the contribution of the
zones Zi, in front of a unit traffic demand related to Zj . Moreover, it should be investigated
if the indexes of dispersion, introduced in Definition 4.3, may have any interpretation in the
Leontief model.

Further developments of the analysis can be obtained by embedding the Leontief model in a
suitable Markov chain [8], which turns out to be closely related to the Markov chain associated
to the traffic equilibrium model.

7. Appendix B

In this appendix we report some of the peculiar properties of a Markov chain that can be of
interest in the analysis developed in the present paper.

The next result provides a sufficient condition in order to obtain that the reverse implication
holds in the Proposition 4.1.

Proposition 7.1. Let T be a positive matrix of order m and H be a regular stochastic matrix
of order m such that T ≤ H. If det(I − T ) = 0, then T = H so that T is stochastic.

Proof. It is a consequence of the following result concerning regular matrices (see e.g. [14]).
Let C be a regular matrix of order m and B any matrix of order m such that 0 ≤ B ≤ C; let

λ1 be the greatest real eigenvalue of C and β be an eigenvalue of B. If it results |β| = λ1 then
B = C.

Let us prove our proposition. Since H is stochastic it is well known that λ1 = 1. The condition
det(I − T ) = 0 implies that T admits the eigenvalue β = 1. By the above mentioned result we
obtain that T = H. �

Corollary 7.1. Let T be the principal submatrix of A obtained by selecting the rows (and
columns) of indexes in the subset S′ ⊂ S. If T > 0 and det(I − T ) = 0, then T is stochastic, so
that S′ is a closed subset of zones.

The following theorem which states the existence of the limit matrix Π defined by (14).
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Theorem 7.1. Condition (14) holds if and only if the unique eigenvalue λ of A, with modulus
1, is λ = 1 and in case λ = 1 has multiplicity k, there exist k linearly independent eigenvectors
associated to this eigenvalue.

The previous theorem states a necessary and sufficient condition such that there exist an
equilibrium distribution for the model, which allows us to treat also the non regular cases. To
this end it is of interest the following result.

Proposition 7.2. Π is a stochastic matrix such that

• the rows are left (probability) eigenvectors of A corresponding to the eigenvalue 1;
• the columns are right eigenvectors of A corresponding to the eigenvalue 1.

Proof. It is enough to notice that the matrix Π fulfils the relations

ΠA = AΠ = Π.

�

The following example is concerned with a non regular model.

Example 7.1 Consider the matrix

A =


1 0 0 0

1/6 1/6 2/3 0
1/4 0 1/2 1/4
0 0 0 1


It is easy to see that the characteristic equation associated to A is

(1− λ)(1/6− λ)(1/2− λ)(1− λ) = 0

so that the eigenvalue λ = 1 has multiplicity 2.
The (probability) eigenvectors associated to this eigenvalue are

(1, 0, 0, 0) and (0, 0, 0, 1)

so that, by Theorem 7.1, the limit matrix Π exists. In order to find the matrix Π, we can apply
Proposition 7.2.

The matrix Π must be of the form

Π =


a 0 0 b
c 0 0 d
e 0 0 f
g 0 0 h


Obviously, since the states 1 and 4 are absorbing, it will be

a = 1, b = 0, g = 0, h = 1.

By the second statement of Proposition 7.2, we have that the following system must be fulfilled:
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1
6 + 1

6c + 2
3e = c

1
4 + 1

2e = e
1
6 + 2

3f = d
1
2f + 1

4 = f

which solution is c = 3
5 , d = 2

5 , e = f = 1
2 .

The limit matrix is

Π =


1 0 0 0

3/5 0 0 2/5
1/2 0 0 1/2
0 0 0 1
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