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In the late 50s, Milgram aimed at answering the following question:

given two individuals selected randomly from the
population, what is the probability that the minimum
number of intermediaries required to link them is
0, 1, 2, . . . , k?.
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He selected 296 volunteers (the starting population) and
asked them to dispatch a message to a specific individual (the
target person), a stockholder living in Sharon, MA, a suburb
of Boston, and working in Boston.

The message could not be sent directly to the target person
(unless the sender knew him personally), but could only be
mailed to someone known personally who is more likely than
the sender to know the target person.

The starting population:

100 of them were people living in Boston,
100 were Nebraska stockholders (i.e., people living far from the
target but sharing with him their profession) and
96 were Nebraska inhabitants chosen at random.
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The results obtained from Milgrams experiments were:

only 64 chains (22%) were completed (i.e., they reached the
target);

the average number of intermediaries in these chains was 5.2,

there was a marked difference between the Boston group (4.4)
and the rest of the starting population, whereas the difference
between the two other subpopulations was not statistically
significant;

the random group from Nebraska (far away) needed 5.7
intermediaries on average (i.e., rounding up, six degrees of
separation).

The average path length is small, much smaller than expected,
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Milgram was measuring the average length of a routing path on a
social network, which is an upper bound on the average distance

indeed the people involved in the experiment were not
necessarily sending the postcard to an acquaintance on a
shortest path to the destination).
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First world-scale social-network graph-distance computations, using
the entire Facebook network of active users (≈ 721 million users,
≈ 69 billion friendship links). The average distance observed is
4.74, corresponding to 3.74 intermediaries or degrees of separation.

Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander,
Sebastiano Vigna: Four degrees of separation. WebSci 2012:
33-42

Andrea Marino Distance Distribution of Real World Graphs



Definitions

Given a graph G = (V ,E ) (strongly) connected.

Definition (Distance)

The distance d(u, v) is the number (sum of the weights) of edges
along shortest path from u to v .
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Definition (Distance Distribution)

For any h, the fraction of pairs of nodes x , y such that d(x , y) = h.

Nh =
|{(u, v) ∈ V × V : d(u, v) = h}|

n(n − 1)

Nh(u) = {v : v ∈ V , d(u, v) = h}

We denote N1(u) also as N(u).

Definition (Average Distance)∑
u,v∈V

d(u, v)

n(n − 1)
=
∑
h

h · Nh

Approximating Nh implies approximating average distance.
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An Example Undirected Graph

v1

v2 v3

v4 v5

v6

v7

v8v9

v1 v2 v3 v4 v5 v6 v7 v8 v9

v1 0 1 1 2 2 3 2 3 3
v2 1 0 1 1 2 3 1 3 2
v3 1 1 0 2 1 2 2 2 3
v4 2 1 2 0 1 2 2 2 1
v5 2 2 1 1 0 1 3 1 2
v6 3 3 2 2 1 0 4 1 3
v7 2 1 2 2 3 4 0 4 3
v8 3 3 2 2 1 1 4 0 3
v9 3 2 3 1 2 3 3 3 0

The average distance is the average among all the entries.

N1 How many entries are 1 (divided by n(n − 1))?

N2 How many entries are 2 (divided by n(n − 1))?

. . .

ND How many entries are D (divided by n(n − 1))?
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Part I

Classical Sampling
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Given a random U ⊆ V approximate

Nh =
|{(u, v) ∈ V × V : d(u, v) = h}|

n(n − 1)

as

Nh(U) =
|{(u, v) ∈ U × V : d(u, v) = h}|

|U| (n − 1)

The algorithm

Perform a random sample of kEW vertices from V obtaining the
multiset U = {u1, u2, . . . , ukEW

} ⊆ V .
Run iteration i = 1, 2, . . . , kEW, computing the distances d(ui , v)
for all v ∈ V , by executing a bfs traversal of G starting from
vertex ui .
Return the approximation Nh(U).

The running time of the algorithm is O(kEW m) for unweighted
graphs, with a space occupancy of O(n).
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The method is unbiased

Since Nh({ui}) = |{(ui ,v):v∈V∧d(ui ,v)=h}|
n−1

Nh(U) =
|{(ui , v) : ui ∈ U, v ∈ V ∧ d(u, v) = h}|

kEW (n − 1)
=

∑kEW
i=1 Nh({ui})

kEW

If vertex ui is randomly chosen in V , then E [Nh({ui})] = Nh.
Indeed,

E [Nh({ui})] =
1

n

∑
v∈V

Nh({v}) = Nh(V ) = Nh.

Hence, if all elements of U are randomly chosen, we have that, by
the linearity of the expectation,

E [Nh(U)] = E

[∑kEW
i=1 Nh({ui})

kEW

]
=

∑kEW
i=1 E [Nh({ui})]

kEW

= Nh.
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Bounding the error

Our goal is to keep kEW as small as possible still ensuring a
bounded error.
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Theorem (Azuma-Hoeffding bound)

If x1, x2, . . . , xk are independent random variables such that
µ = E [

∑
xi/k] and for each i there exist ai and bi such that

ai < xi < bi , then, for any ξ > 0,

Pr

{∣∣∣∣∣
∑k

i=1 xi
k

− µ

∣∣∣∣∣ ≥ ε
}
≤ 2e−2k2ε2/

∑k
i=1(bi−ai )2

.
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In our case,

k = kEW,

xi = Nh({ui}), and

µ = Nh (since we have shown that
µ = Nh = E [

∑kEW
i=1 Nh({ui})/kEW] = E [

∑
xi/k])

For 1 ≤ i ≤ kEW, 0 ≤ Nh({ui}) ≤ 1 implying ai = 0 and
bi = 1.

Pr

{∣∣∣∣∣
∑kEW

i=1 Nh({ui})
kEW

− Nh

∣∣∣∣∣ ≥ ε
}
≤ 2e−2 kEW ε2

.
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In

Pr

{∣∣∣∣∣
∑kEW

i=1 Nh({ui})
kEW

− Nh

∣∣∣∣∣ ≥ ε
}
≤ 2e−2 kEW ε2

.

if we choose kEW = α
2 ε
−2 ln n for any constant α > 0, we have

that this probability is bounded by 2/nα.

This number of iterations (bfses) guarantees that the
absolute error is bounded by ε with high probability.
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Hence

Theorem

Let G be a (strongly) connected graph with n vertices and m
edges. For any arbitrarily small ε > 0, the ew algorithm with
kEW = Θ(ε−2 log n) computes in time O(kEW m) an approximation
of the distance distribution Nh of G whose absolute error is
bounded by ε, with high probability.
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The previous analysis can be easily extended to the case of
weighted (strongly) connected graphs, by making use of the
Dijkstra’s algorithm: the running time becomes
O(kEW (m + n log n)) = O(ε−2(m log n + n log2 n)).

In a similar way, we can compute

An approximation of the average distance of G , which is
defined as d =

∑
u∈V

∑
v∈V , v 6=u d(u, v)/n(n − 1).

An approximation of the α-diameter of G , which is defined as
the minimum h for which

∑h
i=1 Nh ≥ α:

it suffices to repeat the analysis with respect to∑h
i=1 Nh =

N′h
n(n−1) = |{(u,v)∈V×V :u 6=v , d(u,v)≤h}|

n(n−1) .
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Figure : Approximate distribution (starred points) computed by classical
sampling versus actual distribution of Nh (continuous line). The x-axis
represents the normalized value h/D.
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David Eppstein, Joseph Wang: Fast Approximation of
Centrality. J. Graph Algorithms Appl. 8: 39-45 (2004)

Pierluigi Crescenzi, Roberto Grossi, Leonardo Lanzi, Andrea
Marino: A Comparison of Three Algorithms for Approximating
the Distance Distribution in Real-World Graphs. TAPAS 2011:
92-103

Jure Leskovec, Christos Faloutsos: Sampling from large
graphs. KDD 2006: 631-636
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Part II

Priority Sampling
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These methods study the following.

Definition (Cumulative Distance Distribution)

For any h, the fraction of pairs of nodes x , y such that d(x , y) ≤ h.

Bh =
|{(u, v) ∈ V × V : d(u, v) ≤ h}|

n2

Bh(u) = {v : v ∈ V : d(u, v) ≤ h}

Obviously, Nh =
n2(Bh−Bh−1)

n(n−1) .
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For any u:
B1(u) = {u} ∪ N(u)

Bh(u) = Bh−1(u) ∪
⋃

v∈N(u)

Bh−1(v)

v1

v2 v3

v4 v5

v6

v7

v8v9

v1 v2 v3 v4 v5 v6 v7 v8 v9

v1 0 1 1 2 2 3 2 3 3
v2 1 0 1 1 2 3 1 3 2
v3 1 1 0 2 1 2 2 2 3
v4 2 1 2 0 1 2 2 2 1
v5 2 2 1 1 0 1 3 1 2
v6 3 3 2 2 1 0 4 1 3
v7 2 1 2 2 3 4 0 4 3
v8 3 3 2 2 1 1 4 0 3
v9 3 2 3 1 2 3 3 3 0

B1(v1) = {v1, v2, v3}
B2(v1) = B1(v1) ∪ B1(v2) ∪ B1(v3) =
B1(v1) ∪ {v1, v2, v3, v4, v7} ∪ {v1, v2, v3, v5} = {v1, v2, v3, v4, v5, v7}
B3(v1) = B2(v1) ∪ B2(v2) ∪ B2(v3) =
B2(v1) ∪ {v1, v2, v3, v4, v5, v7, v9} ∪ {v1, v2, v3, v4, v5, v6, v7, v8} = V
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This gives an exact algorithm that in D steps computes |Bh(u)| for
any u, Bh, and h.

Exact algorithm for cumulative distance distribution

for any u, B1(u) = {u} ∪ N(u) and output∑
u |B1(u)|/n2 = B1

for h ∈ 2 . . .D:

for any u, Bh(u) = Bh−1(u) ∪
⋃

v∈N(u) Bh−1(v)

output
∑

u |Bh(u)|/n2 = Bh.

The memory usage is Θ(n · n), since the size of Bh−1(u) for any u
can be Θ(n).
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Our Target: for any u,

Bh(u) = Bh−1(u) ∪
⋃

v∈N(u)

Bh−1(v)

Question: for any u, given some limited information (constant
or almost constant) about the sets Bh−1(u), and
Bh−1(v) for any v ∈ N(u), is there a way to
approximate Bh(u)?

If the information stored for Bh−1(u) is constant
for any u, then we have Θ(n) instead of Θ(n · n)
We have to approximate a set A in constant
space, so that if we want an approximation of
the union set A ∪ B we can combine the
approximation we did of A and B.
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Probabilistic counting

A sketch S(A) is a compressed form of representation for a given
set A providing the following operations:

INIT (S(A)) How a sketch S(A) for A is initialized.

UPDATE (S(A), u) How a sketch S(A) for A modifies when an
element u is added to A.

UNION (S(A),S(B)) Given two sketches for A and B, provide a
sketch for A ∪ B.

SIZE (S(A)) Estimate the number of distinct elements of A.
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Properties

Given two sketches S(A) and S(B) for any two sets A and B,
S(A ∪ B) can be computed just by looking at S(A) and S(B),
i.e.: C=UNION (S(A), S(B)) ≡ (INIT (C ); for u ∈ A ∪ B,
UPDATE (C , u) ; RETURN C )

If we call UPDATE (S(A), u) and we already did UPDATE

(S(A), u) with the same u the sketch does not modify, e.g.
the operation SIZE (S(A)) return the same value.
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Plugging the probabilistic counting into the framework

Exact algorithm for cumulative distance distribution

for any u, B1(u) = {u} ∪ N(u) and output
∑

u |B1(u)|/n2 = B1

for h ∈ 2 . . .D:

for any u, Bh(u) = Bh−1(u) ∪
⋃

v∈N(u) Bh−1(v)

output
∑

u |Bh(u)|/n2 = Bh .

Approximation algorithm for cumulative distance distribution

for any u, INIT S(B1(u))
for any u, for any v ∈ {u} ∪ N(u), UPDATE (S(B1(u)), v).
Output

∑
uSIZE (S(B1(u)))/n2

for h ∈ 2 . . .D:
for any u,

S(Bh(u)) := S(Bh−1(u))
for any edge (u, v),

S(Bh(u)) := UNION(S(Bh(u),S(Bh−1(v)))

Output
∑

uSIZE (S(Bh(u)))/n2

Memory usage is Θ(n), since the sizes of S(Bh−1(u)) are constant.
Andrea Marino Distance Distribution of Real World Graphs


	Definitions
	Classical Sampling
	Priority Sampling

