CALCOLO PROPOSIZIONALE: CENNI

Francesca Levi

Dipartimento di Informatica

February 26, 2016

La Logica

 La logica è la disciplina che studia le condizioni di correttezza del ragionamento

> "Occorre dire, anzitutto, quale oggetto riguardi ed a quale disciplina spetti la presente indagine, che essa cioè riguarda la dimostrazione e spetta alla scienza dimostrativa: in seguito, bisogna precisare cosa sia la premessa, cosa sia il termine, cosa sia il sillogismo..." Aristotele

- ► Esempio di sillogismo
 - ► Tutti gli uomini sono mortali
 - ► Socrate è un uomo
 - Socrate è mortale

La Logica

Non tutti i sillogismi sono validi:

- Tutti gli animali sono mortali
- Pippo è mortale
- ▶ Pippo è un animale

- Tutti gli dei sono immortali
- Gli uomini non sono dei
- Gi uomini sono mortali

Logica Matematica e Informatica

- La logica matematica ha profondi legami con l'informatica:
 - l'informatica ha dato nuovo impulso allo studio della LM
 - ▶ la LM è parte integrante dei fondamenti teorici dell'informatica
- Usi della Logica Matematica in Informatica:
 - formalizzazione di requisiti
 - dimostrazione di proprietà di programmi (es: logica di Hoare)
 - fondamenti di programmazione dichiarativa (PROLOG)
 - fondamenti di strumenti di analisi e di verifica di sistemi
 - Model checking
 - Theorem proving

Calcolo Proposizionale: Cenni

- ► Calcolo Proposizionale
 - ► Connettivi logici e loro proprietà
 - ► Tautologie, deduzione corretta

Un Problema di Deduzione Logica [da un test di ingresso]

- ► Tre amici, Antonio, Bruno e Corrado, sono incerti se andare al cinema. Si sa che:
 - Se Corrado va al cinema, allora ci va anche Antonio;
 - Condizione necessaria affinché Antonio vada al cinema è che ci vada Bruno
- ▶ Il giorno successivo possiamo affermare con certezza che:
 - 1. Se Corrado è andato al cinema, allora ci è andato anche Bruno
 - 2. Nessuno dei tre amici è andato al cinema
 - 3. Se Bruno è andato al cinema, allora ci è andato anche Corrado
 - 4. Se Corrado non è andato al cinema, allora non ci è andato nemmeno Bruno
- ► Come si formalizza? Come si può usare una dimostrazione per rispondere alla domanda?

Il Calcolo Proposizionale

- ▶ È il nucleo di (quasi) tutte le logiche. Limitato potere espressivo, ma sufficiente per introdurre il concetto di deduzione
- Le proposizioni (enunciati dichiarativi) sono asserzioni a cui sia assegnabile in modo univoco un valore di verità in accordo ad una interpretazione del mondo a cui si riferiscono.
- "dichiarativi sono non già tutti i discorsi, ma quelli in cui sussiste una enunciazione vera oppure falsa" Aristotele

Esempi di Proposizioni "Atomiche"

- 1. Roma è la capitale d'Italia
- 2. La Francia è uno stato del continente asiatico
- 3. 1+1=2
- 4. 2+2=3

Esempi di Non Proposizioni

- Che ora è?
- 2. Leggete queste note con attenzione
- 3. x+1=2

Connettivi Logici

Connettivo	Forma simbolica	Operazione corrispondente		
not	$\neg p$	negazione		
and, e	$p \wedge q$	congiunzione		
or, o	$p \lor q$	disgiunzione		
se p allora q	$p\Rightarrow q$	implicazione		
p se e solo se q	$p \equiv q$	equivalenza		

F.Levi

Calcolo Proposizionale

- Sintassi: definisce in modo formale le asserzioni (formule) del calcolo proposizionale
- Semantica: definisce in modo formale il significato delle (formule) del calcolo proposizionale

Sintassi delle Proposizioni (Grammatica)

Semantica (significato) delle Proposizioni

Tabelle di verità dei connettivi logici:

Р	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \equiv Q$	
Т	Т	F	Т		Т	Т	
Τ	F	F	F	Т	F	F	
F	Т	T	F	Т	Т Т	F	
F	F	T	F	F	T	Т	

Si osservi in particolare il valore di verità di un'implicazione

Interpretazione di una Formula Proposizionale

- **Interpretazione**: funzione da variabili proposizionali a $\{T, F\}$
- Un' interpretazione determina il valore di verità di una formula
- Tale valore può essere determinato usando le tabelle di verità (induttivamente sulla sintassi della formula)
- Analogamente, si può derivare una tabella raccogliendo i valori per tutte le Interpretazioni (Tabella di Verità della Formula)

Un Esempio

- Un'interpretazione determina il valore di verità di una formula
 - ▶ Formula $(P \land Q) \lor \neg R$
 - ▶ Interpretazione $\{P \mapsto T, Q \mapsto F, R \mapsto F\}$
 - Valore di verità usando una tabella (sfruttando quella dei connettivi):

Tabella di Verità di una Formula: raccoglie tutte le Interpretazioni

▶ Un esempio

Ρ	Q	R	((P	\wedge	,	\vee	\neg	R)
Т	Т	Т	T	Т	Т	T	F	T
Т	Τ	F	T	T	Т	T	T	F
Т	F	Т	T	F	F	F	F	Τ
Т	F	F	T	F	F	T	T	F
F	Т	Т	F	F	Т	F	F	Т
F	Т	F	F	F	T	T	T	F
F	F	Т	F	F	F	F	F	T
F	F	F	F	F	F	T	Т	F
			(1)	(2)	(1)	(3)	(2)	(1)

Tautologie e Contraddizioni

- Una tautologia è una formula del calcolo proposizionale che vale T per qualunque interpretazione
 - **E**sempio: $\mathbf{p} \lor \neg \mathbf{p}$ (vedi tabella di verità)
- Una contraddizione è una formula che vale F per qualunque per qualunque interpretazione
 - Esempio: p ∧ ¬p (vedi tabella di verità)
- Una formula è soddisfacibile se esiste almeno una interpretazione che la rende T
- ▶ Quindi \mathbf{p} è una tautologia se e solo se $\neg \mathbf{p}$ è una contraddizione

Come si vede che una Formula non è una Tautologia?

- ► Esempio: Mostrare che $((A \Rightarrow B) \land \neg A) \Rightarrow B$ non è una tautologia
- Basta trovare un'interpretazione che la rende falsa
- Evitare di costruire l'intera tabella di verità!!!
- Determiniamo valori di verità per A e B che rendano falsa la formula
 - ▶ Poiché è un'implicazione, è falsa solo quando la premessa è vera e la conseguenza è falsa
 - ▶ Quindi $\{B \mapsto \mathbf{F}\}$
 - La premessa è una congiunzione: per essere vera entrambi gli argomenti devono essere veri
 - ▶ $\neg A$ è vera solo se $\{A \mapsto \mathbf{F}\}$
 - ▶ Quindi abbiamo trovato l'interpretazione $\{A \mapsto \mathbf{F}, B \mapsto \mathbf{F}\}$
 - Resta da controllare che renda la formula falsa

Calcolo Proposizionale per formalizzare Enunciati: Esempio

- Tre amici, Antonio, Bruno e Corrado, sono incerti se andare al cinema.
 - Introduciamo tre proposizioni:
 - $A \equiv$ "Antonio va al cinema"
 - $ightharpoonup B \equiv$ "Bruno va al cinema"
 - $ightharpoonup C \equiv$ "Corrado va al cinema"
- Si sa che:
 - Se Corrado va al cinema, allora ci va anche Antonio;
 - $ightharpoonup C \Rightarrow A$
- Condizione necessaria affinché Antonio vada al cinema è che ci vada Bruno.
 - $A \Rightarrow B$

Calcolo Proposizionale per formalizzare Enunciati: Esempio (cont.)

- ▶ Il giorno successivo possiamo affermare con certezza che:
 - ▶ Se Corrado è andato al cinema, allora ci è andato anche Bruno

$$ightharpoonup C \Rightarrow B$$

Nessuno dei tre amici è andato al cinema.

$$\blacktriangleright$$
 $(\neg A) \land (\neg B) \land (\neg C)$

▶ Se Bruno è andato al cinema, allora ci è andato anche Corrado

$$\triangleright$$
 $B \Rightarrow C$

▶ Se Corrado non è andato al cinema, allora non ci è andato nemmeno Bruno

$$ightharpoonup (\neg C) \Rightarrow (\neg B)$$

▶ Per rispondere alla domanda, dobbiamo capire quale di queste quattro proposizioni è conseguenza logica delle proposizioni precedenti

Come possiamo essere certi della risposta?

 Bisogna determinare quale delle ultime 4 formule è conseguenza logica delle premesse, cioè quale delle seguenti formule è una tautologia:

1.
$$((C \Rightarrow A) \land (A \Rightarrow B)) \Rightarrow (C \Rightarrow B)$$

2.
$$((C \Rightarrow A) \land (A \Rightarrow B)) \Rightarrow ((\neg A) \land (\neg B) \land (\neg C))$$

3.
$$((C \Rightarrow A) \land (A \Rightarrow B)) \Rightarrow (B \Rightarrow C)$$

4.
$$((C \Rightarrow A) \land (A \Rightarrow B)) \Rightarrow ((\neg C) \Rightarrow (\neg B))$$

- Si possono verificare con tabelle di verità o trovando un controesempio
- ► Chiaramente la (1) è una tautologia, mentre la (2), (3) e la (4) non sono tautologie!!!!

Come si vede che una Formula non è una Tautologia?

- ► Esempio: (3) $((C \Rightarrow A) \land (A \Rightarrow B)) \Rightarrow (B \Rightarrow C)$
- Basta trovare un'interpretazione che la rende falsa (un controesempio)
 - ightharpoonup Determiniamo valori di verità per A, B e C che rendano falsa la formula
 - Poiché è un'implicazione, è falsa solo quando la premessa è vera e la conseguenza è falsa
 - ▶ Quindi $(B \Rightarrow C)$ deve essere falso, quindi $\{B \mapsto \mathbf{T}, C \mapsto \mathbf{F}\}$
 - A questo punto si vede che per qualunque valore di A la premessa è vera.
 - ▶ Quindi le seguenti interpretazioni rendono la formula falsa: $\{A \mapsto \mathbf{T}, B \mapsto \mathbf{T}, C \mapsto \mathbf{F}\}\$ e $\{A \mapsto \mathbf{F}, B \mapsto \mathbf{T}, C \mapsto \mathbf{F}\}\$

Dip.to Informatica

Inferenze Logiche: Esercizi

Considerare le seguenti proposizioni

- $ightharpoonup AC \equiv$ "Andrea è colpevole"
- ► AP ≡ "Andrea viene punito"

Valutare quali di queste inferenze sono logicamente corrette usando i simboli proposizionali sopra introdotti:

- Se Andrea è colpevole allora viene punito. Andrea è colpevole. Quindi Andrea viene punito.
- 2. Se Andrea è colpevole allora viene punito. Andrea non è colpevole. Quindi Andrea non viene punito.
- 3. Se Andrea è colpevole allora viene punito. Andrea non viene punito. Quindi Andrea non è colpevole.
- 4. Se Andrea è colpevole allora viene punito. Andrea viene punito. Quindi Andrea è colpevole.

Formalizzazione di Enunciati: Esercizi

- Piove e fa molto freddo
- Fa freddo, ma non piove
- Se ci sono nuvole e non c'è vento, allora piove
- Piove solo se ci sono nuvole e non c'è vento
- Piove se e solo se ci sono nuvole e non c'è vento
- Nevica, ma non fa freddo se ci si copre
- Se ci si copre, allora fa freddo o nevica

Esercizi: Tautologie

Determinare se le seguenti formule proposizionali sono tautologie, contraddizioni o soddisfacibili:

- 1. $(P \wedge (P \Rightarrow Q)) \Rightarrow Q$,
- 2. $P \wedge ((P \Rightarrow Q) \Rightarrow Q)$,
- 3. $(P \wedge Q) \Rightarrow Q$,
- 4. $(P \lor Q) \Rightarrow Q$,
- 5. $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow R$