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Abstract

The paper aims to emphasise the parallelism between the devel-
opment of the analysis of Generalized Convexity and the theory of
Variational Inequalities. More in detail, the relationships between
generalized invexity and Prevariational Inequalities are analised.

1 Introduction

It is well-known that Generalized Convexity has led to a great development
in many fields of the optimization theory, in particular in the study of
minimax and constrained extremum problems. Owing to the close relations
existing between these topics and the theory of Variational Inequalities (in
short V I), this paper aims to deepen the analysis of the role of Generalized
Convexity in the field of V I, giving particular attention to the concepts of
generalized invexity, introduced more recently in the literature [6].

In Section 2 we will point out the connections between constrained
extremum problems and V I, recalling, in particular, the Kuhn-Tucker con-
ditions for a Variational Inequality.

In Section 3 we will show how generalized invexity assumptions on the
function g allow to consider a generalization of the Variational Inequality
problem, the so called Prevariational Inequalities [15, 17].

In Section 4 some extensions to Vector Variational Inequalities, intro-
duced in [4], will be outlined.
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We recall the main notations and definitions that will be used in the
sequel. Let M ⊆ Rp. intM, clM, will denote the interior and the closure
of M , respectively. Let y := (y1, ..., yp); y(1−) := (y2, ..., yp),
y(i−) := (y1, ..., yi−1, yi+1, ..., yp), i = 2, ..., p−1, y(p−) := (y1, ..., yp−1). 〈·, ·〉
is the scalar product in Rn.

A function f : K −→ R is said quasi–convex on the convex set K ⊆ Rn

iff:
f(λx1 + (1− λ)x2) ≤ max{f(x1), f(x2)},

∀x1, x2 ∈ K,∀λ ∈ [0, 1].
f is pseudoconvex on K iff:

〈∇f(y), x− y〉 ≥ 0 implies f(y) ≤ f(x), ∀x, y ∈ K;

f is invex on K iff there exists a vector function µ : K × K −→ Rn such
that, ∀x, y ∈ K,

f(x)− f(y) ≥ 〈∇f(y), µ(x, y)〉.

We will say that the mapping F : Rn −→ Rn is monotone on K iff:

〈F (y)− F (x), y − x〉 ≥ 0 ∀x, y ∈ K;

it is strictly monotone if strict inequality holds, ∀x 6= y.
We will say that the mapping F is quasimonotone on K iff:

〈F (y), x− y〉 > 0 implies 〈F (x), x− y〉 ≥ 0, ∀x, y ∈ K, x 6= y;

F is pseudomonotone on K iff:

〈F (y), x− y〉 ≥ 0 implies 〈F (x), x− y〉 ≥ 0, ∀x, y ∈ K;

F is strictly pseudomonotone on K iff:

〈F (y), x− y〉 ≥ 0 implies 〈F (x), x− y〉 > 0, ∀x, y ∈ K, x 6= y.

2 Constrained extremum problems and Variational
Inequalities

Consider the following Variational Inequality:

find y ∈ K s.t. 〈F (y), x− y〉 ≥ 0, ∀x ∈ K, (V I)



where F : X −→ Rn, X, K ⊆ Rn, and the constrained extremum problem

min f(x) s.t. x ∈ K, (P )

where f : X −→ R is a differentiable function.
It is known that, if K is a convex set, then a necessary condition for y ∈ K
to be a local minimizer of (P) is

〈∇f(y), x− y〉 ≥ 0, ∀x ∈ K. (1)

The previous condition states the classic first order optimality condition for
(P ), that is, the directional derivative of f , at the point y, is non negative
in every feasible direction starting from the point y.
If f is a pseudoconvex function on K, then (1) is a sufficient condition for
y to be a global minimizer of the problem (P ).
We observe that it is always possible to associate to the constrained ex-
tremum problem (P ) the Variational Inequality defined by (1), while, given
the Variational Inequality V I, not always it is possible to define a con-
strained extremum problem of which V I represents the first order optimal-
ity condition. This can be achieved by proving the existence of a differen-
tiable function f such that F = ∇f , as stated in the next result [14]:

Theorem 2.1 Let F : X −→ Rn be a continuously differentiable operator.
Then there exists a differentiable function f such that F = ∇f iff ∇F (y)
is a symmetric matrix for every y ∈ X.

Remark 2.1 In the hypoyheses of the Theorem 2.1 and if K is a convex
set, every stationary point of (P) is a solution of V I.

Moreover, the convexity properties of the function f can be deduced
from the monotonicity assumptions on the operator F , taking into account
the following result [2, 8, 16]:

Theorem 2.2 Let f : X −→ R be a differentiable function and C be a
convex subset of the open set X ∈ Rn.

1. f is (strictly) convex on C iff ∇f is (strictly) monotone on C;

2. f is (strictly) pseudoconvex on C iff ∇f is (strictly) pseudomonotone
on C;

3. f is quasiconvex on C iff ∇f is quasimonotone on C.



For further generalizations of the previous theorem see e.g. [1, 2].
In order to deepen the analysis of the connections between optimiza-

tion problems and Variational Inequalities, in the last part of this section we
recall the Kuhn-Tucker optimality conditions for V I, which are a straight-
forward generalization of the classical ones stated for an extremum problem
(see also [7] and references therein).
Suppose that the feasible set is defined by

K := {x ∈ X : g(x) ≥ 0}, (2)

where g := (g1, ..., gm), gi : X −→ R, i = 1, ..,m.
Let I(y) := {i ∈ [1, ..,m] : gi(y) = 0}.

Proposition 2.1 Assume that g is a differentiable function and that
∃z ∈ Rn such that 〈∇gi(ȳ), z〉 > 0, ∀i ∈ I(ȳ).

1. If ȳ is a solution of V I then ∃λ ≥ 0 such that (λ, ȳ) is a solution of
the following system (S)

F (x)− λ∇g(x) = 0
〈λ, g(x)〉 = 0
λ ≥ 0, g(x) ≥ 0, x ∈ X.

2. If −g is a quasiconvex differentiable function, then ȳ is a solution of
V I iff ∃λ ≥ 0 such that (λ, ȳ) is a solution of the system (S) ;

Proof. It is sufficient to observe that ȳ is a solution of V I iff ȳ solves
the following constrained extremum problem:

minx∈K〈F (ȳ), x− ȳ〉 (3)

and consider the Kuhn-Tucker conditions for (3).
If no convexity assumptions are made on the constraint function g, then
the Kuhn-Tucker conditions are only necessary for optimality. If −g is a
quasiconvex function, taking into account that the objective function in (3)
is linear, these conditions are also sufficient (see e.g. [11]). 2

Remark 2.2 In the hypotheses of Theorem 2.1, the system (S) collapses
into the classical Kuhn-Tucker conditions for the constrained extremum
problem (P).



3 Generalized Invexity and Prevariational Inequal-
ities

The introduction of the notion of invexity has led to consider, following the
line developed to generalize the concept of a convex function, the classes of
pseudoinvex and quasiinvex functions [6, 5, 9].

Definition 3.1 Let f : C −→ R be a differentiable function at x∗ ∈ C ⊆
Rn. f is said

1. quasiinvex at x∗ if ∃µ(x, x∗) : C × C −→ Rn such that, ∀x ∈ C,

f(x) ≤ f(x∗) =⇒ 〈∇f(x∗), µ(x, x∗)〉 ≤ 0;

2. pseudoinvex at x∗ if ∃µ(x, x∗) : C × C −→ Rn such that, ∀x ∈ C,

〈∇f(x∗), µ(x, x∗)〉 ≥ 0 =⇒ f(x∗) ≤ f(x).

Remark 3.1 It is immediate that, if we suppose that C is a convex set
and we choose µ(x, x∗) := x − x∗, we recover the local definitions of a
quasiconvex and a pseudoconvex function.
Similarly to the convex case, it is possible to show that a pseudoinvex
function is also quasiinvex, but not conversely.

Following the development of the concept of generalized invexity, a gen-
eralization of the definition of a Variational Inequality has been considered:

find y ∈ K s.t. 〈F (y), µ(x, y)〉 ≥ 0, ∀x ∈ K, (PV I)

where F : X −→ Rn, µ : X ×X −→ Rn, K ⊆ Rn.
The previous problem is called Prevariational Inequality (PV I) and has
been introduced in [15, 17].

Remark 3.2 If µ(x, y) := x − y, we recover the classical definition of a
Variational Inequality.

Let K be defined by (2).

Proposition 3.1 Assume that, −gi is a quasiinvex function (with respect
to µ(x, y)) at ȳ, for i ∈ I(ȳ). If (λ̄, ȳ) is a solution of the system (S)

F (x)− λ∇g(x) = 0
〈λ, g(x)〉 = 0
λ ≥ 0, g(x) ≥ 0, x ∈ X.

then ȳ is a solution of PV I.



Proof.
Since, −gi is a quasiinvex function at ȳ, for i ∈ I(ȳ), then
∀x ∈ X,

−gi(x) ≤ −gi(ȳ) =⇒ −〈∇gi(ȳ), µ(x, ȳ)〉 ≤ 0.

Adding the previous inequalities, we obtain

gi(x) ≥ 0,∀i ∈ I(ȳ) =⇒ 〈
∑

i∈I(ȳ)

λ̄i∇gi(ȳ), µ(x, ȳ)〉 ≥ 0.

Therefore
〈

∑
i∈I(ȳ)

λ̄i∇gi(ȳ), µ(x, ȳ)〉 ≥ 0, ∀x ∈ K.

Taking into account that λ̄i = 0, ∀i 6∈ I(ȳ), the first relation in the
system (S) implies that F (ȳ) =

∑
i∈I(ȳ) λ̄i∇gi(ȳ), and the statement is

proved. 2

Corollary 3.1 Suppose that -gi is quasiinvex at ȳ and that ∃z ∈ Rn such
that 〈∇gi(ȳ), z〉 > 0, ∀i ∈ I(ȳ); if ȳ is a solution of V I, then ȳ is also a
solution of PV I.

Proof. It is sufficient to observe that, for Proposition 2.1 1, if ȳ is a
solution of V I, then it is also a solution of the system (S). 2

Consider the problem (P ) defined in Section 2. The Proposition 3.1
allows to recover the following statement that was also proposed by Hanson
[6].

Corollary 3.2 Suppose that

1. -gi is quasiinvex at ȳ, for i ∈ I(ȳ);

2. There exists a pseudoinvex function f at ȳ (with respect to µ(x, y))
such that F = ∇f ;

3. (λ̄, ȳ) is a solution of the system (S).

Then ȳ is a global optimal solution of (P).



4 Vector Variational Inequalities

In the last part of the paper, we generalize the results obtained in the
previous sections to Vector Variational Inequalities introduced in [3, 4]:

find y ∈ K s.t. F (y)(y − x) 6∈ C \ {0}, ∀x ∈ K, (V V I)

where F : X −→ Rp×n, K,X ⊆ Rn, C is a convex cone in Rp.
Let f : X ×X −→ Rp, f(x, y) := F (y)(y−x). The following result, stated
in [13], is closely related to Proposition 2.1 and provides an equivalent
formulation of V V I, by means of the Kuhn-Tucker conditions.
Let K be defined by (2).

Proposition 4.1 Assume that C := Rp
+, X is an open set in Rn and

1. −g is a convex function differentiable at ȳ ∈ K;

2. For every i := 1, · · · , p, the following system is possible

fi−(x, ȳ) > 0, g(x) > 0, x ∈ X.

Then ȳ is a solution of V V I iff ∃(θ, λ) ∈ (Rp
+ ×Rm

+ ), (θ, λ) 6= 0, such that
(θ, λ, ȳ) is a solution of the following system (VS)

θF (x)− λ∇g(x) = 0
〈λ, g(x)〉 = 0
θ ≥ 0, λ ≥ 0, g(x) ≥ 0, x ∈ X.

Remark 4.1 Condition 2 is a generalization of the Slater constraint qual-
ification [12] for extremum problems and has been considered in [10], in a
slightly different form, in order to obtain the Kuhn-Tucker conditions for
vector optimization problems.

If we consider the particular case, where C:= int Rp
+, then the Slater con-

dition for scalar optimization is a sufficient regularity assumption in order
to prove an analogous result to the previous proposition.

Proposition 4.2 [13] Assume that C := intRp
+, and that

(a) −g is a convex function differentiable at ȳ;
(b) there exists z ∈ Rn such that g(z) > 0.
Then ȳ is a solution of V V I iff ∃(θ, λ) ∈ (Rp

+ ×Rm
+ ), (θ, λ) 6= 0, such that

(θ, λ, ȳ) is a solution of the system (VS).



Remark 4.2 We observe that, taking into account Proposition 2.1, we
obtain that ȳ is a solution of the system (V S) if and only if it is a solution
of the scalarized Variational Inequality

〈θF (y), x− y〉 ≥ 0, ∀x ∈ K. (4)

The regularity assumption 2 of Proposition 4.1 ensures that the vector of
multipliers θ is strictly positive, while the Slater condition b) of Proposition
4.2 allows to prove that θ 6= 0. It is possible to prove that, when C =
Rp

+, (C = intRp
+) and θ > 0, (θ 6= 0), if ȳ fulfils (4), then it is also a

solution of V V I.
The definition of Prevariational Inequality, recalled in Section 3, can be

generalized to the vector case.
We will call Vector Prevariational Inequality the following problem:

find y ∈ K s.t. − F (y)µ(x, y) 6∈ C \ {0}, ∀x ∈ K, (V PV I)

where µ : K ×K −→ Rn.

Remark 4.3 If µ(x, y) := x − y, we recover the definition of a Vector
Variational Inequality.

The following result is a generalization of Proposition 3.1, proved in the
scalar case. Let K be defined by (2).

Proposition 4.3 Let −gi be a quasiinvex function at ȳ (with respect to
µ(x, y)) at ȳ, ∀i ∈ I(ȳ), and suppose that (θ̄, λ̄, ȳ) is a solution of the
system (V S). The following statements hold:

1. if C = Rp
+ and θ > 0, then ȳ is a solution of V PV I;

2. if C = intRp
+ and θ 6= 0, then ȳ is a solution of V PV I.

Proof.
Since, −gi is a quasiinvex function then, for i ∈ I(ȳ) and ∀x ∈ X,

−gi(x) ≤ −gi(ȳ) =⇒ −〈∇gi(ȳ), µ(x, ȳ)〉 ≤ 0.

Adding the previous inequalities, we have

gi(x) ≥ 0,∀i ∈ I(ȳ) =⇒ 〈
∑

i∈I(ȳ)

λ̄i∇gi(ȳ), µ(x, ȳ)〉 ≥ 0.



Therefore,

〈
∑

i∈I(ȳ)

λ̄i∇gi(ȳ), µ(x, ȳ)〉 ≥ 0, ∀x ∈ K.

Since ȳ is a solution of (V S), we have that

〈θF (ȳ), µ(x, ȳ)〉 ≥ 0, ∀x ∈ K. (5)

1. Suppose that C = Rp
+ and θ > 0.

Ab absurdo, suppose that ∃x̄ ∈ K such that

−F (ȳ)µ(x̄, ȳ) = z ∈ C \ {0}; (6)

Since θ > 0, then 〈θ, z〉 > 0, and therefore

−〈θF (ȳ), µ(x̄, ȳ)〉 > 0,

which is against (5), and the statement 1 is proved.
2. Suppose that C =int Rp

+ and θ 6= 0.
Ab absurdo, suppose that ∃x̄ ∈ K such that (6) holds. Since θ 6= 0 and
z > 0, then 〈θ, z〉 > 0, and therefore

−〈θF (ȳ), µ(x̄, ȳ)〉 > 0,

which is against (5), and the proposition is proved. 2
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