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Abstract

In this paper we propose to apply the Abstract Interpretation approach [9,10] for approximating the behaviour of
biological systems, modeled specifically using the Chemical Ground Form calculus [4], a new stochastic calculus rich
enough to model the dynamics of biochemical reactions.
Our analysis computes an Interval Markov Chains that safely approximates the Discrete-Time Markov Chain, de-
scribing the probabilistic behaviour of the system, and reports both lower and upper bounds for probabilistic temporal
properties. Our analysis has several advantages: (i) the method is effective (even for infinite state systems) and allows
us to systematically derive an IMC from an abstract labeled transition system; (ii) using intervals for abstracting the
multiplicity of reagents allows us to achieve conservative bounds for the concrete probabilities of a set of concrete
experiments which differs only for initial concentrations.

Keywords: Stochastic π-calculus, Abstract Interpretation, Verification of Probabilistic Temporal Properties

1 Introduction

Process calculi, originally designed for modeling distributed and mobile systems, are nowa-

days one of the most popular formalisms for the specification of biological systems. In this

new application domain, a great effort has been devoted for adapting the traditional models

to characterize the molecular and biochemical aspects of biological systems. On one hand,

the proposals, such as BioAmbients [35], Beta-Binders [33], and Brane calculi [3], aim at

expressing the concepts of hierarchy, compartment and membrane, which play a key role in

the organization of biomolecular systems. On the other hand, there is a new interest in the

design of calculi, such as stochastic π-calculus [32,34,36], able to capture the quantitative

aspect (both time and probability) of real life applications.

The use of process calculi as a specification language offers a range of well established

techniques for analysis and verification that can now be applied also to biological systems.

The stochastic simulators, for example for π-calculus [36,29,30]), could be used to realize

virtual experiments on biological systems models. In silico experiments could be realized in

order to test possible hypotheses and to guide future in vivo experimentations.

An orthogonal approach is that based on the verification of temporal properties by means

of model checking techniques, recently extended also to the quantitative setting. The tools

of [21,23,5] support the validation of probabilistic systems, modeled as a Discrete-Time

Markov Chain (DTMC) or as a Markov Decision Process (MDP), and also of stochastic

systems, modeled as Continous-Time Markov Chain (CTMC). The study of temporal
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properties could give to biologists interesting information about the possible behavior of

complex biological systems, such as pathways and networks of proteins.

Unfortunately, the practical application of automatic tools to biological systems revealed

serious problems. One specific feature of biological processes is that they are composed by

a huge number of processes with identical behavior, such as thousand of molecules of the

same type. Thus, the state space of the transition system is often very large. Moreover,

typically different scenarios have to be analyzed in order to infer interesting information

from a biological point of view. For example, the hypotheses have to be tested several times

just varying the initial concentrations.

To overcome these limitations we propose in this paper the extension of traditional ab-

stract model checking [6,12] techniques to the validation of quantitative temporal properties

of biological systems. As a specification language we consider a simple calculus, the Chem-

ical Ground Form (CGF)[4], a subset of π-calculus without communication enriched with

transition rates that determine the stochastic behavior. The calculus is rich enough for

suitably modeling the dynamics of biochemical reactions. Furthermore, we consider the

validation of probabilistic temporal properties, such as those expressible in the logic PCTL

[23]. This means that we consider a probabilistic semantics of CGF formalized as a DTMC.

Examples of interesting probabilistic temporal properties could be: which is the probability

to reach a state where the concentration of molecule A is greater than n? which is the

probability that always (in each state) the concentration of molecule A is greater than the

one of molecule B?

Static analysis techniques have been established to be one of the most effective ways

for computing safe approximations of the (run-time) behavior of a system, even for infinite

systems. In the framework of traditional process calculi for distributed and mobile systems

a variety of analyses have been proposed, aimed at proving qualitative properties, such as

invariance and even of more general temporal properties [2,16,17,18,19,20,25,27,28,31].

The abstraction of probabilistic systems is much more difficult. Even for handling simple

invariance properties correct approximations of the DTMC have to be computed; e.g. the

abstract model should give conservative bounds on the actual values of the probability on the

concrete model. Since the abstraction process introduces uncertainty about the behavior

of the system, it is necessary that the probabilistic abstract semantics combines together

probabilistic and non-deterministic steps. For these purposes traditional models, such as

MDP [13,14,26], or Interval Markov Chains (IMC) [37,15,22], where transitions are labeled

with intervals of probabilities, can be exploited. Not surprisingly, in both approaches the

lower and upper bounds for the concrete probability can be achieved by considering the

worst-case and best-case scenario w.r.t. all the non-deterministic choices.

The effective application of probabilistic approximations to the validation of process

calculi has not yet been investigated. We propose to apply Abstract Interpretation [9,10], a

general theory of semantics approximations, that allows us to handle infinite systems. More

in details, our methodology permits to systematically derive an IMC, approximating the

probabilistic behavior of a system, from an abstract Labeled Transition System (LTS).

As it is well known, the choice of an adequate concrete semantics is fundamental in

order to derive a not too coarse abstraction. This motivates the introduction of a new LTS

semantics for CGF, based on a representation of processes as multisets (similarly as in [4]).

The main difficulty in the definition of a LTS semantics for stochastic calculi is to be able

to count the number of distinct reagents combinations described by the same transition.

To this aim, we adopt (well-)labeled processes so that labels identifies exactly the basic

actions. Then, we design transitions recording information about the labels of the actions

that participate to the move, about their rates, and about their number of occurrences.

2



Alessio Coletta, Roberta Gori, Francesca Levi

Such a LTS semantics offers several advantages. By exploiting the labeling of processes,

it is easy to extract, for each transition, both the rate and the probability. The rate of a

transition can be calculated from the rate of the processes, that participate to the move,

and from their multiplicities. Then, the probability of moving from one state to another can

be derived in a standard way by computing the constant proportional to the rate.

Moreover, this approach supports a natural abstraction where the information about the

multiplicities of reagents, present in each solution, is approximated by adopting the well-

know domain of intervals of integers [8]. The abstraction of states, that can be formalized as

a Galois connection [10], supports the definition of a corresponding abstract LTS semantics,

where multiplicities are replaced by intervals of multiplicities both in states and in transi-

tions. Thus, the abstract transitions record information about the labels of the actions that

participate to the move, about their rates, and about their possible number of occurrences

(expressed as an interval of multiplicities).

Finally, we show that our abstract LTS semantics is adequate for abstract model check-

ing, by introducing a translation into IMC. The key step of the translation is the computa-

tion of intervals of probabilities from intervals of multiplicities. Very accurate intervals of

probabilities can be achieved by suitably exploiting the information reported by transition

labels.

Our approach is correct, meaning that the derived IMC gives conservative bounds for

probabilistic temporal properties. In order to formalize these results we follow a traditional

approach (see for example [12,13,14,37,22]) based on the definition of suitable approximation

orders. For reasons of space, in this paper we focus on probabilistic reachability properties;

the abstraction is however correct for full PCTL.

We present a simple example showing that our analysis is able to compute lower and upper

bounds on the concrete probability of a set of concrete experiments. Thus, the approach

gives conservative bounds for an experiment w.r.t. different initial concentrations.

2 Chemical Ground Form

We present the CGF calculus [4], a subset of π-calculus where basic actions are related

to rates, e.g. values of R
+. These values represent the parameters of the exponential

distribution that characterize stochastic calculi [32,29].

The syntax of (labeled) CGF is defined in Table 1. In particular, we consider a set N
(ranged over by a, b, c, . . .) of names and a set L (ranged over by λ, µ . . .) of labels. Moreover,

we consider a set X (ranged over by X,Y ,....) of variables (representing reagents).

E ::= 0 | X = S,E Environment

S ::= 0 | πλ.P + S Molecules

P ::= 0 | X|P Solutions

π ::=ar | ār | τr r ∈ R
+ Basic Actions

Table 1
Syntax of CGF

A CGF is a pair (E,P ) where E is a species environment and P is a solution. The

environment E is a (finite) list of reagent definitions Xi = Si for distinct variables Xi and

molecules Si describing the interaction capabilities. A molecule S may do nothing, or may

change after a delay or may interact with other reagents. The standard notation of process

algebras is adopted. Thus, a delay at rate r is represented by τr; the input and output on
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a channel a at rate r are represented by ar and ār model, respectively (each channel always

has the same rate). A solution P is a parallel composition of variables, that is a finite list

of reagents. A solution P evolves according to the definitions of reagents appearing in the

environment E. Intuitively, a reagent of P may change after a delay; or two reagents of P

may synchronize on a channel a at rate r.

Notice that we assume labeled basic actions in order to identify exactly the actions

involved in interactions. For these purposes, however, we have to consider well-labeled

environments; an environment E is well-labeled if the labels occurring in the definitions

of E are all distinct. In the following, we assume that in a CGF (E,P ), E is well-labeled

and each variable X occurring in E or in P has a corresponding definition in E.

Given an environment E and a label λ ∈ L, we use the notation E.X.λ to indicate the

process πλ.P provided that X = . . . + πλ.P + . . . is the definition of X occurring in E.

Moreover, we use L(E.X) to denote the set of labels appearing in the definition of X in E.

We introduce an LTS semantics for CGF based on the natural representation of solutions

as multisets of reagents.

Definition 2.1 [Multiset] A multiset is a function M : X → N. We use M for the set of

multisets.

In the following, we call M(X) the multiplicity of a reagent X in the multiset M . We

may also use the standard representation for multisets as sets of pair (m,X) where m is the

multiplicity of reagent X. Moreover, we may omit the pairs with multiplicity 0.

For multisets we use the standard operations of sum and difference ⊕ and ⊖, such that

∀X ∈ X ,

M ⊕ N(X) = M(X) + N(X)

M ⊖ N(X) = M(X)−̂N(X) where n−̂m = n − m if n − m ≥ 0, 0 otherwise.

For describing the behavior of a multiset we adopt a labeled transition relation of the form

M
Θ,∆,r
−−−→ M ′

where r ∈ R
+ is a rate, Θ ∈ L̂ = L ∪ (L × L), ∆ ∈ Q̂ = N ∪ (N × N) such that arity(Θ) =

arity(∆). Here, Θ reports the label (the labels) of the basic action (the basic actions)

that participate to the move, ∆ reports consistent information about the multiplicity (the

multiplicities), and r is the related rate.

The transition relation for multisets is defined by the rules Table 2 (we are tacitly as-

suming to reason with respect to a given environment E). For translating solutions into

multisets we exploit a function [[]] : P → M, where P is the set of solutions, defined in the

obvious way.

There are two transition rules: one for delay actions, and one for synchronization. Rule

(Delay) models the execution of a process τr
λ.Q appearing in the definition of a reagent X.

The transition records the label λ together with the multiplicity of X (e.g M(X)) as well as

the rate of delay r. Rule (Sync) models the synchronization between two complementary

processes ar
λ.Q1 and ār

µ.Q2 appearing in the definition reagents X and Y (that may even

coincide). The transition records the labels λ and µ together with the multiplicities of X

and Y (e.g M(X) and M(Y )) as well as the rate of the channel r.

It is worth noticing that we admit transitions that may report even a zero multiplicity;

this choice simplifies the definition of the abstraction.

We recall that our processes are well-labeled, e.g. basic actions have distinct labels. As

a consequence, the outgoing transitions for a solution M have distinct labels too. Formally,
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E.X.λ = τr
λ.Q

M
λ,M(X),r
−−−−−−→ (M ⊖ X) ⊕ [[Q]]

(Delay)

E.X.λ = ar
λ.Q1 E.Y.µ = ār

µ.Q2

M
(λ,µ),(M(X),M(Y )),r
−−−−−−−−−−−−−→ (M ⊖ X ⊖ Y ) ⊕ [[Q1]] ⊕ [[Q2]]

(Sync)

Table 2
Transition relation

let Next(E,M) be the set of transitions from process M with respect to the environment E.

For each Θ ∈ L̂ we may have at most one transition M
Θ,∆,r
−−−→ M ′ ∈ Next(E,M).

Definition 2.2 [LTS] A labeled transition system (LTS) is a tuple (S,→,M0, E) where: (i)

S ⊆ M is the set of states and M0 ∈ S is the initial state; (ii) and, →⊆ S ×L̂× Q̂×R
+ ×S

is a set of transitions, such that, for each M
Θ,∆1,r1

−−−−−→ M1,M
Θ,∆2,r2

−−−−−→ M2, we have ∆1 = ∆2,

r1 = r2 and M1 = M2.

Given an environment E and a multiset M0 ∈ M, we use LTS((E,M0)) = (S,→,M0, E)

for the LTS that has M0 has initial state, obtained as usual by transitive closure. Hence,

the LTS describing the evolution of a CGF (E,P ) is LTS((E, [[P ]])).

In the following we use LT S to denote the set of LTS. Moreover, we use Ts(M,M ′) =

{M
Θ,∆,r
−−−→ M ′ for some Θ, ∆ and r} for describing the transitions from a M to M ′.

3 Discrete-Time Markov Chains

We present the probabilistic semantics of CGF by means of a translation from LTS into

DTMC. We recall the main concepts about the verification for probabilistic reachability

properties over DTMC; more details on probabilistic model checking can be found in [23].

Given a finite or countable set of states S ⊆ M we denote with

Distr(S) = {ρ | ρ : S → [0, 1] and
∑

M∈S ρ(M) = 1} SDistr(S) = {ρ | ρ : S → [0, 1]}

the set of (discrete) probability distributions and of pseudo-distributions on S, respectively.

Definition 3.1 [DTMC] A Discrete-Time Markov Chain is a triple (S,P,M0) where: (i)

S ⊆ M is a finite or countable set of states and M0 ∈ S is the initial state; (ii) and,

P : S → Distr(S) is the probability transition function.

In DTMC state transitions are equipped with probabilities, namely P(M)(M ′) reports

the probability of moving from state M to state M ′. In the following, we restrict the atten-

tion to finitely branching DTMC, meaning that for each M ∈ S, the set {M ′ | P(M)(M ′) >

0} is finite. Moreover, we use MC to denote the set of (finitely branching) DTMC.

In order to derive a DTMC from the LTS semantics, we have to calculate, for each

multiset M and M ′, the probability of moving from M to M ′ by exploiting the information

reported by the labels of transitions. First, we have to extract the rate corresponding to

the move from M to M ′ (namely the rate of the underlying CTMC). Then, we achieve the

related probability by considering as usual the constant proportional to the rate of the move.

Therefore, we introduce the concept of rate of a transition. For a transition t = M
Θ,∆,r
−−−→

M ′ ∈ Next(E,M) we have
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rate(t) =

8
><
>:

n · r Θ = λ ∧ ∆ = n,

n · (mc−1) · r Θ = (λ, µ) ∧ ∆ = (n, m) ∧ λ, µ ∈ L(E.X),

n · m · r Θ = (λ, µ) ∧ ∆ = (n, m) ∧ λ ∈ L(E.X) ∧ µ ∈ L(E.Y ) ∧ X 6= Y.

For computing rate(t) we take into account the number of distinct transitions t that may

occur in the multiset M . More in details, the rate r of the basic action (actions) related

to Θ is multiplied by the number of distinct combinations appearing in M (by exploiting

the information recorded by ∆). The resulting rate may be even zero. This is the case, for

example, whenever two reagents X and Y interact and one of the two has multiplicity zero;

or whenever a reagent X with multiplicity one interacts with X itself.

Then, we introduce functions R : S × S → R
>=0 and E : S → R

>=0, such that

R(M,M ′) =
∑

t∈Ts(M,M ′) rate(t) E(M) =
∑

M ′∈S R(M,M ′).

Intuitively, R(M,M ′) reports the rate corresponding to the move from M to M ′, while

E(M) is the exit rate. As usual in stochastic calculi, the probability of moving from M to

M ′ is computed from R(M,M ′) and from the exit rate E(M).

Definition 3.2 [Derivation of the DTMC] We define a probabilistic translation function

H : LT S → MC such that H((S,→,M0, E)) = (S,P,M0), where P : S → Distr(S) is the

probability transition function, such that for each M ∈ S,

(i) if E(M) = 0, then P(M)(M ′) = 0, for each M ′ 6= M , and P(M,M) = 1;

(ii) if E(M) > 0, then for each M ′, P(M)(M ′) = R(M,M ′)/E(M).

We are interested in the probability of reaching a state satisfying a given property,

starting from the initial state. Formally, we have to evaluate the probability of a set of

paths.

Let (S,P,M0) be a DTMC. A path π is a non-empty (finite of infinite) sequence of states

of S. We denote the i-th state in a path π, starting from 0, by π[i] and the length of π by

|π|, where |π| = ∞ if π is infinite. The set of paths over S is denoted by Paths(S), while the

subset of finite paths is denoted by FPaths(S).

The cylinder corresponding to π is the set of all paths prefixed by π. Formally, C(π) =

{ππ′ | π′ ∈ Paths(S)} and C(M) denotes the set of paths starting from the state M .

Definition 3.3 [Probability of Paths] Let (S,P,M0) be a DTMC. Let C =
⋃

π∈FPaths(S) C(π)

be the set of all cylinder, B be the smallest σ-algebra containing C, and M ∈ M a state. The

tuple (Paths(S),B,PM ) is a probability space, where PM is the unique measure satisfying,

for all path M0 . . . Mn,

PM (C(M0 . . . Mn)) =






1 if M0 = M ∧ n = 0

P(M0,M1) · . . . ·P(Mn−1,Mn) if M0 = M ∧ n > 0

0 otherwise

Our reachability properties are parametric w.r.t. a set AP of propositional symbols

(ranged over by A,B ) and w.r.t. a corresponding notion of satisfaction for multisets M. As

usual we use M � A to say that M satisfies A, and M 6� A to say that this is not the case.

Definition 3.4 [Reachability Properties] Let mc = (S,P,M0) be a DTMC. The probability

of reaching a state satisfying a propositional symbol A ∈ AP , starting from M ∈ S, is defined

as ReachA,mc(M) = PM ({π ∈ C(M) | π[i] � A for some i ≥ 0}).
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M1

(λ,µ),(1,1),r1

(δ,η),(1,10),r2

M3

M0

(λ,µ),(2,2),r1

(δ,η),(2,10),r2

M4

M2
(δ,η),(1,10),r2

(λ,µ),(1,2),r1

M5

Figure 1. The LTS

Example 3.5 We consider a simple chemical reaction formed by a complexation and a

degradation, i.e. a reaction where two molecules X and Y may bind together to form a

multimolecular complex XY but where molecule X may be degraded by molecule W . This

situation can be formalized by the following environment,

E ::= X = aλ
r1

.0 + bδ
r2

.0, Y = āµ
r1

.XY, W = b̄η
r2

.W, XY = 0.

The reagent X may either synchronize with reagent Y along channel a at rate r1 (and

produce XY ) or it may synchronize with reagent W along channel b at rate r2 (and produce

W ).

By examining the evolution of the system for the initial solution M0 we obtain the LTS

(depicted in Fig.1) where 1 ,

M0 = {(2, X), (2, Y ), (10, W )} M1 = {(1, X), (1, Y ), (10, W ), (1, XY )} M2 = {(1, X), (2, Y ), (10, W )}

M3 = {(2, XY ), (10, W )} M4 = {(1, XY ), (1, Y )(10, W )} M5 = {(2, Y ), (10, W )}

All the transitions are obtained by rule Sync; as an example we comment the case of M0.

Transition M0
(λ,µ),(2,2),r1

−−−−−−−−→ M1 models the binding, i.e. the synchronization between X and

Y along channel a. The transition records the labels of the basic actions and the multiplicities

of reagents X and Y , respectively, and the rate r1. Similarly transition M0
(δ,η),(2,10),r2

−−−−−−−−→ M2

models the degradation, i.e the synchronization between X and W along channel b.

M1

(3/13)

(10/13)
M3 1

M0

(3/8)

(5/8)

M4 1

M2

(5/8)

(3/8)

M5 1
Figure 2. The DTMC

If we assume r1 = 3r2, showing that the complexion is three times faster than the

degradation, we derive the DTMC, depicted in Fig.2 2 . In order to infer relevant information

about our biological system, it would be convenient to compute the probability of reaching

a state where a given quantity of complexes XY appear. As an example, we consider the

probability to reach a state where at least two bindings XY are created, i.e., the probability

that no degradation will take place and that all the reagents X will bind to reagents Y . Since

only state M3 (depicted in bold) satisfies the previous requirement the probability to reach

state M3 will be (3/8) · (3/13) = (9/104). This shows that even if the rate of the binding

is (three times) greater that the one of degradation, the concentration of reagent W makes

the degradation more likely to happen than the binding of reagent X and Y . By contrast,

1 Note that we do not to indicate transitions (and consequently states) where a zero multiplicity may appear.
2 As usual, we picture Distr(M) by drawing an arrow between M and M ′ labeled ρ(M ′) for all M ′ with ρ(M ′) > 0.
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the probability to reach a state where at least three complexes XY are created is trivially

0. 2

4 Abstraction of the LTS

We define the abstract LTS semantics for CGF. The domain of abstract LTS includes a

notion of ordering, expressing precision and correctness of approximations, in the style of

[12].

Abstract states. We present the abstract states and we formalize the relation with

multisets as a standard Galois connection [10].

In order to approximate the information related to the multiplicities of reagents present

in a solution we adopt the well-know domain of intervals of integers [8]. In particular, let

I = {[m,n] | m ∈ N, n ∈ N ∪ {∞} ∧ m ≤ n}.

Over intervals we consider the standard union ∪◦ and the induced order ≤I , defined as

follows,

(i) I∪◦J = [min(a, c), max(b, d)] for I = [a, b], J = [c, d]; (ii) I ≤I J iff I∪◦J = J .

The abstract states are defined analogously to multisets by replacing multiplicities with

intervals of multiplicities.

Definition 4.1 [Abstract states] An abstract state is a function M◦ : X → I. We use M◦

for the set of abstract states.

Notice that each multiset M ∈ M is represented by a corresponding abstract multiset,

where each multiplicity, such as n, is replaced by the exact interval [n, n]. In the following,

we may write M◦ for the abstract version of a multiset M ; analogously, we may use S◦ for

sets of multisets S.

Since an interval represents a set of multiplicities, it is immediate to define the following

approximation order over abstract states.

Definition 4.2 [Order on States] Let M◦
1 ,M◦

2 ∈ M◦, we say that M◦
1⊑

◦M◦
2 iff, for all

reagent X ∈ X , M◦
1 (X) ≤I M◦

2 (X).

The relation between multisets and abstract states is formalized as a Galois connection.

The abstraction function α : P(M) → M◦ reports the best approximation for each set of

multisets S, given by the l.u.b. (denoted by ∪◦) of the abstraction of each multiset M ∈ S.

Its counterpart is the concretization function γ : M◦ → P(M) that reports the set of

multisets represented by an abstract state.

Definition 4.3 We define α : P(M) → M◦ and γ : M◦ → P(M) such that, for each

S ∈ P(M) and M◦ ∈ M◦: (i) α(S) =
⋃◦

M∈SM◦; (ii) γ(M◦) = {M ′ | M ′◦⊑◦M◦}.

Theorem 4.4 The pair (α, γ) is a Galois connection between (P(M),⊆) and (M◦,⊑◦).

Abstract LTS. We introduce the definition of abstract LTS as well as the notions necessary

to state the correctness and precision with respect to the concrete semantics.

The abstract transitions are defined analogously to the concrete case by replacing the

information about multiplicities with intervals of multiplicities. Thus, we adopt an abstract

transition relation of the form

M◦ Θ,∆◦,r
−−−−→

◦
M◦

1

where Θ ∈ L̂, ∆◦ ∈ Q̂◦ = I ∪ (I × I), with arity(Θ) = arity(∆◦).
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Analogously as in the concrete case the outgoing transitions from an abstract state M◦

have distinct labels.

Definition 4.5 [Abstract LTS] An abstract labeled transition system is a tuple (S◦,→◦

,M◦
0 , E) where: (i) S◦ ⊆ M◦ is a set of abstract states and M◦

0 ∈ S◦ is the initial state;

(ii) and, →◦⊆ S◦ × L̂ × Q̂◦ × R
+ × S◦ is a set of abstract transitions, such that for each

M◦ Θ,∆◦

1
,r1

−−−−−→
◦

M◦
1 , M◦ Θ,∆◦

2
,r2

−−−−−→
◦

M◦
2 we have r1 = r2, ∆◦

1 = ∆◦
2 and M◦

1 = M◦
2 .

In the following we use LT S◦ to denote the set of abstract LTS. We also assume that

the notations defined for LTS are adapted in the obvious way to the abstract case.

We introduce the notion of best approximation of an LTS, e.g. a method for deriving

the most precise abstract LTS that is correct. The most precise information can obviously

obtained by replacing, both for states and transitions, the multiplicities with the most precise

interval.

Definition 4.6 [Best Abstraction] We define αlts : LT S → LT S◦, such that αlts((S,→

,M0, E)) = (S◦,→◦,M0
◦, E) where 3 →◦ = {M◦ Θ,∆◦,r

−−−−→
◦

M◦
1 | M

Θ,∆,r
−−−→ M1 ∈→}.

Notice that αlts does not effectively introduce any approximation. Thus, an approxi-

mation order ⊑◦
lts is fundamental for expressing the correctness of an abstract LTS with

respect to a concrete one. Intuitively, lts◦ is a correct approximation of lts provided that

αlts(lts)⊑
◦
ltslts

◦.

For these purposes, we assume to extend the order ≤I over intervals to pairs of intervals.

Given ∆1
◦,∆2

◦ ∈ Q̂◦ we define ∆1
◦ ≤I ∆2

◦ component-wise.

Definition 4.7 [Order on abstract LTS] Let lts◦i = (S◦
i ,→i

◦,M
◦
0,i, E) with i ∈ {1, 2} be two

abstract LTS. For M◦
1 ∈ S◦

1 ,M◦
2 ∈ S◦

2 , we say that M◦
1 4 M◦

2 (M◦
2 simulates M◦

1 ) iff

(i) M◦
1⊑

◦M◦
2 ,

(ii) for each t◦1 = M◦
1

Θ,∆◦

1
,r

−−−−→
◦

M◦
1,1 ∈→1

◦ there exists t◦2 = M◦
2

Θ,∆◦

2
,r

−−−−→
◦

M◦
2,1 ∈→2

◦, such that

∆◦
1 ≤I ∆◦

2 and M◦
1,1 4 M◦

2,1.

We say that lts◦1 ⊑
◦
lts lts◦2 if M◦

0,1 4 M◦
0,2.

As expected, the definition of the order for abstract LTS is based on a simulation between

abstract states. Intuitively, M◦
2 simulates M◦

1 whenever: (i) M◦
2 approximates M◦

1 ; (ii) each

transition of M◦
1 , such as M◦

1

Θ,∆◦

1
,r

−−−−→
◦

M◦
1,1, is matched by a transition M◦

2

Θ,∆◦

2
,r

−−−−→
◦

M◦
2,1.

Notice that it must be the case that the transitions are related to the same label Θ and that

∆◦
1 ≤I ∆◦

2, showing that the information about multiplicities is properly approximated.

The analysis. We define an effective method to derive an abstract LTS that safely

approximates the concrete one. The abstract transition relation for abstract states is defined

by the rules Table 3 (as previously, we are tacitly assuming to reason with respect to a given

environment E). The rules are adapted from the concrete ones by replacing multiplicities

with intervals of multiplicities, and exploit the abstract counterpart of the concrete operation

⊕ and ⊖. The abstract operations are defined as follows:

M◦⊕◦N◦(X) = M◦(X) + N◦(X), I + J = [min(I) + min(J),max(I) + max(J)]

M◦⊖◦N◦(X) = M◦(X) − N◦(X), I − J = [min(I)−̂min(J),max(I)−̂max(J)]

Analogously as in the concrete case, we write LTS
◦((E,M◦

0 )) = (S◦,→◦,M
◦
0 , E) for the

abstract LTS, obtained for the initial abstract state M◦
0 by transitive closure. As usual,

3 We assume that ∆◦ is the best abstraction of ∆, derived component-wise in the obvious way.

9
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E.X.λ = τr
λ.Q

M◦ λ,M◦(X),r
−−−−−−−→

◦
(M◦⊖◦{([0, 0],X)})⊕◦[[Q]]◦

(Delay-abs)

E.X.λ = ar
λ.Q1 E.Y.µ = ār

µ.Q2

M◦
(λ,µ),(M◦(X),M◦(Y )),r
−−−−−−−−−−−−−−−→

◦
(M◦⊖◦{([1, 1],X), ([1, 1], Y )})⊕◦[[Q1]]

◦⊕◦[[Q2]]
◦

(Sync-abs)

Table 3
Abstract transition relation

Next
◦(E,M◦) stands for the set of abstract transitions from M◦ with respect to the envi-

ronment E.

The following theorem shows that the abstract LTS of an abstract state M◦ is a correct

approximation of the LTS of multiset M , for each M represented by M◦. This is the case

in particular of the abstract LTS of the translation of the initial solution [[P ]].

Theorem 4.8 Let E be an environment and M◦ ∈ M◦ be an abstract state. For each

multiset M ′ ∈ γ(M◦), we have αlts(LTS((E,M ′))) ⊑lts LTS
◦((E,M◦)).

For a sake of simplicity in this paper we proposed an approximation which admits infinite

abstract LTS. Note, however, that further approximations able to deal with infinite systems

can be easily derived by means of widening operators [11]. In this context, for example, it

is sufficient to replace the abstract operator ⊕◦ by its parametric version ⊕◦
k, which, given

k ∈ N, is defined as follows

M◦⊕◦
kN

◦(X) =





[min(M◦(X)) + min(N◦(X)),∞] if max(M◦(X)) + max(N◦(X)) > k,

M◦(X) + N◦(X) otherwise.

It’s easy to see that replacing ⊕◦ with ⊕◦
k for any k < ∞ always lead to a finite and correct

abstract LTS.

5 Abstract Markov Chains

We adopt the model of Interval Markov Chains (IMC) proposed in [15,22] in order to abstract

DTMC. The correctness and precision of the abstraction are formalised, similarly as for

LTS, by introducing a notion of best abstraction and an order over IMC. These notions are

adapted from those proposed in [13,14,15] to our abstract interpretation framework.

Definition 5.1 An Interval Discrete-Time Markov Chain (IMC) is a tuple (S◦,P−,P+,M◦
0 )

where: (i) S◦ ⊆ M◦ is a finite or countable set of abstract states and M0
◦ ∈ S◦ is the initial

state; (ii) and, P−,P+ : S◦ → SDistr(S◦) are the lower and upper probability functions,

such that for all M1
◦,M2

◦ ∈ S◦, P−(M1
◦)(M2

◦) ≤ P+(M1
◦)(M2

◦).

In the following we use MC◦ to denote the set of IMC. The IMC model combines together

non-deterministic and probabilistic steps similarly as in Markov Decision Process (MDP).

Here, P−(M1
◦)(M2

◦) and P+(M1
◦)(M2

◦) define intervals of probabilities, that represent

lower and upper bounds for the transition probabilities of moving from M1
◦ to M2

◦. Thus,

for each abstract state there is a choice for the distribution yielding the probability to reach

any other state. As usual, the non-determinism is resolved by a scheduler that chooses an

admissible distribution for each step.

10
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Definition 5.2 Let mc◦ = (S◦,P−,P+,M◦
0 ) be an IMC and let M◦ ∈ S◦. We say that

a distribution ρ ∈ Distr(S◦) is admissible for M◦ iff, for each M ′◦ ∈ S◦, P−(M◦)(M ′◦) ≤
ρ(M ′◦) ≤ P+(M◦)(M ′◦). We use ADistrmc◦(M

◦) for the admissible distributions for M◦.

The notion of path for IMC is analogous to that presented for DTMC in Section 3. We

therefore use the same notation.

Definition 5.3 [Sheduler] Let mc◦ = (S◦,P−,P+,M◦
0 ) be an IMC. A sheduler is a function

Π: FPaths(S◦) → Distr(S◦) such that Π(π) ∈ ADistrmc◦(πlast) for each path π ∈ FPaths(S◦).

We use Adv(mc◦) to denote the set of schedulers.

Given a scheduler Π ∈ Adv(mc◦) the probability space over paths can be defined anal-

ogously as for DTMC (see Definition 3.3). Thus, PΠ
M◦ stands for the probability starting

from the abstract state M◦ w.r.t. the scheduler Π.

In order to define the abstract validation of probabilistic reachability properties, we in-

troduce a may and must notion of satisfaction for abstract states and propositional symbols.

We say that an abstract state M◦ must satisfy A, M◦ �∀ A, iff for each M ∈ γ(M◦) we

have M � A. Analogously, an abstract state M◦ may satisfy A, M◦ �∃ A, iff there exists

M ∈ γ(M◦) such that M � A.

Notice that the notion of satisfaction is preserved by state approximation. Suppose that

M1
◦⊑◦M2

◦. If M1
◦ �∃ A, then also M2

◦ �∃ A; conversely, if M2
◦ �∀ A, then also M1

◦ �∀ A.

For reachability properties we derive both under and over approximations of the prob-

ability of reachability properties. Not surprisingly, it is enough to take the minimum and

maximum probabilities w.r.t. all the schedulers.

Definition 5.4 [Reachability Properties] Let mc◦ = (S◦,P−,P+,M◦
0 ) be an IMC. The

lower and upper bound of the probability of reaching a state satisfying a propositional

symbol A ∈ AP , starting from M◦ ∈ S◦, are defined as follows

Reach
−
A,mc◦(M

◦) = inf
Π∈Adv(mc◦)

PΠ
M◦({π◦ ∈ C(M◦) | π◦[i] �∀ A for some i ≥ 0})

Reach
+
A,mc◦(M

◦) = sup
Π∈Adv(mc◦)

PΠ
M◦({π◦ ∈ C(M◦) | π◦[i] �∃ A for some i ≥ 0})

Abstraction of Markov Chains. We define a function αMC : MC → MC◦ that gives the

best abstraction of a DTMC. Since there is no effective abstraction of states, similarly as for

LTS, the derived probabilities are exact.

Definition 5.5 [Best Abstraction] We define αMC : MC → MC◦ as follows

αMC((S,P,M0)) = (S◦,Pα
−,Pα

+,M0
◦)

where Pα
−(M1

◦,M2
◦) = Pα

+(M1
◦,M2

◦) = P(M1)(M2), for each M1,M2 ∈ S.

Effective approximations of a DTMC mc can be introduced by considering an IMC mc◦

such that αMC(mc)⊑◦
mcmc◦, where ⊑◦

mc is defined as follows.

Definition 5.6 [Order on IMC] Let mc◦i = (Si
◦,P−

i ,P+
i ,M◦

0,i) be two IMC for i ∈ {1, 2}.
Given two abstract states Mi

◦ ∈ Si
◦ for i ∈ {1, 2}, we say that M1

◦4mcM2
◦ ( M2

◦ simulates

M1
◦) iff

(i) M1
◦⊑◦M2

◦;

(ii) for each distribution ρ1 ∈ ADistr(M1
◦) there exists a function H : S1

◦ → S2
◦ and a

distribution ρ2 ∈ ADistr(M2
◦) such that,

(a) for each M◦ ∈ S2
◦, ρ2(M

◦) =
∑

M ′◦∈H−1(M◦) ρ1(M
′◦).

11
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(b) for each M ′◦ ∈ S1
◦, if H(M ′◦) = M◦ then M ′◦ 4mc M◦.

Moreover, we say that mc1
◦⊑◦

mc mc2
◦ iff M◦

0,1 4mc M◦
0,2.

The order uses a sort of probabilistic simulation similarly as in [15,15,14]. Intuitively,

M2
◦ simulates M1

◦ whenever: (i) M2
◦ approximates M1

◦: (ii) each distribution of M1
◦ is

matched by a corresponding distribution of M2
◦, where the probabilities of the target states

are eventually summed up.

The simulation 4mc provides sufficient conditions for the preservation of extremum prob-

abilities, as stated by the following theorem.

Theorem 5.7 (Soundness of the order) Let mc◦i = (Si
◦,P−

i ,P+
i ,M◦

0,i) be two IMC and

let Mi
◦ ∈ Si

◦ be two abstract states, for i ∈ {1, 2}. If M1
◦ 4mc M2

◦, then for each proposi-

tional symbol A ∈ AP , we have

Reach
−
A,mc◦

2

(M2
◦) ≤ Reach

−
A,mc◦

1

(M1
◦) ≤ Reach

+
A,mc◦

1

(M1
◦) ≤ Reach

+
A,mc◦

2

(M2
◦)

6 Derivation of IMC

We define the abstract counterpart of the probabilistic translation function H : LT S → MC.

Moreover, we discuss the soundness of our approach.

Our abstract LTS reports on transitions information about the label of the process (the

labels of the processes) that participate to the move, the interval (the intervals) representing

a possible range for its (their) multiplicities, and the rate of the basic action. Therefore, it

should be well understood that the abstract rate associated to each transition is an interval

of rates. From this kind of information, both lower and upper bounds for the probabilities

of moving from an abstract state to another could be calculated following the guidelines of

the derivation of the DTMC from the concrete LTS.

It is convenient, however, to maintain the calculation of the intervals of rates symbolic

in order not to loose relational information on quantities of different occurrences of the

same reagent. This means that the interval of rates assigned to each abstract transition will

be represented by a symbolic expression on reagent variables. More in details, we adopt

expressions such as (e, c) where: (i) e ∈ Z is a symbolic expression over the variables of

X ; (ii) c ∈ C is a set of membership constraints of the form X ∈ I. We require that each

expression (e, c) is well-formed meaning that, for each variable X occurring in e, there exists

one and only one constraint X ∈ I occurring in c.
Hence, we define the abstract rate of a transition as follows. Given a transition t◦ =

M◦ Θ,∆◦,r
−−−−→

◦
M◦

1 ∈ Next
◦(E,M◦) we have

rate
◦(t◦) =

8
><
>:

(X · r, {X ∈ I}) Θ = λ, λ ∈ L(E.X) ∧ ∆◦ = I,

(X · (X c−1) · r, {X ∈ I}) Θ = (λ, µ) ∧ ∆◦ = (I, I) ∧ λ, µ ∈ L(E.X),

(X · Y · r, {X ∈ I1, Y ∈ I2}) Θ = (λ, µ) and ∆◦ = (I1, I2) ∧ λ ∈ L(E.X), µ ∈ L(E.Y ) ∧ X 6= Y.

Moreover, we introduce the functions R◦ : S◦ × S◦ → Z × C, and E◦ : S◦ → Z × C,

analogously as in the concrete case,

R◦(M◦,M ′◦) =
∑◦

t◦∈Ts(M◦,M ′◦)rate
◦(t◦), E◦(M◦) =

∑◦
M ′◦∈S◦R◦(M◦,M ′◦),

(e1, c1)op
◦(e2, c2) = (e1 op e2,

⋃
X∈X {X ∈

⋃◦
(X∈I)∈ci,i∈{1,2}I}) for op ∈ {+, /}.

Intuitively, R◦(M◦,M ′◦) reports the interval of rates corresponding to the move from M◦ to

M ′◦, while E◦(M◦) is the abstract exit rate. Both lower and upper bounds of the probability

12
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of moving from M◦ to M ′◦ can be determined by R◦(M◦,M ′◦) and by E◦(M◦). For these

purposes we need to consider the worst case and best case scenario, respectively.

Definition 6.1 [Derivation of the IMC] We define an abstract probabilistic translation func-

tion H◦ : LT S◦ → MC◦ such that H◦((S◦,→◦,M0
◦, E)) = (S◦,P−,P+,M◦

0 ), where

P−,P+ : S◦ → SDistr(S◦) are the lower and upper probability functions, such that for

all M1
◦ ∈ S◦

(i) if max(E◦(M◦
1 )) = 0, then P+(M◦

1 )(M◦
2 ) = P−(M◦

1 )(M◦
2 ) = 0, for each M◦

1 6= M◦
2 ,

and P+(M◦
1 )(M◦

1 ) = P−(M◦
1 )(M◦

1 ) = 1;

(ii) if max(E◦(M◦
1 )) > 0 then

(a) if min(E◦(M◦
1 )) = 0 then P+(M◦

1 )(M◦
1 ) = 1 and P−(M◦

1 )(M◦
1 ) = 0,

(b) for each M◦
2 , if min(R◦(M◦

1 ,M◦
2 )) = 0 then P−(M◦

1 )(M◦
2 ) = 0 else P−(M◦

1 )(M◦
2 ) =

min(R◦(M◦
1 ,M◦

2 )/◦E◦(M◦
1 )),

(c) for each M◦
2 , if max(R◦(M◦

1 ,M◦
2 )) = 0 then P+(M◦

1 )(M◦
2 ) = 0 else P+(M◦

1 )(M◦
2 ) =

max(R◦(M◦
1 ,M◦

2 )/◦E◦(M◦
1 )).

Intuitively, the lower and upper bound probabilities for the move from M◦ to M ′◦ are

computed by minimizing and maximizing the solution of R◦(M◦,M ′◦)/◦E◦(M◦), respec-

tively. This reasoning has to be properly combined with the special cases when max(E◦(M◦)) =

0 or min(E◦(M◦)) = 0. When max(E◦(M◦)) = 0 all the states represented by M◦ are sta-

ble, while when min(E◦(M◦)) = 0 a state represented by M◦ is stable.

Note that in order to find the maximum and minimum of a symbolic, constrained ex-

pression (e, c) ∈ Z × C, when it’s not trivial, it’s sufficient to evaluate the expression e for

the stationary points (that can be found by differentiate e and by setting the result equal

to 0) and for the boundaries of the intervals in c constraining variables of e.

The following theorems state the soundness of our approach.

Theorem 6.2 Let lts◦i = (Si
◦,→i

◦,M0,i
◦) be two abstract LTS. If lts◦1 ⊑

◦
lts lts◦2, then also

H◦(lts◦1)⊑
◦
mc H◦(lts◦2).

Theorem 6.3 Let E be an environment and M0 ∈ M be a multiset. We have

αMC(H(LTS((E,M0))))⊑
◦
mc H◦(αlts(LTS((E,M0)))).

Example 6.4 Consider again the chemical reaction described by the environment E of

Example 3.5. We show the ability of our analysis for predicting the probabilistic behavior

of the reaction, described by E, w.r.t. different initial concentrations. The idea is to

model simultaneously the behavior of several experiments, described by the abstract initial

state. As an example we can consider the initial abstract state M◦ = {([2, 3],X),([2, 5], Y ),

([1, 10],W )}.

The obtained abstract LTS is depicted in Fig.3 where 4 ,
M◦

1
= {([1, 2], X), ([1, 4], Y ), ([1, 10], W ), ([1, 1], XY )} M2 = {([1, 2], X), ([2, 5], Y ), ([1, 10], W )}

M3 = {([0, 1], X), ([0, 3], Y )([1, 10], W ), ([2, 2], XY )} M4 = {([0, 1], X), ([1, 4], Y ), ([1, 10], W ), ([1, 1], XY )}
M5 = {([0, 1], X), ([2, 5], Y ), ([1, 10], W )} M6 = {([0, 2], Y )([1, 10], W ), ([3, 3], XY )}
M7 = {([0, 3], Y )([1, 10], W ), ([2, 2], XY )} M8 = {([1, 4], Y )([1, 10], W ), ([1, 1], XY )} M9 = {([2, 5], Y )([1, 10], W )}

It is convenient to consider again the probabilistic reachability properties discussed in

the previous example. Thus, we assume r1 = 3r2 and we derive the IMC of Fig.4.

We compute the minimum and maximum probabilities (denoted by P−(M◦) and P+(M◦),

respectively) to reach, from M◦, a state where at least two binding XY appear. We summa-

rize the most relevant steps of the reasoning that permits to compute P−(M◦) and P+(M◦);

for a complete discussion on probabilistic model checking we refer the reader to [23,37,15].

4 We adopt the same notation of Example 3.5 for states
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M◦

3

(λ,µ),[0,1],[0,3],r1

(δ,η),[0,1],[1,10],r2

M◦

6

M◦

1

(λ,µ),[1,2],[1,4],r1

(δ,η),[1,2],[1,10],r2

M◦

7

M◦

(λ,µ),[2,3],[2,5],r1

(δ,η),[2,3],[1,10],r2

M◦

4

(λ,µ),[0,1],[1,4],r1

(δ,η),[0,1],[1,10],r2

M◦

2

(λ,µ),[1,2],[2,5],r1

(δ,η),[1,2],[1,10],r2

M◦

8

M◦

5 (δ,η),[0,1],[1,10],r2

(λ,µ),[0,1],[2,5],r1

M◦

9

Figure 3. The LTS

The states that contain at least two occurrences of XY are M3, M7 and M6. As a

consequence, we have P−(M◦
3 ) = P−(M◦

6 ) = P−(M◦
7 ) = 1, and P+(M◦

3 ) = P+(M◦
6 ) =

P+(M◦
7 ) = 1. Moreover, we have also P−(M◦

8 ) = P−(M◦
9 ) = P−(M◦

5 ) = 0 and P+(M◦
8 ) =

P+(M◦
9 ) = P+(M◦

5 ) = 0.

Let us consider the lower bound. The most important observation is that P−(M◦
4 ) = 0

since there is a self-loop that allows state M◦
4 not to reach state M◦

7 . Thus, we have also

P−(M◦
2 ) = 0. Moreover, for M◦

1 we have to consider the admissible distributions ρ that

minimize ρ(M◦
1 )(M3

◦) · P−(M◦
3 ) + ρ(M◦

1 )(M4
◦) · P−(M◦

4 ) = ρ(M◦
1 )(M3

◦). Thus, we derive

P−(M◦
1 ) = (3/13), and analogously P−(M◦) = (18/48) · P−(M◦

1 ) + (30/48) · P−(M◦
2 ) =

(18/48) · (3/13).

For the upper bound we obtain in a similar way P+(M◦) = (45/48) ·P+(M◦
1 ) + (3/48) ·

P+(M◦
2 ) = (45/48) · ((12/13) + (1/13) · (12/13)) + (3/48) · ((15/16) · (12/13)). The most

relevant difference is that in this case P+(M◦
4 ) = (12/13) by maximizing the probability of

moving from M◦
4 to M◦

7 .

Finally, we consider the probability of reaching a state where at least three bindings XY

are created. In this case, only state M◦
6 satisfies the requirement, and we obtain P−(M◦) = 0

and P+(M◦) = (45/48) · (12/13) · (9/10).

It is worth noticing that the result of our analysis is very accurate. In fact, for the

reachability properties previously considered both lower and upper bound correspond to the

concrete probability of one of the experiments represented by the abstract initial state M◦.

For example, the lower bound of the probability that we reach a state where at least two

M
◦

3

[0,(9/10)]

[0,1]

[0,1]

M
◦

6 [1,1]

M◦

1

[(3/13),(12/13)]

[(1/13),(10/13)]

M◦

7
[1,1]

M◦

[(18/48),(45/48)]

[(1/16),(15/24)]

M◦

4

[0,1]

[0,(12/13)]

[0,(10/13)]

M◦

2

[(6/16),(15/16)]

[(1/16),(5/8)]

M◦

8 [1,1]

M◦

5

[0,(10/16)]

[0,(15/16)]

[0,1]

M◦

9 [1,1]

Figure 4. The DTMC
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binding XY are created is (18/48) · (3/13), e.g. the probability of the “worst case’ ’ concrete

experiment we have illustrated in Example 3.5. This result could not be achieved without

the relational information about the number of occurrences of reagents, that we profitably

exploit for computing the intervals of probabilities. 2

7 Conclusions and Related Works

In this paper we have proposed a methodology, based on abstract interpretation, for prob-

abilistic abstract model checking of biological systems, modeled in the CGF calculus. We

believe that the approach could be extended in a simple way to the full calculus with com-

munication, by considering the language of [30].

Several abstraction methods for probabilistic systems, modeled as DTMC or MDP, have

been recently investigated. The proposals of [13,14,15] present similar approaches, based on

MDP and IMC, respectively. The abstract model is built over a partition of the concrete

state space by computing the abstract probabilities from the concrete probabilities (this is

a sort of best abstraction of the concrete DTMC). As a consequence, these approaches can

handle finite state systems only. Huth [22] proposes a more general approach based on IMC

where the abstraction of states is formalized using a sort of abstract interpretation. Even if

the framework admits infinite state systems, no effective methods for deriving an abstract

model for a given language is investigated. The technique of [24] extends the approaches

of [13,14], using games, in order to more accurately abstract MDP. De Alfaro [1] proposes

an original method for the abstraction of finite state MDP, based on regions. Monnieux

[26] proposes an approximation method, based on abstract interpretation, for the validation

of trace properties of probabilistic and non-deterministic transition systems. Techniques of

backward and forward analysis are successfully applied.

Our approach differs from most of the previous proposals in that we have introduced an

effective method (even for infinite state systems) to compute an abstraction of the probabilis-

tic semantics, relying on the abstract LTS. In our opinion, such an abstraction is particularly

adequate for achieving correct predictions (lower and upper bounds on the concrete proba-

bility) of the possible behavior of a set of experiments. As it is outlined in Example 6.4, the

set of experiments we want to analyze is chosen by considering a suitable initial abstract

multiset.

In our framework, based on abstract interpretation, new analyses could be designed

by introducing new abstract LTS semantics. We are currently investigating a parametric

version of our framework where the partitioning of intervals, and thus of abstract states,

could be realized in a coarser or finer way. This could give the possibility to find a trade-off

between precision and complexity and also to address different applications. In this setting,

it would be interesting to study refinement techniques, guided by the formula in the style of

[7]. Moreover, we intend to investigate whether the domain of intervals could be replaced

with more precise numerical domains able to model also relational information, such as the

domain of convex polyhedra.
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