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Abstract

The theory of the gap functions is extended to the variational inequality
introduced by Minty. Exploiting the minimax formulation of a variational
inequality, a new class of gap functions is defined. Descent methods,based
on the minimization of the new class of gap functions, are analysed.

1 Introduction

In recent years the interest in variational formulations of equilibrium problems has
widely grown. In particular, variational inequalities (in short V I) have shown to
be a powerful tool in order to develop classical methods existing in the literature,
as descent methods, interior point methods, pivotal methods etc. [7, 10]. In addi-
tion to this, V I have received interest since they allow to generalize the classical
optimality conditions for constrained extremum problems and to formalize equi-
librium conditions for problems of different nature as network flow, economic and
mechanical engineering equilibrium problems [9, 10]. In this paper we want to
deepen the analysis of the connections between minimax theory and V I in order
to develop the gap function approach for solving V I.

Given the variational inequality:

find y∗ ∈ K s.t. 〈F (y∗), x− y∗〉 ≥ 0, ∀x ∈ K, (V I)

where F : K −→ Rn, K ⊆ Rn and 〈·, ·〉 is the inner product in Rn, a gap
function p : K −→ R is a non-negative function that fulfils the condition p(y) = 0
if and only if y is a solution of V I. Therefore solving a V I is equivalent to
the minimization of the gap function on the feasible set in which V I is defined.
A first example of gap function was given by Auslender [1] who considered the
function p(y) := supx∈K〈F (y), y − x〉; unfortunately, in general, this function is
not differentiable: in the last years the efforts of the research have been directed
to the study of differentiable gap functions in order to simplify the computational
aspects of the problem. Important results in this sense have been obtained by
Fukushima, Zhu and Marcotte [7, 20].

Our aim is to show that the gap function approach, developed in [7, 20] for the
problem V I, can be extended to the so called Minty Variational Inequality

find x∗ ∈ K s.t. 〈F (y), y − x∗〉 ≥ 0, ∀y ∈ K, (V I∗)

which, under the hypotheses of continuity and pseudomonotonicity of the operator
F, is equivalent to V I [11]. In Section 2 we will point out that the gap function



formulation given by Zhu and Marcotte [20] can be obtained considering a suitable
minimax formulation of the problem V I.
The same argument is used in Section 3 to define a continuously differentiable gap
function associated to the problem V I∗.
In Section 4, on the same line followed by Fukushima [7], we will develop a descent
method for the variational inequality V I∗.
We recall the main notations and definitions that will be used in the sequel. A
function f : K −→ R is said quasi–convex on K iff:

f(λx1 + (1− λ)x2) ≤ max{f(x1), f(x2)},

∀x1, x2 ∈ K,∀λ ∈ [0, 1].
A function f : K −→ R is said strictly quasi–convex [17] if strict inequality

holds ∀x1 6= x2 ∈ K,∀λ ∈ (0, 1). The main properties of a strictly quasi–convex
function are reported in the Appendix.

A function f : K −→ R is said strongly convex on K with modulus a (a ≥ 0)
iff ∀x1, x2 ∈ K,∀λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)− a[λ(1− λ)/2]‖x1 − x2‖2.

We will say that the mapping F : Rn −→ Rn is monotone on K iff:

〈F (y)− F (x), y − x〉 ≥ 0, ∀x, y ∈ K;

it is strictly monotone if strict inequality holds ∀x 6= y.
We will say that the mapping F is pseudomonotone on K iff:

〈F (y), x− y〉 ≥ 0 implies 〈F (x), x− y〉 ≥ 0, ∀x, y ∈ K.

2 Gap functions and Variational Inequalities

Consider the variational inequality:

find y∗ ∈ K s.t. 〈F (y∗), x− y∗〉 ≥ 0, ∀x ∈ K, (V I)

where F : K −→ Rn, K ⊆ Rn. It is well known that the problem V I is a particular
case of a general equilibrium problem [4]:

find y∗ ∈ K s.t. f(x, y∗) ≥ 0, ∀x ∈ K,

where f : K ×K −→ R.
Let us consider a preliminary result that relates a general equilibrium problem to
a suitable minimax problem under the hypothesis that f is zero on the diagonal
of K ×K.

Lemma 2.1 Suppose that f(x, x) = 0 ∀x ∈ K. Then, the following statements
are equivalent:
i) there exists y∗ ∈ K s.t. f(x, y∗) ≥ 0, ∀x ∈ K.
ii) maxy∈K infx∈K f(x, y) = 0.



Proof. f(x, x) = 0, ∀x ∈ K, implies that infx∈K f(x, y) ≤ 0,∀y ∈ K.
Therefore i) implies that maxy∈K infx∈Kf(x, y) = 0.

Viceversa, if ii) holds, then there exists y∗ such that infx∈K f(x, y∗) = 0, which is
equivalent to i).

Therefore a variational inequality can be transformed into an equivalent min-
imax problem: this property is of fundamental importance in the analysis of the
gap function theory for variational inequalities.

Definition 2.1 Let K be a closed subset in Rn. The function p : Rn −→ R is a
gap function for VI iff:
i) p(y) ≥ 0, ∀y ∈ K;
ii) p(y) = 0 iff y is a solution for VI.

The function p(y) := supx∈K〈F (y), y−x〉, which was introduced by Auslender
[1], is a gap function for V I; in general, it is not differentiable.

Remark 2.1 V I is equivalent to the minimax problem:

min
y∈K

sup
x∈K

〈F (y), y − x〉.

The problem of defining a continuously differentiable gap function was first
solved by Fukushima [7] whose approach was generalized by Zhu and Marcotte
[20]; subsequently Giannessi [9] embedded the variational inequality problem into
a general separation scheme.
We recall the results obtained by Zhu and Marcotte. Let G(x, y) : K ×K −→ R,
non–negative, continuously differentiable, strongly convex on the convex set K
with respect to x, ∀y ∈ K, and such that
i) G(y, y) = 0, ∀y ∈ K;
ii) ∇xG(y, y) = 0, ∀y ∈ K.

Proposition 2.1 [20] Let h(x, y) := 〈F (y), y−x〉−G(x, y) and g(y) := maxx∈Kh(x, y).
Then
i) g(y) is a gap function for VI;
ii) If F ∈ C1 then g ∈ C1 and

∇g(y) = F (y)− (∇F (y))T (H(y)− y)−∇yG(H(y), y)

where H(y) := argmaxx∈Kh(x, y).

If we consider the particular case G(x, y) := 1
2 〈x − y, M(x − y)〉, where M is a

symmetric and positive definite matrix of order n, we obtain the gap function
introduced by Fukushima [7].



Remark 2.2 Since G(x, y) is strongly convex with respect to x, then g(y) is well–
defined because the maximum with respect to x of h(x, y) exists and it is unique;
therefore V I is equivalent to the minimax problem

min
y∈K

max
x∈K

h(x, y).

We observe that equivalent minimax formulations of the variational inequality
allow to define differentiable gap functions for V I. We will show that the approach
proposed by Zhu and Marcotte and, therefore, the derived minimax formulations,
arise from considering suitable regularizations of the variational inequality V I.
The following result holds:

Proposition 2.2 Let K be a closed convex subset in Rn. Let G(x, y) : K×K −→
R be a non negative, differentiable function on the convex set K with respect to x
and such that
i) G(y, y) = 0, ∀y ∈ K;
ii) ∇xG(y, y) = 0, ∀y ∈ K.
Then the problem VI is equivalent to the following:

find y∗ ∈ K s.t. 〈F (y∗), x− y∗〉+ G(x, y∗) ≥ 0, ∀x ∈ K. V I(F,G)

Proof. Since G is non negative it is obvious that, if y∗ is a solution of V I, then it
is also a solution of V I(F,G).
Viceversa suppose that y∗ is a solution of V I(F,G). This is equivalent to say that
y∗ is a global minimum point of the problem

minx∈K〈F (y∗), x− y∗〉+ G(x, y∗).

Since K is a closed convex set then y∗ is a solution of the variational inequality

〈F (y∗) +∇xG(y∗, y∗), x− y∗〉 ≥ 0, ∀x ∈ K.

Condition ii) implies that y∗ is a solution of V I.

We note that no convexity hypotheses on the function G are needed to prove
Proposition 2.2.

Remark 2.3 From Lemma 2.1 we have that V I(F,G) is equivalent to the condi-
tion

min
y∈K

sup
x∈K

[〈F (y), y − x〉 −G(x, y)] = 0

and therefore, under the hypotheses of Proposition 2.2 the function

h(y) := sup
x∈K

[〈F (y), y − x〉 −G(x, y)]

is a gap function for the problem V I.



3 The gap function associated to Minty Variational Inequal-
ity

It is well-known that the variational problem

find x∗ ∈ K s.t. 〈F (y), y − x∗〉 ≥ 0, ∀y ∈ K (V I∗)

which is also known [8] as Minty variational inequality, is closely related to the
problem V I. When the operator F is continuous and pseudomonotone V I∗ is
equivalent to V I and, therefore, many existence theorems, based on monotonicity
assumptions, prove the existence of a solution for both problems V I and V I∗

[5, 14]. Following the scheme described in the previous section we will show that,
exploiting the minimax formulation of the problem V I∗ [13], it is possible to define
a gap function associated to V I∗.

We will introduce a suitable regularization of the problem V I∗ from which we
will derive a continuously differentiable gap function, using the classical results of
the minimax theory.

Let H(x, y) : K×K −→ R be a non negative, differentiable function such that

H(x, x) = 0, ∀x ∈ K; (1)

∇yH(x, x) = 0, ∀x ∈ K. (2)

Consider the following variational inequality:

find x∗ ∈ K s.t. 〈F (y), y − x∗〉+ H(x∗, y) ≥ 0, ∀y ∈ K. V I∗(F,H)

Proposition 3.1 Let K be a convex set in Rn. Suppose that H(x, y) : K×K −→
R is a non negative, differentiable function that fulfils (1) and (2) and that F :
Rn −→ Rn is a differentiable pseudomonotone operator on K. Then V I∗(F,H)
is equivalent to V I∗.

Proof. Since H is non negative it is obvious that, if y∗ is a solution of V I∗, then
it is also a solution of V I∗(F,H).
Viceversa suppose that x∗ is a solution of V I∗(F,H). This is equivalent to say
that x∗ is a global minimum point of the problem

min
y∈K

[〈F (y), y − x∗〉+ H(x∗, y)].

Since K is a convex set x∗ is a solution of the variational inequality

〈∇yq(x∗, x∗) +∇yH(x∗, x∗), y − x∗〉 ≥ 0, ∀y ∈ K,

where q(x, y) := 〈F (y), y − x〉. From (2) we obtain

〈∇yq(x∗, x∗), y − x∗〉 ≥ 0, ∀y ∈ K.

Since ∇yq(x, y) = F (y) +∇F (y)(y − x) then ∇yq(x∗, x∗) = F (x∗), that is x∗ is a
solution of V I. Since F is pseudomonotone then x∗ is also a solution of V I∗.



Corollary 3.1 In the hypotheses of the previous proposition the function

h(x) := sup
y∈K

[〈F (y), x− y〉 −H(x, y)]

is a gap function for V I∗.

Proof. It is sufficient to observe that, for Lemma 2.1, V I∗(F,H) is equivalent to
the condition

min
x∈K

sup
y∈K

[〈F (y), x− y〉 −H(x, y)] = 0

and that h(x) ≥ 0, ∀x ∈ K. The thesis follows from Proposition 3.1.

From Propositions 2.2 and 3.1 we immediately obtain the following result:

Corollary 3.2 Let F : Rn −→ Rn be a differentiable pseudomonotone operator
on K and G(x, y) : K × K −→ R be a non negative, differentiable function such
that

1. G(x, x) = 0 ∀x ∈ K;

2. ∇xG(x, x) = 0 ∀x ∈ K.

Then h(x) := supy∈K [〈F (y), x− y〉 −G(y, x)] is a gap function for V I∗.

Remark 3.1 The previous corollary follows from the simple remark that if G(x, y)
fulfils the hypotheses i) and ii) of Proposition 2.2 then G(y, x) fulfils conditions
(1) and (2). Therefore, an analogous result can be stated to derive a gap function
for the variational inequality V I, considering a function H(x, y) that fulfils (1)
and (2).

In the last part of the section we analyse the differentiability properties of the
function h(x).

Proposition 3.2 Let K be a compact convex set in Rn. Suppose that F is con-
tinuous, H(x, y) : K × K −→ R is continuously differentiable and the function
φ(x, y) := 〈F (y), y−x〉+H(x, y) is strictly quasi convex with respect to y, ∀x ∈ K,
then h(x) is continuously differentiable and its gradient is given by

∇h(x) = F (y(x))−∇xH(x, y(x))

where y(x) is the solution of the problem miny∈K φ(x, y).

Proof. We observe that
h(x) = − inf

y∈K
φ(x, y) (3)

Since φ(x, y) is strictly quasi convex with respect to y then there exists a unique
minimum point y(x) of the problem (3) (see the Appendix, Proposition 5.1). Since



F is continuous and H is continuously differentiable then ∇xφ is continuous and
therefore, from theorem 1.7, chapter 4 of [1], it follows that

∇h(x) = −∇xφ(x, y(x)).

Moreover it is known that the function y(x) is continuous (see the Appendix,
Proposition 5.2) and therefore ∇h(x) is continuous at x.

Remark 3.2 In the Proposition 3.2, the hypothesis of compactness on the set K
can be replaced by any other assumption that guarantees that the infimum in (3)
is attained. Moreover, we observe that, if H(x, y) is concave with respect to x, for
every fixed y ∈ K, then h(x) is a continuously differentiable convex function.

4 Descent methods for Minty Variational Inequality

In this section we will consider a descent direction method for solving the problem

min
x∈K

h(x) (4)

where h is the gap function associated to the variational inequality V I∗:

h(x) := sup
y∈K

[〈F (y), x− y〉 −H(x, y)].

We will assume that

1. K is a nonempty compact convex set in Rn;

2. φ(x, y) := 〈F (y), y − x〉 + H(x, y) is a strictly quasi convex function with
respect to y, ∀x ∈ K;

3. F is a continuously differentiable operator with ∇F (y) positive definite ∀y ∈
K;

4. H(x, y) : K×K −→ R is a non negative continuously differentiable function
that fulfils conditions (1) and (2) and such that ∇xH(x, y) + ∇yH(x, y) =
0,∀x, y ∈ K.

Remark 4.1 The hypotheses 1 and 3 guarantee that V I∗ has a solution x∗ and,
moreover, that x∗ is also a solution of V I (see [11]).
Condition 4 is fulfilled by the function H(x, y) := 1

2 〈M(x− y), x− y〉 where M is
a symmetric positive definite matrix of order n. This function was considered by
Fukushima [7] in order to define a gap function for the variational inequality V I.

We recall that, from Proposition 3.2, h is a continuously differentiable function
and ∇h(x) = F (y(x))−∇xH(x, y(x)), where y(x) is the solution of the problem

min
y∈K

φ(x, y). P (x)



Lemma 4.1 Suppose that the hypotheses 1–4 hold. Let y(x) the solution of P (x).
Then x∗ is a solution of V I∗ iff x∗ = y(x∗).

Proof. We have shown in the proof of Proposition 3.2 that, in the hypotheses
1,2,3, P (x) admits a unique minimum point. Since ∇F (y) is a positive definite
matrix ∀y ∈ K and F is continuously differentiable then F is a strictly monotone
operator ([16], Theorem 5.4.3). Therefore x∗ is a solution of V I∗ iff 0 = h(x∗) =
−miny∈K φ(x∗, y) iff y(x∗) = x∗.

Remark 4.2 Lemma 4.1 can be proved without the assumption ∇xH(x, y) +
∇yH(x, y) = 0,∀x, y ∈ K. This additional hypothesis allows to prove that d(x) :=
y(x)− x is a descent direction for h at the point x ∈ K, whenever y(x) 6= x .

Proposition 4.1 Suppose that the hypotheses 1–4 hold. Let y(x) be the solution
of the problem P (x) with y(x) 6= x. Then d(x) := y(x) − x is a descent direction
for h at the point x ∈ K.

Proof. We have to show that 〈∇h(x), d(x)〉 < 0. Since K is a convex set y(x)
fulfils the condition 〈∇yφ(x, y(x)), z−y(x)〉 ≥ 0,∀z ∈ K that is, putting q(x, y) :=
〈F (y), y − x〉,

〈∇yq(x, y(x)), z − y(x)〉+ 〈∇yH(x, y(x)), z − y(x)〉 ≥ 0, ∀z ∈ K.

In particular for z := x we obtain

〈∇yq(x, y(x)), x− y(x)〉 ≥ −〈∇yH(x, y(x)), x− y(x)〉. (5)

Since ∇yq(x, y) = F (y) + ∇F (y)(y − x), taking into account assumption 4 and
(5), we have

〈∇xh(x), y(x)− x)〉 = 〈F (y(x)), y(x)− x〉 − 〈∇xH(x, y(x)), y(x)− x〉 ≤
〈F (y(x)), y(x)− x〉+ 〈∇yq(x, y(x)), x− y(x)〉 = 〈F (y(x)), y(x)− x〉 +
〈F (y(x)), x− y(x)〉 + 〈∇F (y(x))(y(x)− x), x− y(x)〉 =
〈∇F (y(x))(y(x)− x), x− y(x)〉 < 0 if x 6= y(x), and we achieve the thesis.

Using the same arguments exploited by Fukushima for proving theorem 4.1 in
[7], it is possible to estabilish the following convergence result:

Theorem 4.1 Suppose that the hypotheses 1–4 hold. Consider the sequence {xk}
defined by the relation

xk+1 := xk + tkdk, k = 0, 1, ...

where dk(xk) := y(xk)− xk and tk ∈ [0, 1] is the solution of the problem

min{h(xk + tdk) : 0 ≤ t ≤ 1}. (6)

Then, for any x0 ∈ K the sequence {xk} ⊂ K and converges to the solution of the
variational inequality V I∗.



Proof. Since ∇F (y) is positive definite ∀y ∈ K and F is continuously differen-
tiable then F is a strictly monotone operator ([16], Theorem 5.4.3) and therefore
both problems V I and V I∗ have the same unique solution.
The convexity of K implies that the sequence {xk} ⊂ K since tk ∈ [0, 1]. It is
proved in the Appendix that the function y(x) is continuous, which implies the
continuity of d(x). It is known (see e.g.[15]) that the map

U(x, d) := {y : y = x + td, 0 ≤ t ≤ 1, h(y) = min
0≤t≤1

h(x + td)}

is closed whenever h is a continuous function. Therefore the algorithmic map
xk+1 = U(xk, d(xk)) is closed, (see e.g. [15]). Zangwill’s convergence theorem [19]
(see the Appendix) implies that any accumulation point of the sequence {xk} is a
solution of V I∗. Since V I∗ has a unique solution, the sequence {xk} converges to
the solution of V I∗.

Remark 4.3 The proposed algorithm can be applied to a linear variational in-
equality over a compact convex set, where the operator is defined by F (y) := Ay+b
with A positive definite matrix of order n.The function H(x, y) may be defined as
H(x, y) := 1

2 〈M(x− y), x− y〉 where M is a symmetric positive definite matrix of
order n.

The literature on descent methods for constrained extremum problems is very
wide. Many of the generalizations concerning classical descent methods are likely
to be suitable for the algorithm proposed in Theorem 4.1; for example, it could be
considered an inexact line-search rule when solving (6). Moreover, owing to the fact
that the gap function approach descends from equivalent minimax formulations of
V I and V I∗, descent methods for minimax problems [1] could be analysed.

5 Appendix

In this section we report, for completeness, the main properties of a strictly quasi–
convex function, the proof of the continuity of the optimal solution map of a
parametric optimization problem and Zangwill convergence theorem. These prop-
erties have been used for proving some of the results (Proposition 3.2 and Theorem
4.1) in the previous sections.

Definition 5.1 [17] A function f : K −→ Rn is said strictly quasi–convex iff:
x1, x2 ∈ K, x1 6= x2, f(x1) ≤ f(x2), 0 < λ < 1 implies

f(λx1 + (1− λ)x2) < f(x2).

We recall that some authors have given different definitions of strict quasi–convexity,
see e.g. [12]. For a deeper analysis on this topic see [2] and references therein.
In the next result we summarize the main properties of a strictly quasi–convex
function that we have considered in the paper.



Proposition 5.1 [18] Let f be a strictly quasi–convex function on the convex set
K ⊆ Rn. Then the following statements hold:

1. f is quasi–convex on K;

2. Every local minimum point of f on K is also a global minimum point on K;

3. If f attains a global minimum point x∗ on K then x∗ is the unique minimum
point for f on K.

The second topic of interest is the continuity of the optimal set mapping of a
parametric optimization problem. We recall the main concepts concerning point
to set maps that we will use in what follows.

Definition 5.2 Let X,Y be metric spaces.

1. A point to set map A : X −→ 2Y is upper semicontinuous (u.s.c.) according
to Berge at a point λ∗ ∈ X if, for each open set B containing Aλ∗, there
exists a neighborhood V of λ∗ such that

Aλ ⊂ B, ∀λ ∈ V.

2. A point to set map A : X −→ 2Y is called closed at x ∈ X iff

xk −→ x ∈ X, yk −→ y ∈ Y, with yk ∈ A(xk) ∀k, implies that y ∈ A(xk).

A point to set map is called closed on S ⊂ X if it is closed at every point of
S.

Consider the problem
inf f(x, λ), x ∈ K P (λ)

where f(x, λ) : Rn ×Rp −→ R, K is a closed convex set in Rn.
Suppose that there exists the minimum for P (λ∗) and the set of the solutions of
P (λ∗) is bounded. Let y(λ) be the optimal solution mapping of the problem P (λ),
The following result holds:

Proposition 5.2 Let f(x, λ) : Rn × Rp −→ R be lower semicontinuous and
strictly quasi–convex with respect to x, for every fixed λ ∈ Rp and upper semi-
continuous at the point (y(λ∗), λ∗). Then y(λ) is a single valued map which is
continuous at the point λ∗.

Proof. Since f(x, λ) is lower semicontinuous and strictly quasi–convex with
respect to x, for every fixed λ ∈ Rp it follows that y(λ) is single-valued.
Applying theorem 4.3.3 of [3], we obtain that y(λ) is u.s.c. according to Berge at
the point λ∗. Since y(λ) is single-valued it follows that y(λ) is continuous at λ∗.

We recall the statement of Zangwill Convergence Theorem [19] as reported in
[15]. Given an optimization problem P on X, let M be the set of the points of
X that fulfil a suitable necessary optimality condition. Suppose that, in order to
solve P , it is used an algorithm represented by a point to set map A : X −→ 2X .



Definition 5.3 We say that z : X −→ R is a descent function (relative to the
algorithm A) if it is continuous and has the following properties:

1. x 6∈ M implies z(y) < z(x) ∀y ∈ A(x),

2. x ∈ M implies z(y) ≤ z(x) ∀y ∈ A(x).

Theorem 5.1 [19] Let P be an optimization problem on X and M be the set of
the points of X that fulfil a certain necessary optimality condition.
Let A : X −→ 2X be the algorithmic point to set mapping and consider a sequence
{xk} generated by the algorithm, i.e. satisfying xk+1 ∈ A(xk).
If the following three conditions hold:

1. Every point xk is contained in a compact set K ⊂ X;

2. There exists a function of descent z;

3. The point to set map A is closed on X \M and ∀x ∈ X \M, A(x) 6= ∅.

Then, for every x which is the limit of a convergent subsequence of {xk}, we have
that x ∈ M .
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