Esercizio 1. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

<table>
<thead>
<tr>
<th>città</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>91</td>
<td>62</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>54</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>11</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Trovare una valutazione inferiore del valore ottimo calcolando il 5–albero di costo minimo.

$$ v_l(P) = $$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 5.

ciclo:

$$ v_S(P) = $$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 5–albero di costo minimo come rilassamento di ogni sotto problema ed istanziando, nell’ordine, le variabili x_{35}, x_{34}, x_{13}.

Esercizio 2.

a) Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell’ordine, il costo e la capacità).

![Diagramma della rete](image)

<table>
<thead>
<tr>
<th>Archi di T</th>
<th>Archi di U</th>
<th>Soluzione di base</th>
<th>Ammissibile (sì/no)</th>
<th>Degenere (sì/no)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,3) (2,4) (2,5) (3,2) (4,6) (5,7)</td>
<td>(1,2) (4,5) (5,9)</td>
<td>$x = $</td>
<td>sì</td>
<td>no</td>
</tr>
<tr>
<td>(1,2) (2,5) (3,2) (5,4) (5,7) (7,6)</td>
<td>(6,5)</td>
<td>$\pi = (0, $</td>
<td>no</td>
<td>sì</td>
</tr>
</tbody>
</table>
b) Costruire in una rete a 4 nodi e 5 archi (indicando costi, capacità e bilanci) un potenziale di base degenere che sia ottimo.

Rete:

Potenziale $\pi = \ldots$

Qual è la base associata ad π?

Perché π è degenere?

Perché π è ottimo?

Esercizio 3. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell’esercizio 2.

<table>
<thead>
<tr>
<th></th>
<th>1° iterazione</th>
<th>2° iterazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archi di T</td>
<td>(1,3), (3,2), (3,5), (4,6), (6,5), (7,6)</td>
<td></td>
</tr>
<tr>
<td>Archi di U</td>
<td></td>
<td>(2,4)</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arco entrante</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y^+, y^-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arco uscente</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Esercizio 4. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

Taglio di capacità minima: $N_s =$

$N_t =$
Esercizio 1. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

<table>
<thead>
<tr>
<th>città</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>91</td>
<td>62</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>54</td>
<td>57</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>9</td>
<td>43</td>
<td>13</td>
</tr>
</tbody>
</table>

a) Trovare una valutazione inferiore del valore ottimo calcolando il 5–albero di costo minimo.

5–albero: \((1,2) (2,3) (3,4) (3,5) (4,5)\)

\[v_I(P) = 68\]

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 5.

ciclo: 5 – 3 – 4 – 2 – 1

\[v_S(P) = 127\]

c) Applicare il metodo del Branch and Bound, utilizzando il 5–albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili \(x_{35}, x_{34}, x_{13}\).

Esercizio 2. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

<table>
<thead>
<tr>
<th>Archi di T</th>
<th>Archi di U</th>
<th>Soluzione di base</th>
<th>Ammissibile (si/no)</th>
<th>Degenere (si/no)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,3) (2,4) (2,5) (3,2) (4,6) (5,7)</td>
<td>(1,2)</td>
<td>(x = (11, -6, 9, 5, -4, 0, 5, 0, 0, 0))</td>
<td>NO</td>
<td>SI</td>
</tr>
<tr>
<td>(1,2) (2,5) (3,2) (5,4) (5,7) (7,6)</td>
<td>(6,5)</td>
<td>(\pi = (0, 9, -1, 16, 12, 23, 17))</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

Esercizio 3. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 2.
Esercizio 4. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

![Diagramma della rete con i cammini minimi del Dijkstra](image)

<table>
<thead>
<tr>
<th>nodo visitato</th>
<th>iter 1</th>
<th>iter 2</th>
<th>iter 3</th>
<th>iter 4</th>
<th>iter 5</th>
<th>iter 6</th>
<th>iter 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>nodo 2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>nodo 3</td>
<td>18</td>
<td>1</td>
<td>18</td>
<td>1</td>
<td>15</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>nodo 4</td>
<td>18</td>
<td>1</td>
<td>13</td>
<td>4</td>
<td>13</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>nodo 5</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>nodo 6</td>
<td>+∞</td>
<td>-1</td>
<td>+∞</td>
<td>-1</td>
<td>+∞</td>
<td>-1</td>
<td>+∞</td>
</tr>
<tr>
<td>nodo 7</td>
<td>+∞</td>
<td>-1</td>
<td>+∞</td>
<td>-1</td>
<td>+∞</td>
<td>-1</td>
<td>+∞</td>
</tr>
<tr>
<td>insieme Q</td>
<td>2, 3, 4</td>
<td>2, 3, 6</td>
<td>2, 5, 6</td>
<td>5, 6</td>
<td>5, 7</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

![Diagramma della rete con i cammini aumentanti](image)

<table>
<thead>
<tr>
<th>cammino aumentante</th>
<th>δ</th>
<th>x</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 3 - 5 - 7</td>
<td>6</td>
<td>(0, 6, 0, 0, 6, 0, 0, 6, 0, 0)</td>
<td>6</td>
</tr>
<tr>
<td>1 - 4 - 6 - 7</td>
<td>7</td>
<td>(0, 6, 7, 0, 6, 0, 7, 0, 6, 0)</td>
<td>13</td>
</tr>
<tr>
<td>1 - 4 - 3 - 5 - 7</td>
<td>3</td>
<td>(0, 6, 10, 0, 9, 3, 7, 0, 9, 0)</td>
<td>16</td>
</tr>
<tr>
<td>1 - 2 - 4 - 3 - 5 - 7</td>
<td>1</td>
<td>(1, 6, 10, 1, 10, 4, 7, 0, 10, 0)</td>
<td>17</td>
</tr>
</tbody>
</table>

Taglio di capacità minima: \(N_s = \{1, 2, 3, 4, 5, 6\} \quad N_t = \{7\} \)