2

The Theory of NP-Completeness

In this chapter we present the formal details of the theory of NP-
completeness. So that the theory can be defined in a mathematically
rigorous way, it will be necessary to introduce formal counterparts for many
of our informal notions, such as ‘‘problems’ and ‘‘algorithms.” Indeed,
one of the main goals of this chapter is to make explicit the connection
between the formal terminology and the more intuitive, informal shorthand
that is commonly used in its place. Once we have this connection well in
hand, it will be possible for us to pursue our discussions primarily at the
informal level in later chapters, reverting to the formal level only when
necessary for clarity and rigor.

The chapter begins by discussing decision problems and their represen-
tation as “‘languages,”’ equating ‘‘solving™ a decision problem with *‘recog-
nizing™ the corresponding language. The one-tape Turing machine is intro-
duced as our basic model for computation and is used to define the class P
of all languages recognizable deterministically in polynomial time. This
model is then augmented with a hypothetical “‘guessing’ ability, and the
augmented model is used to define the class NP of all languages recogniz-
able ‘“‘nondeterministically” in polynomial time. After discussing the rela-
tionship between P and NP, we define the notion of a polynomial transfor-
mation from one language to another and use it to define what will be our

18 THE THEORY OF NP-COMPLETENESS

most imf)orlanl class, the class of NP-complete problems. The chapter con-
cludes with the statement and proof of Cook’s fundamental theorem, which
provides us with our first bona fide NP-complete problem.

2.1 Decision Problems, Languages, and Encoding Schemes

As a matter of convenience, the theory of NP-completeness is designed
to be applied only to decision problems. Such problems, as mentioned in
Chapter 1, have only two possible solutions, either the answer ‘‘yes™ or the
answer “‘no.” Abstractly, a decision problem II consists simply of a set Dy
of instances and a subset Y;;C Dy of yes-instances. However, most decision
problems of interest possess a considerable amount of additional structure,
and we will describe them in a way that emphasizes this structure. The
standard format we will use for specifying problems consists of two parts,
the first part specifying a generic instance of the problem in terms of various
components, which are sets, graphs, functions, numbers, etc., and the
second part stating a yes-no question asked in terms of the generic instance.
The way in which this specifies Dy and Y, should be apparent. An instance
belongs to Dy, if and only if it can be obtained from the generic instance by
substituting particular objects of the specified types for all the generic com-
ponents, and the instance belongs to Yy, if and only if the answer for the
stated question, when particularized to that instance, is “‘yes.”

For example, the following describes a well-known decision problem
from graph theory:

SUBGRAPH ISOMORPHISM

INSTANCE: Two graphs, G, = (V},E)) and G,=(V3,E)).

QUESTION: Does G, contain a subgraph isomorphic to G5, that is, a sub-
set V'C ¥, and a subset E'CE, such that | V'] =|V,l, |E’| =|E,|, and there
exists a one-lo-one function f:V,— V' satisfying {u,v)€E, if and only if

{fG), f(n)) € E?

A decision problem related to the traveling salesman problem can be
described as follows:

TRAVELING SALESMAN
INSTANCE: A finite set C={cy ¢, ..., ¢, of “cities,” a ““distance™
d(c,,c;) € Z* for each pair of cities ¢;,¢;€C, and a bound B € Z* (where Zr
denotes the positive integers).
QUESTION: Is there a *‘tour’ of all the cities in C having total length no
more than B, that is, an ordering <c,(),Cu(2), - + - » Cn(m > Of C such that
m—1
Z dtcw(r}-cﬂ(ﬁ-l)] + d(cﬂ(mhcﬂll)) <B?

i=1

2.1 DECISION PROBLEMS, LANGUAGES, AND ENCODING SCHEMES 19

The reader will find many more examples of the use of this format
throughout the book, but these two should suffice for now to convey the
basic idea. The second example also serves to illustrate an important point
about how a decision problem can be derived from an optimization prob-
lem. If the optimization problem asks for a structure of a certain type that
has minimum “‘cost” among all such structures (for example, a tour that
has minimum length among all tours), we can associate with that problem
the decision problem that includes a numerical bound B as an additional
parameter and that asks whether there exists a structure of the required type
having cost no more than B (for example, a tour of length no more than
B). Decision problems can be derived from maximization problems in an
analogous way, simply by replacing *‘no more than’ by *‘at least.”

The key point to observe about this correspondence is that, so long as
the cost function is relatively easy to evaluate, the decision problem can be
no harder than the corresponding optimization problem. Clearly, if we
could find a minimum length tour for the traveling salesman problem in po-
lynomial time, then we could also solve the associated decision problem in
polynomial time. All we need do is find the minimum length tour, compute
its length, and compare that length to the given bound B. Thus, if we
could demonstrate that TRAVELING SALESMAN is NP-complete (as
indeed it is), we would know that the traveling salesman optimization prob-
lem is at least as hard. In this way, even though the theory of NP-
completeness restricts attention to only decision problems, we can extend
the implications of the theory to optimization problems as well. (We shall
see in Chapter 5 that decision problems and optimization problems are often
even more closely tied: Many decision problems, including TRAVELING
SALESMAN, can also be shown to be *‘no easier’’ than their corresponding
optimization problems.)

The reason for the restriction to decision problems is that they have a
very natural, formal counterpart, which is a suitable object to study in a
mathematically precise theory of computation. This counterpart is called a
“language’ and is defined in the following way.

For any finite set ¥ of symbols, we denote by £* the set of all finite
strings of symbols from . For example, if £={0,1}, then L* consists of
the empty string ‘‘€,”” the strings 0,1,00,01,10,11,000,001, and all other
finite strings of 0’s and 1's. If L is a subset of £*, we say that L is a
language ovér the alphabet £. Thus {01,001,111,1 101010} is a language
over {0,1), as is the set of all binary representations of integers that are per-
fect squares, as is the set {0,1)* itself.

The correspondence between decision problems and languages is
brought about by the encoding schemes we use for specifying problem in-
stances whenever we intend to compute with them. Recall that an encoding
scheme e for a problem [I provides a way of describing each instance of 11
by an appropriate string of symbols over some fixed alphabet . Thus the
problem IT and the encoding scheme e for I partition £* into three classes

0 THE THEORY OF NP-COMPLETENESS

»f strings: those that are not encodings of instances of I1, those that encode
nstances of [T for which the answer is “no,” and those that encode in-
dances of I for which the answer is *‘yes.”” This third class of strings is
he language we associate with IT and e, setling

Y is the alphabet used by e, and x is the

. . *.
L[l,e] =] x€L™ encoding under e of an instance 1€Yy

Jur formal theory is applied to decision problems by saying that, if a result
holds for the language LI[I1,e], then it holds for the problem 1 under the
ancoding scheme e.

In fact, we shall usually follow standard practice and be a bil more in-
formal than this. Each time we introduce a new concepl in terms of
languages, we will observe that the property is essentially encoding indepen-
dent, so long as we restrict ourselves Lo ‘‘reasonable’” encoding schemes.
That is, if e and e' are any two reasonable encoding schemes for I, then
the property holds either for both L(ILe] and L[11,e'] or for neither. This
will allow us to say, informally, that the property holds (or does not hold)
for the problem II, without actually specifying any encoding scheme. How-
ever, whenever we do so, the implicit assertion will be that we could, if re-
quested, specify a particular reasonable encoding scheme ¢ such that the
property holds for L(I1,e].

Notice that when we operate in this encoding-independent manner, we
lose contact with any precise notion of “‘input length.”” Since we need some
parameter in terms of which time complexity can be expressed, it is con-
venient to assume that every decision problem I1 has an associated,
encoding-independent function Length: Dy — Z*, which is “polynomially
related” to the input lengths we would obtain from a reasonable encoding
scheme. By polynomially related we mean that, for any reasonable encoding
scheme e for I, there exist (wo polynomials p and p’ such that il 1 €Dy
and x is a string encoding the instance / under e, then Length (11 < p(x)
and |x| < p'(Length [1]), where |x| denotes the length of the string x. In
the SUBGRAPH ISOMORPHISM problem, for example, we might take

Length [7] = | V| + | V3]

where G,=(V,E\) and G,=(V,,E;) are the graphs making up an in-
stance. In the TRAVELING SALESMAN decision problem we might take

Length [7] = m + [log, B] + max {[log,d (¢, ¢))]: ¢i¢j€C)

Since any two reasonable encoding schemes for a problem IT will yield poly-
nomially related input lengths, a wide variety of Length functions are possi-
ble for I1, and all our results will carry through for any such function that
meets the above conditions.

The usefulness of this informal, encoding-independent approach
depends, of course, on there being some agreement as 10 what constitutes a

2.1 DECISION PROBLEMS, LANGUAGES. AND ENCODING SCHEMES 21

“‘reasonable’” encoding scheme. The generally accepted meaning of *‘rea-
sonable” includes both the notion of *‘conciseness,” as captured by the (two
conditions mentioned in Chapter 1, and the notion of ‘‘decodability.”” The
intent of “‘conciseness’” is that instances of a problem should be described
with the natural brevity we would use in actually specifying those instances
for a computer, without any unnatural ‘‘padding’ of the input. Such pad-
ding could be used, for example, to expand the input length so much that
we artificially convert an exponential time algorithm into a polynomial time
algorithm. The intent of “‘decodability’ is that, given any particular com-
ponent of a generic instance, one should be able to specify a polynomial
time algorithm that is capable of extracting a description of that component
from any given encoded inslance.

Of course, these elaborations do not provide a formal definition of
“reasonable encoding scheme,”” and we know of no satisfactory way of
making such a definition. Even though most people would agree on wheth-
er or not a particular encoding scheme for a given problem is reasonable,
the absence of a formal definition can be somewhat discomforting. One
way of resolving this difficulty would be to require that generic problem in-
stances always be formed from a fixed collection of basic types of set-
theoretic objects. We will not impose such a constraint here, but, as an in-
dication of our intent when we refer to ‘‘reasonable encoding schemes,’” we
now give a brief description (which first time readers may wish to skip) of
how such a standard encoding scheme could be defined.

Our standard encoding scheme will map instances into ‘‘structured
strings” over the alphabet ¥={0,1,—, L1.GO)..L. We define structured
strings recursively, as follows:

(1) The binary representation of an integer & as a string of 0’s and
I’s (preceded by a minus sign **="" if k is negative) is a struc-
tured string representing the integer k.

(2) If x is a structured string representing the integer k, then [x] is a
structured string that can be used as a ‘““name’” (for example, for
a verlex in a graph, a set element, or a city in a traveling sales-
man instance).

(3) If x;,x3,...,X, are structured strings representing the objects
Xi.X5,...,X,. then (xy,x3,...,%,) is a structured string
representing the sequence <X, X5, ..., X,;>.

To derive an encoding scheme for a particular decision problem
specified in our standard format, we first note that, once we have built up a
representation for each object in an instance as a structured string, the
representation of the entire instance is determined using rule (3) above.
Thus we need only specify how the representation for each type of object is
constructed. For this we shall restrict ourselves to integers, ‘‘unstructured

22 THE THEORY OF NP-COMPLETENESS

elements” (vertices, elements, cities, elc.), sequences, sets, graphs, finite
functions, and rational numbers.

Rules (1) and (3) already tell us how to represent integers and se-
quences. To represent each of the unstructured elements in an instance, we
merely assign it a distinct “‘name,” as constructed by rule (2), in such a
way that if the total number of unstructured elements in an instance is N,
then no name with magnitude exceeding N is used. The representations for
the four other object types are as follows:

A set of objects is represented by ordering its elements as a sequence
<X, Xy....,X,> and taking the structured string corresponding to that
sequence.

A graph with vertex set V and edge set £ is represented by a structured
string (x,y), where x is a structured string representing the set ¥, and y is
a structured string representing the set £ (the elements of E being the
two-element subsets of ¥ that are edges).

A finite function iU U;, ..., U,)— W is represented by a struc-
tured string ((xp,01),(x2,02), . - . ,(x,,¥n)) where x; is a structured string
representing the object U, and y;, is a structured string representing the ob-
ject FLU)EW, IKi<m.

A rational number q is represented by a structured string (x,y) where x
is a structured string representing an integer a, y is a structured string rep-
resenting an integer b, a/b=gq, and the greatest common divisor of @ and
bis 1.

Although it might be convenient to have a wider collection of object
types at our disposal, the ones above will suffice for most purposes and are
enough to illustrate our notion of a reasonable encoding scheme. Further-
more, there would be no loss of generality in restricting ourselves to just
these types for specifying generic instances, since other types of objects can
always be expressed in terms of the ones above.

Note that our prescriptions are not sufficient to generate a unique string
for encoding each instance but merely for ensuring that each string that
does encode an instance obeys certain structural restrictions. A different
choice of names for the basic elements or a different choice of order for the
description of a set could lead to different strings that encode the same in-
stance. In fact, it makes no difference how many strings encode an instance
so long as we can decode each o obtain the essential components of the in-
stance. Moreover, our definitions take this into account; for example, in
LIILe], the set of all strings that encode yes-instances of IT under e, each
instance may be represented many times.

Before going on, we remind the reader that our standard encoding
scheme is intended solely to illustrate how one might define such a standard
scheme, although it also provides a reference point for what we mean by a
“reasonable” encoding scheme. There is no reason why some other gen-
eral scheme could not be used, or why we could not merely devise an indi-
vidual encoding scheme for each problem of interest. If the chosen scheme

22 DETERMINISTIC TURING MACHINES AND TIIE CLASS P 23

is *“‘equivalent™ to ours, in the sense that there exist polynomial time algo-
rithms for converting an encoding of an instance under cither scheme 1o an
encoding of that instance under the other scheme, then it, loo, will be
called “‘reasonable.” If the chosen scheme is rot equivalent Lo ours in this
sense, then one can still prove results with respect 1o that scheme, but the
encoding-independent terminology should not be used flor describing them.
Throughout this book we will restrict our attention to reasonable encoding
schemes for problems.

2.2 Deterministic Turing Machines and the Class P

In order to formalize the notion of an algorithm, we will need to fix a
particular model for computation. The model we choose is the deterministic
one-tape Turing machine (abbreviated DTM), which is pictured schematically
in Figure 2.1. It consists of a finite state control, a read-write head, and a rape
made up of a two-way infinite sequence of tape squares, labeled
..—2,-1,0,1,2.3, ...

Finite
state
control
Tape Read-write head
L N LN]

-3-2-10 1 2 3 4

Figure 2.1 Schematic representation of a deterministic one-lape Turing machine
(DTM).

A program for a DTM specifies the following information;

(1) A finite set I of tape symbols, including a subset ZCI" of input
symbols and a distinguished blank symbol b€ r-%;

(2) a finite set Q of states, including a distinguished siart-state qo and
two distinguished halt-states qy and gy

(3) a transition function 8:(Q—qy,qy}) XT — Q X T' X (—1,+1}).
The operation of such a program is straightforward. The input 10 the

DTM is a string x€ £*. The string x is placed in tape squares 1 through
| x|, one symbol per square. All other squares initially contain the blank

24 THE THEORY OF NP-COMPLETENESS

symbol. The program starls its operation in state g, with the read-write
head scanning tape square 1. The computation then proceeds in a step-by-
step manner. If the current state g is either gy or gy, then the computa-
tion has ended, with the answer being “‘yes” if g = ¢y and “no” if g =gy.
Otherwise the current state g belongs to Q —{gy.gn), some symbol s€I" is
in the tape square being scanned, and the value of 8(g,s) is defined. Sup-
pose 8(q,s) = (g',s',A). The read-write head then erases s, writes s' in its
place, and moves one square to the left if A = —1, or one square to the
right if A = +1. At the same lime, the finite state control changes its state
from g to g'. This completes one “step” of the computation, and we are
ready to proceed to the next step, if there is one.

r={01,5}, £=(0,1)

Q= (g0, a1, a2 fh.fhn(m'f
q 0 1 b
% | @0+ | (g0, 4D | (g1.b,—1)
a | (g2.6.-D | (gb, =) | (gn,b,—1)
/5] (qy.b.-‘l) {(h\r.b."” ((,'N.b"—l?
7 | G b=1) | (it =1) | Gawibi=D) |

5(q,s)

Figure 2.2 An example of a DTM program M = (1,0,8).

An example of a simple DTM program M is shown in Figure 2.2. The
transition function & for M is described in a tabular format, where the entry
in row ¢ and column s is the value of 8(q,s). Figure 2.3 illustrates the
computation of M on the input x =10100, giving the state, head position,
and contents of the non-blank portion of the tape before and after each
step.

Note that this computation halts after eight steps, in state gy, sO the
answer for 10100 is “‘yes.”> In general, we say that a DTM program M with
input alphabet £ accepis x€ L* if and only if M halts in state gy when ap-
plied to input x. The language Ly, recognized by the program M is given by

Ly = (x€Z*: M accepts x)

It is not hard to see that the DTM program of Figure 2.2 recognizes the
language

[x € [0,1)*: the rightmost rwo symbols of x are both 0]

2.2 DETERMINISTIC TURING MACHINES AND THE CLASS P 25

v
wi ~Joldr[B]1]Oole]&]|=
v
i ~]6]1JOoJ1r]oJo[ws]-
v
Al AR EE AN A NS
v
gl e A e oy e 1=
v
s 5 Tealy Ao [0 e
v
g2 e [ETT e Tee el |
v
gt ~Je 1@ [0o[o]s]
v
g wlalrlelijelele=
v
e AR AEI RN S

Figure 2.3 The computation of the program M from Figure 2.2 on input 10100.

Observe that this definition of language recognition does not require
that M halt for alf input strings in £*, only for those in Ly, If x belongs
to £*— L,,, then the computation of M on x might halt in state gy, or it
might continue forever without halting. However, for a DTM program to
correspond to our notion of an algorithm, it must halt on all possible strings
over its input alphabet. In this sense, the DTM program of Figure 2.2 is al-
gorithmic, since it will halt for any input string from {0,1}*,

The correspondence belween ‘‘recognizing™ languages and “‘solving”
decision problems is straightforward. We say that a DTM program M solves
the decision problem IT under encoding scheme e if M halts for all input

26 THE THEORY OF NP-COMPLETENESS

strings over its input alphabet and Ly = L{ll,e]. The DTM program of
Figure 2.2 once more provides an illustration. Consider the following
number-theoretic decision problem:

INTEGER DIVISIBILITY BY FOUR

INSTANCE: A positive integer N.
QUESTION: Is there a positive integer m such that N=4m?

Under our standard encoding scheme, the integer N is represented by the
string of 0’s and 1’s that is its binary representation. Since a positive in-
teger is divisible by four if and only if the last wwo digits of its binary
representation are 0, this DTM program “solves’” the INTEGER DIVISI-
BILITY BY FOUR problem under our standard encoding scheme.

For future reference, we also point out that a DTM program can be
used to compute functions. Suppose M is a DTM program with input al-
phabet I and tape alphabet I that halts for all input strings from £*. Then
M computes the function fy:E*—T* where, for each x€ZL%, Sar(x) is
defined to be the string obtained by running M on input x until it halts and
then forming a string from the symbols in lape squares 1,2, 3,etc., in se-
quence, up to and including the rightmost non-blank tape square. The pro-
gram M of Figure 2.2 computes the function S (0,1} —(0,1,6}* that
maps each string x€{0,1}* to the string f;,(x) obtained by deleting the last
two symbols of x (with fy,(x) equal to the empty string if |x]<2).

It is well known that DTM programs are capable of performing much
more complicated tasks than those illustrated by our simple example. Even
though a DTM has only a single sequential lape and can perform only a
very limited amount of work in a single step, a DTM program can be
designed to perform any computation that can be performed on an ordinary
computer, albeit more slowly. For the reader interested in how this is done,
there are a number of excellent references, for example [Minsky, 1967] or
[Hoperoft and Ullman, 1969]. For the reader who is not interested in how
this is done, there is the welcome assurance that no expertise at program-
ming DTMs will be required in this book. The reason for our introduction
of the DTM model is to provide us with a formal counterpart of an algo-
rithm upon which to base our definitions.

A formal definition of “‘time complexity” is now possible. The time
used in the computation of a DTM program M on an input x is the number
of steps occurring in that computation up until a halt state is entered. For a
DTM program M that halts for all inputs XET*. its time complexity function
Ty ZY—Z* is given by

there is an x€XT*, with |x|=n, such that the

Ty(n) = max | m: computation of M on input x takes ftime m

2.3 NONDETERMINISTIC COMPUTATION AND THE CLASS NP 27

Such a program M is called a polynomial time DTM program if there exists a
polynomial p such that, for all n€ Z*, Ty (n) < p(n).

We are now ready to give the formal definition of the first important
class of languages that we will be considering, the class P. It is defined as
follows:

P =(L: there is a polynomial time DTM program M for which L = Ly}

We will say that a decision problem II belongs to P under the encoding
scheme e if L[I1,e] € P, that is, if there is a polynomial time DTM program
that “‘solves’ T1 under encoding scheme e. In light of the previously men-
tioned equivalence between reasonable enceding schemes, we will usually
omit the specification of a particular reasonable encoding scheme, simply
saying that the decision problem II belongs to P.

We also will be informal in our use of the term ‘‘polynomial time algo-
rithm.” Our formal counterpart for a polynomial time algorithm is the po-
lynomial time DTM program. However, because of the equivalence
between *‘realistic’ computer models with respect to polynomial time point-
ed out in Chapter 1, the formal definition of P could have been rephrased
in terms of programs for any such model and the same class of languages
would have resulted. Thus we need not tic ourselves to the details of the
DTM model when informally demonstrating that certain tasks can be per-
formed by polynomial time algorithms. In fact, we will follow standard
practice and discuss algorithms in an almost model-independent manner,
speaking of them as operating directly on the components of an instance
(the sets, graphs, numbers, etc.) rather than on their encoded descriptions.
Here our implicit assertion is that one could, if one desired and had the pa-
tience, design a polynomial time DTM program corresponding to each poly-
nomial time algorithm we discuss. Our informal demonstrations should be
taken as indicating how this would be done and should be convincing to any
reader familiar with the kinds of basic tasks that can be performed in poly-
nomial time on an ordinary computer.

2.3 Nondeterministic Computation and the Class NP

In this section we introduce our second important class of
languages/decision problems, the class NP. Before we proceed to the for-
mal definitions in terms of languages and Turing machines, however, it will
be useful to provide an intuitive idea of the informal notion this class is in-
tended to capture.

Consider the TRAVELING SALESMAN problem described at the be-
ginning of this chapter: Given a set of cilies, the distances between them,

28 THE THEORY OF NP-COMPLETENESS

and a bound B, does there exist a tour of all the cities having total length B
or less? There is no known polynomial time algorithm for solving this
problem. However, suppose someone claimed, for a particular instance of
this problem, that the answer for that instance is “‘yes.” If we were skepli-
cal, we could demand that they ‘“‘prove’” their claim by providing us with a
tour having the required properties. It would then be a simple matter for us
to verify the truth or falsity of their claim merely by checking that what
they provided us with is actually a tour and, if so, computing its length and
comparing that quantity to the given bound B. Furthermore, we could
specify our ‘‘verification procedure’ as a general algorithm that has time
complexity polynomial in Length [7].

Another example of a problem with this property is the SUBGRAPH
ISOMORPHISM problem of Section 2.1. Given an arbitrary instance / of
this problem, consisting of two graphs G,=(V,E,) and G,=(V,,E;), if
the answer for / is “‘yes,” then this fact can be “‘proved’ by giving the re-
quired subsets V'CV, and E'CE, and the required one-to-one function
[: Vo— V', Again the validity of the claim can be verified easily in time po-
lynomial in Length [/], merely by checking that V', E', and f satisfy all the
staled requirements.

It is this notion of polynomial time ‘‘verifiability’” that the class NP is
intended to isolate. Notice that polynomial time verifiability does not imply
polynomial time solvability. In saying that one can verify a *‘yes™ answer
for a TRAVELING SALESMAN instance in polynomial time, we are not
counting the time one might have to spend in searching among the ex-
ponentially many possible tours for one of the desired form, We merely as-
sert that, given any tour for an instance /, we can verify in polynomial time
whether or not that tour ““proves’” that the answer for / is “‘'yes.”

Informally we can define NP in terms ol what we shall call a nondeter-
ministic algorithm. We view such an algorithm as being composed of two
separale stages, the first being a guessing stage and the second a checking
stage. Given a problem instance /, the first stage merely “‘guesses’ some
structure S. We then provide both / and S as inputs to the checking stage,
which proceeds to compute in a normal deterministic manner, either even-
tually halting with answer ‘‘yes,”” eventually halting with answer *“‘no,™ or
computing forever without halting (as we shall see, the latter two cases
need not be distinguished). A nondeterministic algorithm *‘solves’ a deci-
sion problem I1 if the following two properties hold for all instances /€ Dy

1. If 1€ Yy, then there exists some structure S that, when guessed for in-
put /, will lead the checking stage to respond “‘yes’ for [and S.

2. If I£ Y, then there exists no structure S that, when guessed for input
I, will lead the checking stage to respond ‘‘yes™ for / and S .

2.3 NONDETERMINISTIC COMPUTATION AND THE CLASS NP 29

For example, a nondeterministic algorithm for TRAVELING SALES-
MAN could be constructed using a guessing stage that simply guesses an ar-
bitrary sequence of the given cities and a checking stage that is identical to
the aforementioned polynomial time ‘‘proof verifier”” for TRAVELING
SALESMAN. Clearly, for any instance /, there will exist a guess S thal
leads the checking stage to respond *‘yes™ for I and § if and only if there is
a tour of the desired length for /.

A nondeterministic algorithm that solves a decision problem [T is said
to operate in ‘‘polynomial time” if there exists a polynomial p such that,
for every instance [€ Yy, there is some guess S that leads the deterministic
checking stage to respond ‘‘ves™ for I and S within time p(Length[I]).
Notice that this has the effect of imposing a polynomial bound on the
“size’” of the guessed structure S, since only a polynomially bounded
amount of time can be spent examining that guess.

The class NP is defined informally to be the class of all decision prob-
lems IT that, under reasonable encoding schemes, can be solved by polyno-
mial time nondeterministic algorithms. Our example above indicates that
TRAVELING SALESMAN is one member of NP. The reader should have
no difficulty in providing a similar demonstration for SUBGRAPH I[SO-
MORPHISM.

The use of the term “‘solve’ in these informal definitions should, of
course, be taken with a grain of salt. [t should be evident that a *‘polyno-
mial time nondeterministic algorithm” is basically a definitional device for
capturing the notion of polynomial time verifiability, rather than a realistic
method for solving decision problems. Instead of having just one possible
computation on a given input, it has many different ones, one for each pos-
sible guess.

There is another important way in which the ‘“‘solution” of decision
problems by nondeterministic algorithms differs from that for deterministic
algorithms: the lack of symmetry between ‘‘yes’” and “‘no.”” If the problem
“Given I, is X true for 1?7 can be solved by a polynomial time (deter-
ministic) algorithm, then so can the complementary problem ‘“‘Given [/, is
X false for 72" This is because a deterministic algorithm halts for all in-
puts, so all we need do is interchange the ‘‘yes’ and ‘‘no’” responses (inter-
change states gy and gy in a DTM program). It is not at all obvious that
the same holds true for all problems solvable by polynomial time nondeter-
ministic algorithms. Consider, for example, the complement of the TRAV-
ELING SALESMAN problem: Given a set of cities, the intercity distances,
and a bound B, is it true that no tour of all the cities has length B or less?
There is no known way to verify a ‘‘yes’” answer to this problem short of
examining all possible tours (or a large proportion of them). In other
words, no polynomial time nondeterministic algorithm for this complemen-

30 THE THEORY OF NP-COMPLETENESS

tary problem is known. The same is true of many other problems in NP.
Thus, although membership in P for a problem I1 implies membership in P
for its complement, the analogous implication is not known to hold for NP,

We conclude this section by formalizing our definition in terms of
languages and Turing machines. The formal counterpart of a nondeter-
ministic algorithm is a program for a nondeterministic one-tape Turing
machine (NDTM). For simplicity, we will be using a slightly non-standard
NDTM model. (More standard versions are described in [Hopcroft and Ull-
man, 1969] and [Aho, Hopcroft, and Ullman, 1974]. The reader may find
it an interesting exercise to verify the equivalence of our model to these
with respect to polynomial time.)

The NDTM model we will be using has exactly the same structure as a
DTM, except that it is augmented with a guessing module having its own
write-only head, as illustrated schematically in Figure 2.4. The guessing
module provides the means for writing down the ‘‘guess’ and will be used
solely for this purpose.

Guessing Finite
module state
control
Guessing Read-write
Tape head head
=3=2 =1 0 1 2 3 4

Figure 2.4 Schematic representation of a nondeterministic one-tape Turing
machine (NDTM).

An NDTM program is specified in exactly the same way as a DTM pro-
gram, including the tape alphabet I', input alphabet X, blank symbol b, stale
set @, initial state g, halt states gy and gy, and transition function
5: (0 —lgy.guD xI' = O xI'x {—=1,+1}. The computation of an NDTM
program on an input string x € X* differs from that of a DTM in that it takes
place in two distinct stages.

_The first stage is the ‘‘guessing” stage. Initially, the input string x is
written in tape squares 1 through |x| (while all other squares are blank),
the read-write head is scanning square 1, the write-only head is scanning
square —1, and the finite state control is *‘inactive.” The guessing module
then directs the write-only head, one step at a time, either lo write some
symbol from T' in the tape square being scanned and move one square (o
the left, or to stop, at which point the guessing module becomes inactive

2.3 NONDETERMINISTIC COMPUTATION AND THE CLASS NP 31

and the finite state control is activated in state g3. The choice of whether to
remain active, and, il so, which symbol from I' to write, is made by the
guessing module in a totally arbitrary manner. Thus the guessing module
can write any string from I'* before it halts and, indeed, need never hall.

The “‘checking™ stage begins when the finite state control is activated
in state go. From this point on, the computation proceeds solely under the
direction of the NDTM program according to exactly the same rules as for a
DTM. The guessing module and its write-only head are no longer involved,
having fulfilled their role by writing the guessed string on the tape. Of
course, the guessed string can (and usually will) be examined during the
checking stage. The computation ceases when and if the finite state control
enters one-of the two halt states (either gy or gy) and is said to be an ac-
cepting computation if it halts in state gy. All other computations, halting or
not, are classed together simply as non-accepting computaiions.

Notice that any NDTM program M will have an infinite number of
possible computations for a given input string x, one for each possible
guessed string from I'*. We say that the NDTM program M accepts x if at
least one of these is an accepling computation. The language recognized by
M is

Ly = [X€X*: M accepts x)

The time required by an NDTM program M 1o accept the string x € Ly,
is defined to be the minimum, over all accepting computations of M for x,
of the number of steps occurring in the guessing and checking stages up un-
lil the halt state gy is entered. The time complexity function Ty Zt—Z* for
M is

Ty (n) =max | (1} U

there is an x € Ly, with |x|=n such]

M- that the time to accept x by M is m

Note that the time complexity function for M depends only on the number
of steps occurring in accepting computations, and that, by convention,
Ty (n) is set equal to 1 whenever no inputs of length n are accepted by M.

The NDTM program M is a polynomial time NDTM program if there ex-
ists a polynomial p such that Ty, (n) < p(n) for all n2>1. Finally, the class
NP is formally defined as follows:

NP = (L : there is a polynomial time NDTM program M for which Ly, =L}

It is not hard to see how these formal definitions correspond to the in-
formal definitions that preceded them. The only point deserving special
mention is that, whereas we usually envision a nondeterministic algorithm
as guessing a structure S that in some way depends on the given instance [,
the guessing module of an NDTM entirely disregards the given ingput.
However, since every string from I'* is a possible guess, we can always

32 THE THEORY OF NP-COMPLETENESS

design our NDTM program so that the checking stage begins by checking
whether or not the guessed string corresponds (under the implicit interpre-
tation our program places on strings) to an appropriate guess for the given
input. If not, the program can immediately enter the halt state gy.

A decision problem IT will be said to belong to NP under encoding
scheme e if the language L[IT,e] €NP. As with P, we shall feel free to say
that I1 is in NP without giving a specific encoding scheme, so long as it is
clear that some reasonable encoding scheme for II will yield a language that
is in NP.

Furthermore, since any realistic compuler model can be augmented
with an analogue of our ‘‘guessing module with write-only head,” we could
have rephrased our formal definitions in terms of any of the other standard
models of computation. Since all these models are equivalent with respect
to deterministic polynomial time, the resulting versions of NP would all be
identical. Thus we will be on firm ground when, as already proposed, we
identify our formally defined class NP with the class of all decision prob-
lems ‘‘solvable” by polynomial time nondeterministic algorithms.

In the next section we discuss the relationship between the two classes
P and NP as a preliminary to introducing our third and, for this book, most
important class, the class of NP-complete problems.

2.1 The Relationship Between P and NP

The relationship between the classes P and NP is fundamental for the
theory of NP-completeness. Our first observation, which is implicit in our
earlier discussions but which has not been stated explicitly until now, is that
P C NP. Every decision problem solvable by a polynomial time determinis-
tic algorithm is also solvable by a polynomial time nondeterministic algo-
rithm. To see this, one simply needs to observe that any deterministic algo-
rithm can be used as the checking stage of a nondeterministic algorithm. If
[M€P, and A is any polynomial time deterministic algorithm for 11, we can
obtain a polynomial time nondeterministic algorithm for IT merely by using
A as the checking stage and ignoring the guess. Thus I1€P implies
I1 € NP.

As we also hinted in our discussions, there are many reasons 1o believe
that this inclusion is proper, that is, that P does not equal NP. Polynomial
time nondeterministic algorithms certainly appear to be more powerful than
polynomial time deterministic ones, and we know of no general methods for
converting the former into the latter. In fact, the best general result we can
state at present is given by the following:

Theorem 2.1 1f T1 € NP, then there exists a polynomial p such that IT can
be solved by a deterministic algorithm having time complexity 0 (27").
Proof: Suppose A is a polynomial time nondeterministic algorithm for solv-

2.4 THE RELATIONSHIP BETWEEN P AND NP 33

ing I1, and let g(n) be a polynomial bound on the time complexity of A.
(Without loss of generality, we can assume that g can be evaluated in poly-
nomial time, for example, by taking ¢(n) = ¢ n? for suitably large integer
constants ¢; and c,.) Then we know that, for every accepted input of
length n, there must exist some guessed string (over the tape alphabet r
of length at most ¢ (n) that leads the checking stage of 4 to respond ‘‘yes’’
for that input in no more than g(n) steps. Thus the number of possible
guesses that need be considered is at most k?'", where k=|T|, since
guesses shorter than g (n) can be regarded as guesses of length exactly g(n)
by filling them out with blanks. We can deterministically discover whether
A has an accepting computation for a given input of length »n by applying
the deterministic checking stage of A, until it halts or makes g(n) steps, on
each of the k%" possible guesses. The simulation responds “‘yes” if it en-
counters a guessed string that leads to an accepting computation within the
time bound; otherwise it responds “‘no.”” This clearly yields a deterministic
algorithm for solving Il. Furthermore, its time complexity is essentially
q(n) k9" which, although -exponential, is 0(27"') for an appropriately
chosen polynomial p, ®

Of course the simulation in the proof of Theorem 2.1 could be speeded
up somewhat by using branch-and-bound techniques or backtrack search
and by carefully enumerating the guesses so that obviously irrelevant strings
are avoided. Nevertheless, despite the considerable savings that might be
achieved, there is no known way to perform this simulation in less than ex-
ponential time.

Thus the ability of a nondeterministic algorithm to check an exponen-
tial number of possibilities in polynomial time might lead one (o suspect
that polynomial time nondeterministic algorithms are strictly more powerful
than polynomial time deterministic algorithms. Indeed, for many individual
problems in NP, such as TRAVELING SALESMAN, SUBGRAPH ISO-
MORPHISM, and a wide variety of others, no polynomial time solution al-
gorithms have been found despite the efforts of many knowledgeable and
persistent researchers.

For these reasons, it is not surprising that there is a widespread beliel
that P# NP, even though no proof of this conjecture appears on the hor-
izon. Of course, a skeptic might say that our failure to find a proof that
P#NP is just as strong an argument in favor of P=NP as our failure to
find polynomial time algorithms is an argument for the opposite view.
Problems always appear lo be intractable until we discover efficient algo-
rithms for solving them. Even a skeptic would be likely to agree, however,
that, given our current state of knowledge, it seems more reasonable to
operate under the assumption that P# NP than to devote one’s efforts to
proving the contrary. In any case, we shall adopt a tentative picture of the
world of NP as shown in Figure 2.5, with the expectation (but not the cer-
tainty) that the shaded region denoting NP —P is not totally uninhabited.

34 THE THEORY OF NP-COMPLETENESS

NP

i

Figure 2.5 A tentative view of the world of NP.

2.5 Polynomial Transformations and NP-Completeness

If P differs from NP, then the distinction between P and NP—P is
meaningful and important. All problems in P can be solved with polynomi-
al time algorithms, whereas all problems in NP—P are intractable. Thus,
given a decision problem IT € NP, if P+ NP, we would like to know which
of these two possibilities holds for I1.

Of course, until we can prove that P # NP, there is no hope of showing
that any particular problem belongs to NP —P. For this reason, the theory
of NP-completeness focuses on proving results of the weaker form “‘if
P#NP, then 1€ NP—P.”” We shall see that, although these conditional
results might appear to be almost as difficult to prove as the corresponding
unconditional results, there are techniques available that often enable us to
prove them in a straightforward way. The extent to which such results
should be regarded as evidence for intractability depends on how strongly
one believes that P differs from NP.

The key idea used in this conditional approach is that of a polynomial
transformation. A polynomial transformation from a language L, & Zy o a
language L, C Z3 is a function f: Ii—X; that satisfies the following two
conditions:

1. There is a polynomial time DTM program that computes /.
2. Forall x € £}, x € L, if and only if f(x) € L,.

If there is a polynomial transformation from L; to L,, we write L, o« L?,
read L, transforms to L, (dropping the modifier ‘*polynomial,”” which is
1o be understood).

The significance of polynomial transformations comes from the follow-

ing lemma:

Lemma 2.1 f Ly<L, then L,€P implies L, €P (and, equivalently,
Ly ¢ P implies L, ¢ P).

2.5 POLYNOMIAL TRANSFORMATIONS AND NP-COMPLETENESS 35

Proof: Let Z; and I, be the alphabets of L, and L, respectively, let
f:E)—Z) be a polynomial transformation from L, to L,, let M, denote a
polynomial time DTM program that computes f, and let M, be a polynomi-
al time DTM program that recognizes L,. A polynomial time DTM pro-
gram for recognizing L, can be constructed by composing M, with M,. For
an input x € L', we first apply the portion corresponding to program M, to
construct f(x) € £3. We then apply the portion corresponding to program
M, to determine if f(x) € L,. Since x € L, if and only if f(x) € L,, this
yields a DTM program that recognizes L,. That this program operates in
polynomial time follows immediately from the fact that M, and M, are po-
lynomial time algorithms. To be specific, if p, and p; are polynomial func-
tions bounding the running times of M, and M, then |f(x)| < p,(|x]),
and the running time of the constructed program is easily seen to be
O (p,(|x]) + pa(p,(|x]))), which is bounded by a polynomial in [x|. =

1 I1; and sz are decision problems, with associated encoding schemes
e, and e,, we shall write I, oI, (with respect to the given encoding
schemes) whenever there exists a polynomial transformation from L [IT;,¢,]
to L[I1,,e;,]. As usual, we will omit the reference Lo specific encoding
schemes when we are operating under our standard assumption that only
reasonable encoding schemes are used. Thus, at the problem level, we can
regard a polynomial transformation from the decision problem [1, to the de-
cision problem II, as a function f: Dy — Dy, that satisfies the two condi-
tions:

1. f is computable by a polynomial time algorithm; and
2. Torall | € D“], RS Y“l il and only if f{f) € Y“)'

Let us obtain a more concrete idea of what this definition means by
considering an example. For a graph G = (V,E) with vertex set V¥ and edge
set £, a simple circuitin G is a sequence < vy,v,, . .., v, > of distinct ver-
tices from V such that { v,,v,,;} € E for 1 <i<k and such that {v,v,} € E.
A Hamiltonian circuitin G is a simple circuit that includes all the vertices of
G. The HAMILTONIAN CIRCUIT problem is defined as follows:

HAMILTONIAN CIRCUIT
INSTANCE: A graph G = (V,E).
QUESTION: Does G contain a Hamiltonian circuit?

The reader will no doubt recognize a certain similarity between this
problem and the TRAVELING SALESMAN decision problem. We shall
show that HAMILTONIAN CIRCUIT (HC) transforms to TRAVELING
SALESMAN (TS). This requires that we specify a function f that maps

36 THE THEORY OF NP-COMPLETENESS

each instance of HC to a corresponding instance of TS and that we prove
that this function satisfies the two properties required of a polynomial
transformation.

The function f is defined quite simply. Suppose G= (V. E), with
| V| =m, is a given instance of HC. The corresponding instance of TS has a
set C of cities that is identical to V. For any two cities v,,v; € C, the inter-
city distance d(v;,v,) is defined to be 1 if { Vi,V } € E and 2 otherwise. The
bound B on the desired tour length is sel equal to m.

It is easy to see (informally) that this transformation f can be comput-
ed by a polynomial time algorithm. For each of the m(m—1)/2 distances
d(v;,,v;) that must be specified, it is necessary only to examine G 1o see
whether or not {v,v;} is an edge in £. Thus the first required property is
satisfied. To verify that the second requirement is met, we must show that
G contains a Hamiltonian circuit if and only if there is a tour of all the ci-
ties in f(G) that has total length no more than B. First, suppose that
<PV, ¥y > s a Hamiltonian circuit for G Then
<V,V3, ...,V, > is also a tour in f(G), and this tour has total length
m =B because each intercily distance traveled in the tour corresponds (o an
edge of G and hence has length 1. Conversely, suppose that
<V Yy, ...,V > is a tour in £(G) with total length no more than B.
Since any two cities are either distance 1 or distance 2 apart, and since ex-
actly m such distances are summed in computing the tour length, the fact
that B = m implies that each pair of successively visited cities must be ex-
actly distance 1 apart. By the definition of f(G), it follows that { v, v,y],
1<i<m, and [v,,v,} are all edges of G, and hence < vy, vy, ..., v, > is
a Hamiltonian circuit for G.

Thus we have shown that HC«TS. Although this proof is much
simpler than many we will be describing, it contains all the essential ele-
ments of a proof of polynomial transformability and can serve as a model
for how such proofs are constructed at the informal level.

The significance of Lemma 2.1 for decision problems now can be illus-
trated in terms of what it says about HC and TS. In essence, we conclude
that if TRAVELING SALESMAN can be solved by a polynomial time algo-
rithm, then so can HAMILTONIAN CIRCUIT, and il HC is intractable,
then so is TS. Thus Lemma 2.1 allows us to interpret [I, « [1, as meaning
that 11, is “‘at least as hard™ as II,.

The ‘“‘polynomial transformability”” relation is especially useful because
it is transitive, a fact captured by our next lemma.

Lemma 2.2 If Ly Lyand Ly« Ly, then Ly Lj.

Proof: Let L;, Z,, and Z; be the alphabets of languages Ly, L,, and Lj,
respectively, let f: £7 —Z; be a polynomial transformation from L, to L,,
and let f,:Z3—Z7 be a polynomial transformation from L, to L3. Then
the function f:Z{— X3 defined by f(x)=/f,(f,(x)) for all x € Z is the
desired transformation from L, to Lj. Clearly, f(x) € L; if and only if

2.5 POLYNOMIAL TRANSFORMATIONS AND NP-COMPLETENESS 37

x € Ly, and the fact that f can be computed by a polynomial time DTM
program follows from an argument analogous to that used in the proof of
Lemma2.]. ®

We can define (wo languages L, and L, (two decision problems I, and
I1)) to be polynomially equivalent whenever both L)« L, and Ly« L, (both
Me«ll; and [M;«II}). Lemma 2.2 tells us that this is a legitimate
equivalence relation and, furthermore, that the relation “‘«’ imposes a par-
tial order on the resulting equivalence classes of languages (decision prob-
lems). In fact, the class P forms the “‘least™ equivalence class under this
partial order and hence can be viewed as consisting of the computationally
“easiest” languages (decision problems). The class of NP-complete
languages (problems) will form another such equivalence class, dis-
tinguished by the property that it contains the ‘“‘hardest’ languages (deci-
sion problems) in NP.

Formally, a language L is defined to be NP-complete if L € NP and, for
all other languages L'€ NP, L'« L. Informally, a decision problem II is
NP-complete if [1€ NP and, for all other decision problems IT'€ NP,
[M"ec[I. Lemma 2.1 then leads us 1o our identification of the NP-complete
problems as ‘“‘the’ hardest problems in NP.”> If any single NP-complete
problem can be solved in polynomial time, then all problems in NP can be
so solved. If any problem in NP is intractable, then so are all NP-complete
problems. An NP-complete problem [1, therefore, has the property men-
tioned at the beginning of this section: If P#NP, then I1 € NP—P. More
precisely, I1 € P if and only if P=NP.

Assuming that P#NP, we now can give a more detailed picture of ““the
world of NP," as shown in Figure 2.6. Notice that NP is not simply parti-
tioned into “‘the land of P and “‘the land of NP-complete.”” As we shall
see in Chapter 7, if P differs from NP, then there must exist problems in
NP that are neither solvable in polynomial time nor NP-complete.

Figure 2.6 The world of NP, revisited.

Our main interest, however, is in the NP-complete problems them-
selves. Although we suggested at the outset of this section that there are
straightforward techniques for proving that a problem is NP-complete, the

Ve,

38 THE THEORY OF NP-COMPLETENESS

requircments we have just described would appear to be rather demanding.
One must show that every problem in NP transforms to our prospective
NP-complete problem II. It is not at all obvious how one might go about
dJoing this. A priori, it is not even apparent that any NP-complete problems
yieed exisl.

The following lemma, which is an immediate consequence of our
definitions and the transitivity of <, shows that matters would be simplified
Considerably if we possessed just one problem that we knew to be NP-
complete.

Lemma 2.3 If L, and L, belong to NP, L, is NP-complete, and L« Ly,
A-hen L, is NP-complete.

Proof: Since L, € NP, all we need to do is show that, for every L'€ NP,

L'« L, Consider any L' € NP. Since L, is NP-complete, it must be the

Gase that L'« Ly. The transitivity of « and the fact that Ly« L, then imply
that L'« L, ®

Translated to the decision problem level, this lemma gives us a

straightforward approach for proving new problems NP-complete, once we

Jave at least one known NP-complete problem available. To prove that 1

s NP-complete, we merely show that '

1. ITE€NP, and

2. some known NP-complete problem I1' transforms to I1.

Before we can use this approach, however, we still need some first NP-
;omplete problem. Such a problem is provided by Cook’s fundamental
heorem, which we state and prove in the next section.

2.6 Cook’s Theorem

The honor of being the *“first”” NP-complete problem goes to a decision
sroblem from Boolean logic, which is usually referred to as the SATISFIA-
BILITY problem (SAT, for short). The terms we shall use in describing it
wre defined as follows:

Let U={u,,u3, ...,u,| be aset of Boolean variables. A truth assign-
ment for U is a function ¢: U—{T,F). If t(u) =T we say that u is “‘true”
ander ¢ if 1(u) =F we say that u is “false.”” If u is a variable in U, then
w and & are literals over U. The literal u is true under ¢ if and only if the
variable u is true under ¢ the literal @ is true if and only if the variable u
is false.

A clause over U is a set of literals over U, such as {uy,i3,ug). It
represents the disjunction of those literals and is satfisfied by a truth assign-
ment if and only if at least one of its members is true under that assign-
ment. The clause above will be satisfied by ¢ unless t(u) =F, t(u3) =T,

2.6 COOK'S THEOREM 39

and t{ug) =F. A collection C of clauses over U is satisfiable if and only if
there exists some truth assignment for U that simultaneously satisfies all
the clauses in C. Such a truth assignment is called a satisfving truth assign-
ment for C. The SATISFIABILITY problem is specified as follows:

SATISFIABILITY

INSTANCE: A set U of variables and a collection C of clauses over U,
QUESTION: Is there a satisfying truth assignment for C?

For example, U={u,u,} and C= {{uy, i1y}, {#;,u5)} provide an in-
stance of SAT for which the answer is *‘yes.” A satisfying truth assignment
is given by () =t(w,)=T. On the other hand, replacing C by
C'= {{uy,us), {uy.iis), {i;}} vields an instance for which the answer is
“no™’; C' is not satisfiable.

The seminal theorem of Cook [1971] can now be stated:

Theorem 2.1 (Cook's Theorem) SATISFIABILITY is NP-complete.

Proof: SAT is easily seen to be in NP. A nondeterministic algorithm for it
need only guess a truth assignment for the given variables and check to see
whether that assignment satisfies all the clauses in the given collection C.
This is easy (o do in (nondeterministic) polynomial time. Thus the first of
the two requirements for NP-completeness is mel.

For the second requirement, let us revert to the language level, where
SAT is represented by a language Lgyr = LISAT,e] for some reasonable
encoding scheme e. We must show that, for all languages L € NP,
L o Lgyr. The languages in NP are a rather diverse lot, and there are
infinitely many of them, so we cannot hope to present a separate transfor-
mation for each one of them. However, each of the languages in NP can be
described in a standard way, simply by giving a polynomial time NDTM
program that recognizes it. This allows us to work with a generic
polynomial time NDTM program and to derive a generic transformation
from the language it recognizes to Lg,p. This generic transformation, when
specialized to a particular NDTM program M recognizing the language L,,,
will give the desired polynomial transformation from Ly, to Lg,p. Thus, in
essence, we will present a simultaneous proof for all L € NP that L e Lg,7.

To begin, let M denote an arbitrary polynomial time NDTM program,
specified by I', £, b, Q, g, gy, qn, and 8, which recognizes the language
L=Ly. In addition, let p(n) be a polynomial over the integers that
bounds the time complexity function Ty, (n). (Without loss of generality,
we can assume that p(n)=n for all n € Z*) The generic transformation
S will be derived in terms of M, I', Z, b, Q, qo. qy, gy, 5, and p.

It will be convenient to describe f; as if it were a mapping from strings
over X to instances of SAT, rather than to strings over the alphabet of our
encoding scheme for SAT, since the details of the encoding scheme could

0 THE THEORY OF NP-COMPLETENESS

be filled in easily. Thus f; will have the property that for all x € Y. o 5
if and only il f, (x) has a satisfying truth assignment. The key to the con-
struction of f; is to show how a set of clauses can be used to check wheth-
2r an input x is accepted by the NDTM program M, that is, whether x € L.

If the input x€EX* is accepted by M, then we know that there is an ac-
cepting computation for M on x such that both the number of steps in the
checking stage and the number of symbols in the guessed string are bound-
& by p(n), where n=|x|. Such a computation cannot involve any tape
quares except for those numbered —p(n) through p(n)+1, since the
yead-write head begins at square 1 and moves al most one square in any sin-
ile step. The status of the checking computation at any one time can be
ipecified completely by giving the contents of these squares, the current
itate, and the position of the read-write head. Furthermore, since there are
1o more than p(n) steps in the checking computation, there are al most
P(n)+1 distinct times that must be considered. This will enable us to
fescribe such a computation completely using only a limited number of
3oolean variables and a truth assignment to them.

The variable set U that f; constructs is intended for just this purpose.
Label the elements of Q as qo, 1=qy,42=qn+ 93, - - - » 4., Where
f=|0|-1, and label the elements of I' as sg=b,s;, 52, ..., 5, where
y=|I'|=1. There will be three types of variables, each of which has an in-
ended meaning as specified in Figure 2.7. By the phrase “‘at time i we
nean “‘upon completion of the i step of the checking computation.”

Variable Range Intended meaning

0<i<pln)

oli k] Al lime i, M is in state g;.

0<k<r
Hli 0<i<pln) At time i, the read-write head
L —p(m)<j<pln)+l is scanning tape square j.
0<i<pln) Al time i, the contents of tape
Sti.kl —pm)<j<pln)+l square j is symbol ;.
0<k<yvy

Figure 2.7 Variables in f; (x) and their intended meanings.

A computation of M induces a truth assignment on these variables in
the obvious way, under the convention that, if the program halts before
lime p(n), the configuration remains static at all later times, maintaining
the same halt-state, head position, and tape contents. The tape contents at

2.6 COOK'S THEOREM 4]

time 0 consists of the input x, written in squares 1 through n, and the
guess w, writlen in squares —1 through - w/|, with all other squares blank.

On the other hand, an arbitrary truth assignment for these variables
need not correspond at all to a computation, much less to an accepting com-
putation. According to an arbitrary truth assignment, a given tape square
might contain many symbols at one time, the machine might be simultane-
ously in several different states, and the read-write head could be in any
subset of the positions —p(n) through p(n)+1. The transformation f;
works by constructing a collection of clauses involving these variables such
that a truth assignment is a satisfying truth assignment if and only if it is the
truth assignment induced by an accepting computation for x whose check-
ing stage takes p(n) or fewer steps and whose guessed string has length at
most p(n). We thus will have

x €L <= there is an accepting computation of M on x

<> there is an accepting computation of M on x with p(n) or
fewer steps.in its checking stage and with a guessed string
w of length exactly p(n)

<> there is a satisfying truth assignment for the collection of
clauses in /7 (x).

This will mean that f; satisfies one of the two conditions required of a
polynomial transformation. The other condition, that f; can be computed
in polynomial time, will be verified easily once we have completed our
description of f;.

The clauses in f; (x) can be divided into six groups, each imposing a
separate type of restriction on any satisfying truth assignment as given in
Figure 2.8.

It is straightforward to observe that if all six clause groups perform
their intended missions, then a satisfying truth assignment will have to
correspond to the desired accepting computation_for x. Thus all we need to
show is how clause groups performing these missions can be constructed.

Group G, consists of the following clauses:

{eli, 01, Qli11, . .., Olirl}, 0<i<p(n)
(00 j1, 00,7 T}, 0<igp(n), 0Kj<j'<r

The first p(n)+1 of these clauses can be simultaneously satisfied if and
only if, for each time i, M is in at least one state. The remaining
(p(n) +1) (r+1) (r/2) clauses can be simultaneously satisfied if and only if
al no time i is M in more than one state. Thus G, performs its mission.
Groups G, and Gj are constructed similarly, and groups G4 and G5 are
both quite simple, each consisting only of one-literal clauses. Figure 2.9
gives a complete specification of the first five groups. Note that the number

42 THE THEORY OF NP-COMPLETENESS

Clause group Restriction imposed
G, At each time i, M is in exactly one state.
G At each time i, the read-write head is
2

scanning exactly one tape square.

At each time 7, each tape square contains

G 3

73 exactly one symbol from I'.
G At time 0, the computation is in the initial

4 configuration of its checking stage for input x.
a By time p(n), M has entered state gy

5 and hence has accepted x.

For each time i, 0</<p(a), the configuration

G of M at time i+1 follows by a single

6

application of the transition function &
from the configuration at time /.

Figure 2.8 Clause groups in f; (x) and the restrictions they impose on satisfying
truth assignments.

of clauses in these groups, and the maximum number of literals occurring
in each clause, are both bounded by a polynomial function of n (since r
and v are constants determined by M and hence by L).

The final clause group Gg, which ensures that ecach successive
configuration in the computation follows from the previous one by a single
step of program M, is a bit more complicated. It consists of two subgroups
of clauses.

The first subgroup guarantees that il the read-write head is nor scanning
tape square j at time i, then the symbol in square j does not change
between times j and j+1. The clauses in this subgroup are as follows:

(STi, 7,0, Hli g1, SLi+1,,01), 0<i<p(n),—p(n) <j<p(n)+1,0<I<y

For any time i, tape square j, and symbol s, if the read-write head is not
scanning square j at time /, and square j contains s; al time i but not at
time i+1, then the above clause based on i, j, and [will fail to be satisfied
(otherwise it will be satisfied). Thus the 2(p(n) +1)2 (v +1) clauses in this
subgroup perform their mission.

2.6 COOK'S THEOREM 43
Clause group Clauses in group
G (Qi,01,01i1), ...,0lir)), 0<i<p(n)

(OTiJT.OTi T, 0<i<p(m) 0K i<’ <r

G, {Hli,—p(WLHi,—p(n)+1], ..., Hli,p(n)+11), 0<i<p(n)
{HTGLHTLN, 0<i<p(n),—p(n) <j<j' < pn)+1

G {S0i,4,0),80i, 4,11, . ..,Sli,jvll, 0<i<p(n),—p(n) < i< p(n)+1
(ST, kLSTi e Mo<i<pln),—pn) <j<pn)+1,0<k<k'Sv

G, {010,01}.{#10,1)).{510,0,01},
{S10,1,k,11,(500,2, k1), - - - (S[0,n,k,]),
{S10.n+1,011{8[0, 242,01}, [S[0,p(n)+1.0]},
where X =Sk Sk, S

G [olp(n), 1]}

Figure 2.9 The first five clause groups in f; (x).

The remaining subgroup of G guarantees that the changes from one
configuration to the next are in accord with the transition function & for M.
For each quadruple (i, j, k.0, 0<i<p(n), —p(n) <j<p(n) +1, 0K k<r,
and 0< /< v, this subgroup contains the following three clauses:

(H1ig), Olik), Slij), HLi+1,j+A))
{H1ij1, Olikl, S1i,j. 0, Qli+1,k')
{HTi 1, 0li.k1, STij, 0, STi+1,4,0)

where if g, € Q—{qy,qn}, then the values of A, k', and /' are such that
8(qx.s) = (g, 5,8), and if g, € {gy,qn]), then A=0, k'=k, and I'=1.

Although it may require a few minutes of thought, it is not difficult to
see that these 6(p(n)) (p(n) +1) (r+1) (v+1) clauses impose the desired
restriction on satisfying truth assignments.

Thus we have shown how to construct clause groups G, through G4
performing the previously stated missions. If x € L, then there is an
accepling computation of M on x of length p(n) or less, and this computa-
tion, given the interpretation of the variables, imposes a truth assignment
that satisfies all the clauses in C=G,UG,UGU G U GsU Gy,

44 THE THEORY OF NP-COMPLETENESS

Conversely, the construction of C is such that any satisfying truth assign-
ment for C must correspond to an accepting computation of M on x. It
follows that f; (x) has a satisfying truth assignment if and only if x € L.

All that remains to be shown is that, for any fixed language L, f; (x)
can be constructed from x in time bounded by a polynomial function of
n=|x|. Given L, we choose a particular NDTM M thal recognizes L in
time bounded by a polynomial p (we need not find this NDTM itsell in
polynomial time, since we are only proving that the desired transformation
f1. exists). Once we have a specific NDTM M and a specific polynomial p,
the construction of the set U of variables and collection C of clauses
amounts to little more than filling in the blanks in a standard (though com-
plicated) formula. The polynomial boundedness of this computation will
follow immediately once we show that Length [/, (x)] is bounded above by
a polynomial function of n, where Length [/] reflects the length of a string
encoding the instance / under a reasonable encoding scheme, as discussed
in Section 2.1. Such a “‘reasonable™ Length function for SAT is given, for
example, by |U]-|C|]. No clause can contain more than 2:|U| literals
(that’s all the literals there are), and the number of symbols required to
describe an individual literal need only add an additional log|U| factor,
which can be ignored when all that is at issue is polynomial boundedness.
Since r and v are fixed in advance and can contribute only constant factors
to |U] and |C|, we have |U| = O(p(n)d) and |C| = O(p(n)?). Hence
Length [/, ()] = |U]-|C| = O(p(n)*), and is bounded by a polynomial
function of n as desired.

Thus the transformation f; can be computed by a polynomial time
algorithm (although the particular polynomial bound it obeys will depend on
L and on our choices for M and p), and we conclude that, for every
L € NP, f; is a polynomial transformation from L to SAT (technically, of

course, from L to Lg,7). It follows, as claimed, that SAT is NP-complete.
|

