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Abstract. Saddle point conditions of suitable functions are equivalent to
particular classes of variational inequalities. Some existence theorems for
variational inequalities, based on monotonicity assumptions on the oper-
ator F , allow to prove these saddle point conditions. Applications to the
generalized complementarity problem and extensions to vector variational
inequalities are considered.

1. Saddle point conditions and variational inequalities

Consider the variational inequality:

find y∗ ∈ K s.t. 〈F (y∗), x− y∗〉 ≥ f(y∗)− f(x), ∀x ∈ K, V I(f,K)

where F : K −→ H,f : K −→ R, H is a real Hilbert space, K is a nonempty
convex subset of H and 〈·, ·〉 is the inner product in H.

Following the approach considered in [8], let us introduce the function
φ : K ×K −→ R,

φ(x, y) := 〈F (y), y − x〉+ f(y)− f(x).

Suppose that φ has a saddle point (x∗, y∗) on K ×K that is

φ(x, y∗) ≤ φ(x∗, y∗) ≤ φ(x∗, y), ∀(x, y) ∈ K ×K.

If we compute the previous inequalities for (x, y) := (y∗, x∗) we obtain
φ(x∗, y∗) = 0. Therefore the existence of a saddle point of φ guarantees
that

φ(x, y∗) ≤ 0, ∀x ∈ K, (1)
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φ(x∗, y) ≥ 0, ∀y ∈ K. (2)

The inequality (1) states that y∗ is a solution of V I(f,K).
We are interested in studying the relationships between V I(f,K) and

the problem which arises from inequality (2) that is

find x∗ ∈ K s.t. 〈F (y), y − x∗〉 ≥ f(x∗)− f(y), ∀y ∈ K. V I∗(f,K)

More precisely we want to investigate under which conditions the existence
of a solution of V I(f,K) guarantees the existence of a solution of V I∗(f,K)
and viceversa. We observe that if both problems have a solution, that is (1)
and (2) hold, then the point (x∗, y∗) is a saddle point for φ(x, y) on K×K.
The previous cosiderations lead to state the following result:

Proposition 1.1 Let φ(x, y) := 〈F (y), y − x〉+ f(y)− f(x).
1. V I(f,K) admits a solution y∗ if and only if

inf
y∈K

sup
x∈K

φ(x, y) = 0

and the infimum is attained at y∗;
2. V I∗(f,K) admits a solution x∗ if and only if

sup
x∈K

inf
y∈K

φ(x, y) = 0

and the supremum is attained at x∗;
3. y∗ and x∗ are the respective solutions of the problems V I(f,K) and

V I∗(f,K) if and only if (x∗, y∗) is a saddle point for φ on K ×K.

Proof. 1. Let h(y) := supx∈K φ(x, y). Since φ(x, x) = 0, ∀x ∈ K then
h(y) ≥ 0, ∀y ∈ K. Moreover y∗ ∈ K is a solution of V I(f,K) if and only
if h(y∗) = 0. Therefore 0 = h(y∗) = miny∈K supx∈K φ(x, y).

2. Let q(x) := infy∈K φ(x, y). It is immediate that q(x) ≤ 0,∀x ∈ K and
that x∗ ∈ K is a solution for V I∗(f,K) if and only if q(x∗) = 0. Therefore
0 = q(x∗) = maxx∈K infy∈K φ(x, y).

3. Let y∗ and x∗ the respective solutions of the problems V I(f,K) and
V I∗(f,K); from 1 and 2 it follows that the point (x∗, y∗) is a saddle point
for φ on K ×K.

Viceversa, let (x∗, y∗) ∈ K ×K be a saddle point for φ on K ×K that
is:

〈F (y∗), y∗ − x〉 + f(y∗) − f(x) ≤ 〈F (y∗), y∗ − x∗〉 + f(y∗) − f(x∗) ≤
〈F (y), y − x∗〉+ f(y)− f(x∗) ∀(x, y) ∈ K ×K.

Evaluating the previous inequalities at the point (x, y) := (y∗, x∗) we
obtain 〈F (y∗), y∗ − x∗〉 + f(y∗) − f(x∗) = 0 from which the thesis follows
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since the first inequality states that y∗ is a solution of V I(f,K),while the
second that x∗ is a solution of V I∗(f,K).

2. Applications to the classical variational inequality

In this section we will consider the particular case in which f is a constant
function on the set K so that V I(f,K) becomes the classical variational
inequality

find y∗ ∈ K s.t. 〈F (y∗), x− y∗〉 ≥ 0, ∀x ∈ K. (V I)

We will denote by V I∗ the problem associated to V I by means of the saddle
point condition for the function φ(x, y) := 〈F (y), y − x〉,

find x∗ ∈ K s.t. 〈F (y), y − x∗〉 ≥ 0, ∀y ∈ K. (V I∗)

Proposition 1.1 states that y∗ and x∗ are the respective solutions of the
problems V I and V I∗ if and only if (x∗, y∗) is a saddle point for the function
φ on K ×K.

Let us recall some notations that will be used in what follows:
int (M), ∂(M) will denote the interior and the boundary of the set M ⊆ H,
respectively. If K ⊆ H, int K(M), ∂K(M) denote the relative interior and
relative boundary of M in K, M∗ := {y ∈ H : 〈y, x〉 ≥ 0, ∀x ∈ M}
will denote the positive polar of the set M . Moreover we will say that the
mapping F is pseudomonotone on K if:

〈F (y), x− y〉 ≥ 0 implies 〈F (x), x− y〉 ≥ 0 ∀x, y ∈ K.

We will see how the main results concerning the existence of a solution
of the variational inequality V I, based on monotonicity assumptions on
the operator F , also allow to prove the existence of a saddle point for the
function φ on K ×K.
Proposition 2.1 [1] Let K be a closed convex subset in the real Hilbert
space H. Let F be a pseudomonotone mapping from K into H which is
continuous on finite-dimensional subspaces. Then y∗ ∈ K solves V I if and
only if x∗ := y∗ solves V I∗.

Remark 2.1 If we assume that K is a bounded set in H, then the hy-
potheses of Proposition 2.1 are sufficient to guarantee the existence of a
solution of both problems V I and V I∗ (see [1]).

The next result states necessary and sufficient conditions for the existence
of a solution of the problem V I under the hypothesis of pseudomonotonicity
of the mapping F :
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Theorem 2.1 [1] Let K be a closed convex subset in the real Hilbert space
H. Let F be a pseudomonotone mapping from K into H which is contin-
uous on finite-dimensional subspaces. Then the following statements are
equivalent:

1. There exists a solution y∗ for V I;
2. There exist u ∈ K and a constant r > ‖u‖ such that 〈y − u, F (y)〉 ≥

0, ∀y ∈ K with ‖y‖ = r;
3. There exists r > 0 such that the set {y ∈ K : ‖y‖ ≤ r} is nonempty

and such that, for each y ∈ K with ‖y‖ = r, there exists u ∈ K with
‖u‖ < r and 〈F (y), y − u〉 ≥ 0.

4. There exists a nonempty closed, bounded, convex subset B of K with
int K(B) that satisfies the following condition:

∀y ∈ ∂K(B), there exists u ∈ int K(B) such that 〈F (y), y − u〉 ≥ 0.

5. There exists a convex set E ⊂ H with int E 6= ∅ such that ∅ 6= K ∩E
is bounded and, for each y ∈ K ∩ ∂(E), there exists u ∈ K ∩ int (E)
such that 〈F (y), y − u〉 ≥ 0.

Remark 2.2 In the previous theorem it is possible to add the further state-
ments, recalling Propositions 2.1 and 1.1:
6. There exists a solution y∗ for V I∗;
7. The point (y∗, y∗) is a saddle point for φ(x, y) := 〈F (y), y−x〉 on K×K.

Therefore any of the conditions 2,3,4 and 5 of Theorem 2.1 not only guar-
antees the existence of a solution of V I but also turns out to be necessary
and sufficient for the existence of a saddle point of the function φ on K×K.

Another interesting result about the existence of solutions of V I, based
on monotonicity assumptions on the operator F , is the following:
Proposition 2.2 [1] Let K be a closed convex subset in the real Hilbert
space H. Let F be a pseudomonotone mapping from K into H which is
continuous on finite-dimensional subspaces. Suppose that there exists u ∈ K
such that F (u) ∈ int (K∗). Then there exists a solution for V I.

Remark 2.3 Once again we observe that the hypotheses of the previous
proposition are sufficient to guarantee the existence of a saddle point of the
function φ on K ×K.

In the next theorem we summarize the results so far obtained about
the existence of a saddle point of the function φ in the hypotheses of pseu-
domonotonicity and continuity on finite-dimensional subspaces of the op-
erator F .
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Theorem 2.2 Let K be a closed convex subset in the real Hilbert space H.
Let F be a pseudomonotone mapping from K into H which is continuous
on finite-dimensional subspaces. Then

1. If K is a bounded set in H then φ(x, y) admits a saddle point on K×K.
2. Any of the conditions 1,2,3,4,5 of Theorem 2.1 is necessary and suffi-

cient for φ(x, y) to admit a saddle point on K ×K.
3. If there exists u ∈ K such that F (u) ∈ int (K∗) then φ(x, y) admits a

saddle point on K ×K.

Proof. We preliminarly observe that the hypotheses guarantee that the
solutions of both problems V I and V I∗ coincide, as stated in Proposition
2.1.

1. It follows from Remark 2.1 and 3 of Proposition 1.1;
2. It follows from Theorem 2.1 recalling Remark 2.2 and 3 of Proposition

1.1;
3. It follows from Proposition 2.2 recalling 3 of Proposition 1.1.

3. Connections with complementarity problems

In this section we will consider the particular case in which the feasible set
K is a closed convex cone in H with apex at the origin.

Remark 3.1 In [1, 7] it is proved that if K is a convex cone then y∗

solves V I if and only if y∗ is a solution of the generalized complementarity
problem:

find y ∈ K s.t. F (y) ∈ K∗ and 〈F (y), y〉 = 0. (GCP )

It is possible to express GCP as a constrained extremum problem:

Proposition 3.1 [2] y∗ ∈ K solves GCP if and only if y∗ is a solution of
the problem:

min〈F (y), y〉 s.t. F (y) ∈ K∗, y ∈ K (3)

and 〈F (y∗), y∗〉 = 0.

We will show that the problem V I∗ is closely related to the Lagrangean
Dual of the problem (3) defined by

sup
λ∈K

inf
y∈K

〈F (y), y〉 − 〈λ, F (y)〉. (4)

The following result holds:
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Proposition 3.2 Let K be a closed convex cone in the real Hilbert space H.
Let F be a pseudomonotone mapping from K into H which is continuous
on finite-dimensional subspaces and suppose that

there exists y′ ∈ Ksuch that F (y′) ∈ int (K∗). (5)

Then y∗ solves (3) if and only if y∗ solves (4).

Proof. Let y∗ ∈ K be a solution of (3). For Proposition 2.2 V I has
a solution. Since K is a cone, then GCP has a solution and therefore
〈F (y∗), y∗〉 = 0.

The following equivalences allow to achieve the thesis:
y∗ solves (3) and 〈F (y∗), y∗〉 = 0 ⇐⇒ y∗ solves GCP ⇐⇒ y∗ solves

V I ⇐⇒ y∗ solves V I∗ ⇐⇒ supλ∈K infy∈K〈F (y), y〉− 〈λ, F (y)〉 = 0 and the
maximum is attained at λ := y∗.

These equivalences follow from Proposition 3.1, Remark 3.1, Proposition
2.1 and 2 of Proposition 1.1, respectively.

Viceversa, let λ∗ a solution of (4). Propositions 2.2 and 2.1 imply that
the problem V I∗ has a solution. By 2 of proposition 1.1 it follows that

sup
λ∈K

inf
y∈K

〈F (y), y〉 − 〈λ, F (y)〉 = 0.

From the previous equivalences the thesis follows.

Remark 3.2 In the Proposition 3.2 it is possible to replace condition (5)
with any of the conditions 2,3,4,5, stated in Theorem 2.1.

4. Vector variational inequalities

The statements obtained in the previous part of the paper for scalar varia-
tional inequalities can be generalized, adding suitable assumptions, to vec-
tor variational inequalities introduced in [5, 4].

We recall the main definitions of vector optimization that we will use
in the sequel.

From now on, K will denote a subset of Rn, C a pointed convex cone
in Rp with apex at the origin {0} of Rp and nonempty interior. We recall
that a cone C is said pointed iff C ∩ (−C) = ∅.

Definition 4.1 Let f : Rn −→ Rp.
1. y ∈ K is said a C-minimum point of f on the set K iff the following

system is impossible:

f(y)− f(x) ∈ C \ {0}, x ∈ K.
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2. y ∈ K is said a C-maximum point of f on the set K iff y is a C-
minimum point for −f .

Definition 4.2 [10] Let f : X × Y −→ Rp. A point (x∗, y∗) ∈ X × Y is
said a C-saddle point of f with respect to X × Y iff

1. x∗ is a C-minimum point of f(·, y∗) on X;
2. y∗ is a C-maximum point of f(x∗, ·) on Y .

Consider the following vector variational inequalities introduced in [4].

Find y ∈ K s. t. 〈F (y), y − x〉p 6∈ C \ {0}, ∀x ∈ K. (6)

Find x ∈ K s. t. 〈F (y), x− y〉p 6∈ C \ {0}, ∀y ∈ K. (7)

where F : Rn −→ Rp×n and 〈·, ·〉p denotes a vector of p scalar products in
Rn.

Remark 4.1 If p = 1 and C = R+, then (6) and (7) collapse to V I and
V I∗ respectively.

Following the line adopted in the scalar case it is possible to prove, under
a suitable additional assumption, the equivalence between the existence of
solutions of the problems (6) and (7) and the existence of a C-saddle point
of the function f(x, y) := 〈F (y), x− y〉p.
Proposition 4.1 Let f : K ×K −→ Rp, f(x, y) := 〈F (y), x− y〉p.

y∗ and x∗ are the respective solutions of the problems (6) and (7) and
f(x∗, y∗) = 0 iff (x∗, y∗) is a C-saddle point of f(x, y) on K × K with
f(x∗, y∗) = 0.

Proof. y∗ and x∗ are the respective solutions of the problems (6) and
(7) iff

−f(x, y∗) 6∈ C \ {0}, ∀x ∈ K

f(x∗, y) 6∈ C \ {0}, ∀y ∈ K.

Since f(x∗, y∗) = 0, the previous relations are equivalent to

f(x∗, y∗)− f(x, y∗) 6∈ C \ {0}, ∀x ∈ K (8)

f(x∗, y)− f(x∗, y∗) 6∈ C \ {0}, ∀y ∈ K. (9)

Condition (8) states that x∗ is a C-minimum point of f(x, y) on K, while
condition (9) that y∗ is a C-maximum point of f(x∗, ·) on K, that is (x∗, y∗)
is a C-saddle point of f(x, y) on K ×K.

Let us consider now an application of Proposition 4.1 in the particular
case in which C = int (Rp

+) and the operator F is continuous and monotone.
The following result has been proved in [4]:
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Proposition 4.2 Let C := int (Rp
+), K a convex set in Rn and F con-

tinuous and monotone on K.Then y is a solution of (6) iff it is a solution
of (7).

The next result is a direct consequence of the previous propositions:

Corollary 4.1 Let f : K × K −→ Rp, K a convex set in Rn, f(x, y) :=
〈F (y), x− y〉p, F continuous and monotone on K, C := int Rp

+. Then the
following statements are equivalent:

1. y∗ is a solution of (6);
2. y∗ is a solution of (7);
3. (y∗, y∗) is a C-saddle point of f(x, y) on K ×K.

The existence of C-saddle points for a vector valued function has been
analysed in [10] where a generalization of the classical results of K. Fan [3]
for scalar functions, has been proven.

5. Further developments

As we have observed, the minimax setting provides a natural field in which
embedding variational inequalities in their more general formulations.

Recently F. Giannessi has proposed [6] the following generalized varia-
tional inequality:

find y∗ ∈ A(K), F ∈ F(y∗) s.t. 〈F, x− y∗〉 ≥ 0, ∀x ∈ K,

where A : 2Rn −→ 2Y , F : Y −→ 2Rn
, K ⊆ Rn, Y ⊆ Rn.

A first existence theorem for the previous problem, in the particular case
in which F is a single valued operator, has been proposed by B. Ricceri.

Theorem 5.1 Let X and D two subsets in Rn. Put

I := {x ∈ X : D ⊆
⋃
λ>0

λ(x−X)}.

Suppose that X is convex and compact and F : Rn −→ Rn is a continuous
function such that 〈F (x), x〉 = 0, ∀x ∈ X and

sup
y∈X

〈F (x), y〉 > 0, ∀x ∈ X \ I.

Then there exists x∗ ∈ X such that

〈F (x∗), y − x∗〉 ≥ 0 ∀y ∈ D.
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Remark 5.1 The previous theorem descends from a general result (Theo-
rem 2.1 of [9]) stated for D-regular operators in a real vector space.

Taking into account the results of the previous sections it is possible
to prove the following proposition in which X is supposed to be a closed
convex cone.

Proposition 5.1 Let X be a closed convex cone and D a subset in Rn.
Put

I := {x ∈ X : D ⊆
⋃
λ>0

λ(X − x)}

Suppose that

1. F : Rn −→ Rn is a continuous pseudomonotone function and

there exists y′ ∈ X such that F (y′) ∈ int (X∗); (10)

2. supy∈X〈F (x), x− y〉 > 0, ∀x ∈ X \ I;

then there exists x∗ ∈ X such that

〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ D.

Proof. From 1. (see Proposition 2.2) it follows that there exists x∗ ∈ X
such that

〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ X (11)

(11) is equivalent to supy∈X〈F (x∗), x∗−y〉 ≤ 0 and, therefore the hypothesis
2. implies that x∗ ∈ I. Then D ⊆

⋃
λ>0 λ(X − x∗) that is

D ⊆ {z ∈ Rn : z = λ(x− x∗) for suitable λ > 0, x ∈ X}.

We recall that, since X is a closed convex cone, 〈F (x∗), x∗〉 = 0 (see Remark
3.1). We obtain:

inf
y∈D

〈F (x∗), y − x∗〉 ≥ inf
λ>0, x∈X

〈F (x∗), λ(x− x∗)− x∗〉 =

= inf
λ>0, x∈X

λ〈F (x∗), x− x∗〉 ≥ 0.

Remark 5.2 We observe that, in the previous proposition, it is possible
to replace the condition (10) with any of the conditions 2,3,4,5 of Theorem
2.1.
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