
Distilling Router Data Analysis for Faster and

Simpler Dynamic IP Lookup Algorithms

Filippo Geraci1 and Roberto Grossi2

1 IIT-CNR, Pisa, and Dipartimento di Ingegneria dell’Informazione, U. Siena, Italy
filippo.geraci@iit.cnr.it

2 Dipartimento di Informatica, Università di Pisa, 56127 Pisa, Italy
grossi@di.unipi.it

Abstract. We consider the problem of fast IP address lookup in the for-
warding engines of Internet routers. We analyze over 2400 public snap-
shots of routing tables collected over five years, discovering what we
call the middle-class effect. We exploit this effect for tailoring a simple
solution to the IP lookup scheme, taking advantage of the skewed distri-
bution of Internet addresses in routing tables. Our algorithmic solution is
easy to implement as it is tantamount to performing an indirect memory
access. Its performance can be bounded tightly and has very low mem-
ory dependence (e.g. just one memory access to off-chip memory in the
hardware implementation). It can quickly handle route announcements
and withdrawals on the fly, with a small cost which scales well with the
number of routes. Concurrent access is permitted during these updates.

1 Introduction

The IP lookup problem is a recurrent problem in the literature for packet for-
warding in the Internet [16]. Routers have to forward lots of packets from input
interfaces to output interfaces (next hops) based on packet’s destination Inter-
net address, called an IP address. Forwarding a packet requires an IP address
lookup at the routing table to select the next hop corresponding to the packet.
(We will use the term “routing table” to denote what is more properly called a
“forwarding table.”) As routers have to deal with links whose speed constantly
improves, the address lookup is considered one of the major bottlenecks [6, 16].
For networks with a link speed of 10 gigabits per second (OC-192), they need
to forward up to 33 million packets per second, assuming that each packet is 40
bytes long. Other bottlenecks, such as those involved by fair queuing policy and
IP switching technology, are well understood and handled [11].

In IPv4 [13] the prefixes are binary strings of variable length using the syntax
X.Y.W.Z/L to represent the first L bits of the 4-byte word X.Y.W.Z, where
8 ≤ L ≤ 32. Prefixes can be up to 128 bits in IPv6 [5] (but then have a different
syntax). The use of prefixes increases the complexity of the IP address lookup
problem. For each packet, more than one prefix in the routing table can match
the packet’s IP address. In this case, the adopted rule is to take the longest

matching prefix. Given prefixes p1, p2, . . . , pn, for any binary string x we want

prefix hop

65.10.10.0/24 1

192.168.0.0/17 2

192.168.0.0/18 3

192.168.64.0/18 2

192.168.0.0/32 4

192.168.0.0/29 5

Table 1. A routing table.

layer 1 layer 2

65.10.10.0/24 1 192.168.0.0/24 3

192.168.0.0/17 2 192.168.0.0/32 4

192.168.0.0/18 3 192.168.0.0/29 5

192.168.64.0/18 2

192.168.0.0/24 255

Table 2. Its two-layer organization.

to identify the longest pi that equals the first bits of x, where 1 ≤ i ≤ n. For
example, let us consider the prefixes in Table 1. Both prefixes 192.168.0.0/17
and 192.168.0.0/18 match the IP address 192.168.32.125; hence, the packet is
forwarded to next hop 3. We will only consider situations arising with single
hops, since dealing with multi-hops is very similar. No-route-to-host is the special
next hop 0 associated with the empty prefix ε.

In this paper we stress the importance of data analysis on real routing tables
before designing IP lookup algorithms. We begin with the experimental anal-
ysis performed on public databases of nearly 2400 snapshots of routing tables
collected over five years. We identify some new parameters characterizing the
(skewed) distribution of prefixes in routing tables. Based upon our findings, we
provide a new and simple solution to the IP address lookup problem.

Our starting point is the result based on full expansion and compression
of routing tables by Crescenzi, Dardini and Grossi [4]. (It was later referred
to as CDG in [3].) Let us illustrate CDG conceptually with Table 1 for IPv4,
considering all possible 232 IP addresses that can be queried. For each such
address, we associate with it the corresponding next hop according to its longest
prefix match in Table 1. Now, let us organize the 232 next hops thus computed in
a 216 × 216 matrix. Lookup time is now a direct access to this matrix; however,
its size does not fit current capacity of L2 caches. Observing that many rows
and columns contain repeated values, CDG considers only the distinct rows (as
individual sequences of 216 next hops each); they are further compressed using
run length encoding (RLE) on their values. The lookup requires three accesses
but the size reduces to very few megabytes.

To our knowledge CDG is the first to describe a lookup scheme whose design
is fully driven by data analysis. A frequently cited survey [16] published in 2001
shows that CDG is almost an order of magnitude faster than its state-of-the-
art competitors at that time (see Table 3 in [16]). Even in the worst case, the
frequency of lookups with small response time is impressively high and does not
depend on the traffic through the router (see Fig. 22 in [16]). Unfortunately,
CDG has some drawbacks. The survey reports that “Schemes using multibit
tries and compression give very fast search times. However compression and the
leaf pushing technique used do not allow incremental updates. Rebuilding the
whole structure is the only solution.” Moreover, some authors [3, 7, 15] pointed
out some cases in which the space requirement of CDG is too high, possibly
causing its performance to suffer in the worst case.

row

255 3 ... 3 ... 3 2 ... 2 0 ... 0

 0 0 ... 1 ... 0 0 ... 0 0 ... 0

 0 0 ... 0 ... 0 0 ... 0 0 ... 0

 0 1 ... 10...63 64...127 128..255

255.255

192.168

65.10

0.1
0.0

hop

Fig. 1. The arrays row and hop for layer 1 in Table 2.

Our scheme. We present a lookup scheme that exploits the original idea of
CDG in a novel and even simpler way. Going on in our illustrative Table 1, let
us truncate the prefixes in the table that are longer than 24, thus retaining just 24
bits and associating with them a dummy next hop (e.g. 255). We obtain layer 1,
as shown in the left column of Table 2. The prefixes longer than 24 constitute
layer 2, in the right column of Table 2, which is scarcely populated according to
our data analysis. (Note that 192.168.0.0/24 in layer 2 is pushed from layer 1 to
deal with IP addresses matching 192.168.0.0/L, where 24 ≤ L < 29.) We can
now revisit the approach described for CDG and apply it to layer 1. With each
24-bit address, we associate its corresponding next hop according to its longest
prefix match in layer 1. Organizing the resulting next hops into a 216×28 matrix,
we keep only the distinct rows (and do not compress them with RLE) as shown
in Fig. 1. It suffices to perform a lookup in two accesses in layer 1 by looking at
the first 24 bits in the given IP address. For example, the next hop for IP address
192.168.32.125 can be retrieved by following the pointer in row[192.168] to a row
of 256 entries, in which entry 32 contains the result, next hop 3. Sometimes we
get the dummy next hop in layer 1 and so we also need to perform the lookup
in layer 2 (this happens very rarely according to our data analysis). Access time
and space occupancy are definitively improved over CDG in this way.

Our method exploits some properties that allow us to avoid the drawbacks of
CDG. The main discovery is what we call the middle-class effect in real routing
tables: even though the majority of prefixes have lengths ranging from 16 to 24,
they tend to follow regular patterns. In other words, we have a good chance
to store the mapping from all the 232 IP addresses to the next hops into a
compact table, so that lookup and update are able to access the table very quickly
using indirection. Our contributions can be summarized as follows. First, we save
space significantly over CDG since we have a much more stable space occupancy
that scales linearly with the table size (Fig. 3, left). We no longer need the
run-length encoding (RLE) adopted in CDG, because we organize suitably the
prefixes. Second, we improve lookup time by nearly 30% (Fig. 3, right). Third,
we can dynamize the table, performing updates quickly without rebuilding the
whole structure as previously required. Our update algorithm is robust since
we can efficiently bound the worst case, which is important for unauthenticated
announcements [9]. Concurrent access is also permitted while updating. Our
method compares favorably with previous work [16]. We plan to extend our
experimental investigation to the interesting method recently proposed in [3].

router #tables from to

aads 538 10-01-00 05-15-02
mae-east 230 10-01-00 06-01-01
mae-west 618 10-01-99 04-12-02
paix 78 10-01-01 03-10-02
pacbell 576 12-09-98 05-15-02
ripe-ncc 365 01-01-03 12-01-03
ripe-ncc 19 10-10-99 04-01-04

router date router date

aads 05-30-01 oregon-03 07-10-03
att 07-10-03 pacbell 05-30-03
east.attcanada 07-10-03 paix 05-30-01
funet 10-30-97 telstra 03-31-01
mae-west 05-30-01 telus 07-10-03
west.attcanada 07-10-03 oregon-01 03-31-01

Table 3. Dataset description.

2 Data Analysis of Routing Tables

In this section, we describe our data analysis on routing tables to highlight
a useful property for prefixes of length from 16 to 24, called the middle-class

effect. We first describe the large data set of public routing tables for IPv4 in
Section 2.1. We illustrate the middle-class effect in Section 2.2, showing how to
exploit it for a two-layer organization of IP lookup tables in Section 2.3.

2.1 Databases and experimental platforms

We base our analysis on an extensive data set of more than 2400 snapshots
of routing tables available from public databases, collected over a period rang-
ing from 1998 to 2004. The major source is the IPMA project [10]. We also
collected all daily data for year 2003, plus some monthly snapshots, from the
RIPE NCC [14]. Some authors singled out individual snapshots that cause the
worst-case behavior of CDG in terms of space occupancy; hence, they are good
benchmarks for our method as well. Most of these tables have been employed in
the experiments [3, 12, 15]. We report the figures in Table 3.

As for the updates, we collected all the announcements and withdrawals
available for the entire year 2003 on RIPE NCC. In Fig. 2(left), we plot their
number in millions on a daily basis. As we can see, the number of withdrawals
is an order of magnitude smaller than the number of announcements. On the
average, there is approximately one announcement per second; clearly, they ar-
rive in bursts. For example, note the peak of more than 20 million updates on
Oct. 25–26, 2003 (around 300 on the x-axis). We will use this particular peak for
intense benchmarking in Section 4. As for the lookups, we could not find publicly
available traffic traces (for privacy reasons). We instead use random data from
previous work [3], as well as synthetic data. We obtain the latter by extending
the approach in [2], adopted in the network community, to generate traffic data
according to the distribution of the prefixes of any given routing table T (details
given in the technical report [8]).

For our experiments we employed an AMD Athlon XP 1900+ (1.6GHz),
256Mb RAM DDR at 133Mhz, 256Kb L2 cache, 128Kb L1 cache (64 Kb data
and 64Kb instructions) running Linux kernel 2.4.22. We used gettimeofday for
timings. We plan to extend the experimentation to more platforms (e.g. those
based on the PowerPC).

 0.01

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350
 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 60 70 80 90 100 110 120 130 140

Fig. 2. Left picture: Millions of daily announcements (top) and of daily withdrawals
(bottom) for RIPE NCC, in logarithmic scale on the y-axis. The x-axis reports the 365
days in year 2003 as numbers in the interval 0. . . 364. Right picture: Space occupancy of
our scheme scales linearly with table size. The x-axis reports the thousands of prefixes
and the y-axis the number of kilobytes taken.

2.2 Distilling the middle-class effect in routing tables

In order to illustrate our ideas, let us consider any routing table T ; in our case, the
snapshot of the RIPE NCC router taken on April 1st, 2004, containing 138201
prefixes. (Note that analogous properties hold for the other router snapshots
mentioned in Section 2.1.) What is widely known is the skewed distribution of
prefixes from length 1 to 32 in T . Indeed, 98% of the prefix lengths are in the
interval 16. . . 24, which we call middle-class prefixes. This skew is typically a
good sign for compressing data.

We can get further insight on T by examining the trie storing all the prefixes
in T since an IP lookup is a traversal of a path from the root of the trie. The
nodes of the tries are labeled with the next hops according to prefixes in T . Some
nodes u are also marked to record the fact that the path from the root to u stores
a prefix of the table. We can draw two cutlines on the trie, on levels 16 and 24.
We obtain a set of at most 216 sub-tries of height no more than h = 8. (The
height is the numbering of levels, starting from 0 for the root.) For random data,
we do not expect to find isomorphic sub-tries. Indeed, the probability that no

two sub-tries are isomorphic is very near to one, i.e., (1− p)2
16

≈ 1 (see [1]). We
instead consider a weaker notion which is more relevant in our case. Given a trie
of height h, let us expand it to its complete form (also called prefix expansion)
so that all the leaves are on the same level. Nodes are still labeled and marked
according to the prefixes in T , except that they are now part of a complete trie
(with expanded leaves that explicitly represent all possible 2h binary strings of
length h). Note that each string is associated with its correct next hop when
seen as part of an IP address.

We say that two tries are equivalent, if the sequence of 2h next hops in the
expanded leaves on level h of the former is identical to that of the latter, when
scanned in left-to-right order. In other words, when a lookup with h bits is

performed on two equivalent tries, the next hops thus returned make them in-
distinguishable. Note that two isomorphic tries are equivalent while the reverse
is not necessarily true, since different combinations of shapes and labels/marks
can yield the same sequence of next hops. We are therefore interested in select-
ing one representative for each class of equivalent tries. In our case, we apply
this selection to the sub-tries of height at most 8 obtained from the cutlines on
levels 16 and 24 (corresponding to the middle-class prefixes). How many of them
are equivalent? For random data, we still expect that there are very few equiva-
lent sub-tries. Fortunately, we observe what we call the middle-class effect in
real routing tables T when we build the trie on the prefixes in T :

Many sub-tries of height ≤ 8 on level 16 are equivalent with lots of rep-

etitions, and their nodes store the great majority of prefixes in T .

So there is a good chance to store fewer than 216 sub-tries by keeping just one
representative for each equivalence class. Even though the majority of prefixes
are middle-class (98% in our T), they do follow regular patterns in the routing
table. In our example, table T gives 13834 nonempty sub-tries of height at most 8
on level 16. Among these, we are left with 3241 representatives of equivalence
classes. These are not random data at all!

2.3 Two-layer lookup tables exploiting the middle-class effect

We now present a simple, but powerful, lookup scheme based on the middle-class
effect described in Section 2.2. To be more concrete, we illustrate our approach
by referring to T , shown in Table 1. Following what claimed in the middle-class
effect, we can conceptually cut the trie built on the router prefixes, on level 24.
We transform the resulting trie into a direct acyclic graph (DAG), in which
equivalent sub-tries (of height at most 8) on level 16 are collapsed. This DAG
can be represented by the data structure in Fig. 1, consisting of two components:

hop: This is the two-dimensional array of α̂ × 256 next hops, where α̂ is
the number of non-equivalent sub-tries on level 16 of the DAG (α̂ = 3 in our
example); each such sub-trie is represented by its sequence of 28 = 256 next hops
without RLE compression.

row: This is the array of 216 entries mapping the first 16 bits of IP addresses
to the suitable row of hop. (Equivalently, they represent the children pointers of
DAG nodes on level 16.)

In other words, we expand the upper part of the DAG that corresponds to
the first 16 levels into row, and store in each row of hop the sequence of 256 next
hops derived from each class of equivalent (collapsed) sub-tries. The pointers in
row keep track of the corresponding sub-tries thus represented in hop. For any
IPv4 address x = x1.x2.x3.x4, the next hop obtained by searching for x into the
trie (compactly represented by the DAG) is that stored in hop

[

row[x1.x2], x3

]

.
The above data structure forms what we call layer 1, which allows us to

answer IP lookups by examining the first 24 bits (which is mostly the case in
our collected data). The set of remaining prefixes (longer than 24 bits) in T

form layer 2, which is augmented by taking their first 24 bits. (Recall that we
associate with these bits the dummy hop, e.g. 255, in layer 1.) Table 2 shows
an example. Dummy prefixes of length 24 in layer 1 correspond to prefixes of
length 24 with the correct next hop in layer 2. The number of such dummy
prefixes cannot exceed that of prefixes longer than 24. At this stage, we do not
need to choose any specific implementation of the lookup table for layer 2.

Before discussing the experimental analysis on the lookup in Section 3, we
first assess the space occupancy of our scheme.

Fact 1 Layer 1 occupies α̂ × 256 + 216 · size(ptr) bytes, where α̂ ≤ 216 is

the number of non-equivalent sub-tries of height at most 8 on level 16, and

size(ptr) ≥ (log
2
α̂)/8 is the number of bytes encoding a pointer to hop’s rows.

In the worst case, hop occupies no more than 16 Mb and row needs 256 Kb
(using 4-byte pointers) by Fact 1. This is actually a pessimistic estimate, since
we only keep the sub-tries that are not equivalent each other. In order to have a
fair comparison of our scheme with CDG, we must add the space taken by the
lookup table adopted for layer 2:

lookup space (Kb) lookup space (Kb)
time total layer 1 layer 2 time total layer 1 layer 2

CDG 7012 2022 1521 501 N-Way Srch 5211 1608 1521 87
Binary Search 5221 1556 1521 35 Binary Trie 5758 1649 1521 128
K-Way Search 5274 1556 1521 35 Hybrid Trie 5297 1649 1521 128

In the above table, we report the figures for several choices with router
west.attcanada, where we compare several methods for storing the prefixes in
layer 2: CDG, array with binary search, k-way search (with k = 8 and k = 2n
where n is the number of prefixes), binary tries, and hybrid tries in which the
first three levels are indexed by individual bytes and the next 8 levels (at most)
are indexed by individual bits. Indeed, a lookup in layer 2 surely matches at
least the first 24 bits by construction. Lookup times measure the number of
microseconds for running 100,000 lookups.

We computed similar tables for the other snapshots: it turns out that hybrid
tries are the best trade-off between space and lookup time. Choosing hybrid tries
for storing prefixes in layer 2, we report in Table 4 the space improvement with
respect to CDG for the 13 benchmark tables listed in Section 2.1. As we can see,
the column corresponding to our scheme gives a quite stable occupancy in space
with respect to the routing table size (#prefixes). This is better highlighted if
we consider the entire year 2003 of RIPE NCC, with the results for our scheme
being plotted on the bottom part of Fig. 3(left).

The net result for our scheme is a lookup table whose space occupancy scales
linearly with the number of prefixes. (Clearly, layer 1 alone scales as well; more-
over, its maximum size is 16Mb.) Fig. 2(right) illustrates this behavior for the
available monthly snapshots of RIPE NNC, from October 1999 to April 2004,
with a number of prefixes ranging from 65841 (yielding α̂ = 1404) to 138201
(yielding α̂ = 3241). Here, layer 1 has a size ranging in 9n . . . 14n bytes for n

router #prefixes space (Kb) random (ms) synthetic (ms)
CDG ours CDG ours hit-2 CDG ours hit-2

aads 32505 3706 1084 7276 5903 5463 7452 4775 4820
att 121711 2188 1822 12605 7351 15 7872 4941 16
east.attcanada 127561 16418 1661 15096 8429 3220 9164 5450 3116
funet 41328 666 540 3130 2461 88 5036 2783 67
mae-west 71319 4643 1290 7217 5916 2385 7425 4565 2401
oregon-01 118190 9897 1596 7740 9933 11693 7265 6654 10651
oregon-03 142883 9026 2164 14262 9529 3565 8790 6023 3525
pacbell 45184 3170 982 6126 5078 3899 6584 4233 3458
paix 17766 2745 875 6306 5522 9683 6934 4682 8703
telstra 104096 8896 1490 8468 7544 3899 7966 5317 3690
telus 126687 11390 1724 14011 8177 2095 8630 5279 2228
west.attcanada 127576 16749 1664 15071 8353 3277 9167 5350 3050
RIPE NCC 138201 5132 1202 10936 5922 1136 6970 4106 1074

Table 4. Space occupancy and time performance of our method versus CDG for the
13 benchmarks described in Section 2.1. Space is measured in kilobytes; time is mea-
sured in microseconds. The data for the columns should be read as follows. Columns 1–2
are the benchmark names and their numbers of prefixes. Columns 3–4 report the space
occupancy of CDG and our method. Columns 5–6 measure their running time for
100,000 lookups on random traffic. Column 7 (hit-2) counts how many hits our lookups
made in layer 2. Columns 8–10 are similar to 5–7 but refer to synthetic traffic. The
figures in italic correspond to random data for the experiments in [3, 12].

prefixes. For the sake of comparison, a straightforward storage of these prefixes
alone in a routing table would require 6n bytes, assuming that each prefix re-
quires a 4-byte word of memory, and its prefix length and its next hop need one
further byte each. We also computed statistics for all daily snapshots of 2003 of
RIPE NCC (see Section 2.1). The total size of our lookup table (using a hybrid
trie for layer 2) is in the range 7n . . . 16n, thus confirming the linearity of space
even in this case.

3 Performing Lookups

The improved space bounds described in Section 2 makes our scheme more stable
to use with respect to CDG. What about lookup time in IPv4? For any given
IP address x = x1.x2.x3.x4, we keep the variable lx = x1.x2 storing the first 16
bits of x and rx = x3.x4 storing the last 16 bits, so that x = lx.rx. We use the
right shift operator on rx to get byte x3 and to perform a lookup on lx.x3. If we
get the dummy value 255 in layer 1, we also need to perform a lookup in layer 2:

#define DUMMY 255

if ((h1 = hop[row[lx], rx>>8]) != DUMMY)

return h1;

return lookup_layer2(lx.rx);

For example, an IP lookup for x = 192.168.32.125 successfully stops at
layer 1 by returning the next hop 3, which is located at hop

[

row[192.168], 32
]

.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 50 100 150 200 250 300 350
 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350

Fig. 3. Left picture: Space occupancy of our scheme vs. CDG for RIPE NCC. The
x-axis reports the 365 daily snapshots of year 2003 numbered as 0. . . 364; the y-axis
the occupied space in kilobytes. Right picture: Number of milliseconds (on the y-axis)
required by 1 million lookups in CDG (top) and in our scheme (bottom) using synthetic
traffic. The x-axis reports the 365 daily snapshots of year 2003 numbered as 0. . . 364.

Instead, x = 192.168.0.27 requires a lookup in layer 2, since it returns the
dummy value 255 stored in hop

[

row[192.168], 0
]

. We measured the running
time of our method and of CDG on the daily snapshots of RIPE NCC for the
year 2003. We employed the synthetic traffic data for each individual snapshot
as explained in Section 2.1. As can be noted in Fig. 3(right), our lookups are
definitively faster than those in CDG by 30%. This is consistent with the fact
that we reduce CDG’s number of memory accesses from 3 to 2. It turns out that
the role played by the data structures in layer 2 is rather limited in our data
set. We refer the reader to columns hit-2 in the experimental data reported in
Table 4, for the number of hits to layer 2 out of 100,000 lookups.

4 Performing Updates

We now describe one of the main effects of our simplification of the lookup
scheme. We show how to efficiently handle the updates of the lookup table when
announcements (i.e. insertions) and withdrawals (i.e. deletions) of routes arrive
on the fly. We do not need to rebuild the lookup table from scratch. We describe
how to use our method by assuming that some reasonably efficient method has
been adopted for layer 2 (e.g. tries, multi-level hashing, TCAMs, etc.). Again,
we base our method on real data analysis to show that the great majority of
updates involves layer 1, consistent with what was observed in the middle-class
effect. We also make our scheme more robust by providing a good, exact upper
bound on the number of entries changed in the lookup table in the worst case.

As described in Section 2.3, we employ hop and row for layer 1. It is crucial
to observe that hop is stored in row-major order. Since we adopt the maximum
number of columns, 256, the only admissible size change in hop is to add or
remove rows. Performing this change on the columns would result in a disaster,

as the whole hop would need to be re-allocated dynamically, which can have a
cost analogous to that of rebuilding. Here is why we opt for keeping all the 256
columns. This also guarantees a high level of concurrent access to our lookup
table during its lifetime.

We assume (realistically speaking) that the prefixes in route announcements
and withdrawals are of length at least 8. (They can be shorter in case of heavy
network failures, but then updating the routing table is a minor problem.) We
also assume that there are at most 127 distinct next hop values in layer 1. We
reserve the most significant bit in each entry of hop to mark it as a dummy.
(Note that we do not use the dummy value of 255 anymore as in Section 2.3.)
Masking this bit yields the correct next hop value.

We performed data analysis on the update traces for RIPE NCC. We collected
all the announcements and withdrawals available for year 2003 (see Section 2.1).
We discovered that for 336 days the percentage of daily updates involving layer
2 is less then 0.1%, for 360 days that percentage does not exceed the threshold
of 0.2% and that the maximum percentage is less then 0.7% This confirms once
again the middle-class effect, motivating our choice to build layer 1 on the first
24 bits. We suggest to use a well-tuned trie in layer 2, so that its update cost
does not significantly influence the overall performance of announcements and
withdrawals in a router.

4.1 Handling announcements and withdrawals

We show how to efficiently process announcements and withdrawals that are
produced during the execution of the border gateway protocol (BGP). When an
announcements arrives, we have to insert a certain prefix p with its associated
prefix length lp and next hop hp, into layer 1. Recall that 8 ≤ lp ≤ 32 by our
assumptions. We distinguish among three main cases for describing the worst-
case effect of this insertion on row and hop:

1) Case lp < 16: Since lp ≥ 8, we have to change no more than 256 entries
in row. However, each of them could change up to 256 entries in hop. The worst
case is therefore that of changing 256 + 216 entries. In practice, the number of
entries is much smaller.

2) Case 16 ≤ lp ≤ 24: This is the most frequent case according to the middle-
class effect. We can change one entry of row to point from one row of hop

to another, since the insertion of p needs to change some entries of the row
previously pointed in that entry of row. We may need to add a new row when
none of the existing ones match this change. In the worst case, we change no
more than 1 + 256 entries.

3) Case lp > 24: We can change one entry in row and one in hop; the latter
change may cause the creation of a new row in hop as discussed in case 2.

We use the most significant bit to mark the next hop of a truncated prefix
so as to avoid that an update falling into cases 1–2 does not propagate to 24-bit
prefixes in layer 2 as a side effect. Consequently, we need to make a slight change
to lookup, as shown next.

#define BITMASK 0x80

#define NO_ROUTE_TO_HOST 0

if (! ((h1 = hop[row[lx], rx>>8]) & BITMASK))

return h1;

if ((h2 = lookup_layer2(lx.rx)) != NO_ROUTE_TO_HOST)

return h2;

return h1 & ~BITMASK;

If a lookup in layer 2 returns no-route-to-host, then we must return the
next hop value (with its most significant bit cleaned) previously computed in
layer 1. Although it may appear that we are harming the performance of the
original lookup algorithm in Section 3, we observe that the hit ratio for the
first if-statement is very high and determines the real lookup cost, which stays
unchanged according to the experimental evaluation discussed in Section 3.

Withdrawals have an effect on row and hop similar to announcements, except
that we have to handle “hidden” prefixes. When we delete a prefix, we should
find the “parent” of that prefix and propagate its next hop downward to replace
that of the deleted prefix. For example, the withdrawal of route 192.168.0.0/18
from layer 1 in Table 2 causes the propagation of the next hop 2 (associated
with 192.168.0.0/17) to 192.168.0.0/24 (replacing its next hop 3) in layer 2.

As a result we add or remove one row at most in hop. Removed rows are
linked in a free list that can be reused for adding rows. This does not change the
lookup procedure and its cost.

Since the main cost is given by the number of entries changed in row and
hop, we computed statistics to account for this cost, classifying it according to
cases 1–3 (both for announcements and withdrawals). We processed the peak of
Oct. 25–26, 2003, in router RIPE NCC:

date #announcements #withdrawals case 1 case 2 case 3

10-25-04 20459780 139787 0.68% 99.31% 0.01%
10-26-04 11538757 144937 0.67% 99.30% 0.03%

The above table shows that nearly 99.3% of the updates fall into case 2.
Roughly half of them involve a prefix length lp = 24, so they change just one
entry in hop. Actually, the average number of changed entries in row and hop

is nearly 1. For case 1, the most expensive one, the variance is high for a small
number of updates while the rest of updates does not change any row of hop.
On Oct. 25, 1495 updates changed entries row and hop; on Oct. 26, there were
1889. These few updates changed between 100 and 1000 entries; we found a single
example in which there were 20,985 changed entries, approaching the worst case.

The net result of the case analysis discussed so far is that updates are of
bounded cost in layer 1, even in the worst case. This cost scales well with the
number of updates and prefixes stored in layer 1.

Fact 2 In the worst case, the announcement or withdrawal of an IPv4 route

changes at most 256 entries in row and at most 216 entries in hop in case 1.

The number of changed entries in hop becomes 256 in cases 2 and 3. In all cases,

the empirical average number of changed entries is nearly 1.

5 Construction of the lookup table

The construction of our table consists in building a trie and then obtaining its
DAG. It is worth noting that we insert the prefixes (truncated at 24 bits) into
the trie in order of nondecreasing prefix length. If we do not follow this pattern,
we have to propagate the next hop of the currently inserted prefix downward.
In other words, we change the next hop to an already created set of nodes. If
we follow the above pattern instead, we have to assign the next hop only to
newly created nodes and this can happen once per node. This pattern gives a
better performance in the worst case. For our tables, the most time-consuming
construction was for oregon-03, in 365 milliseconds. Note that, since we can
quickly handle updates, the construction time is less important than in static
lookup tables.

References

1. A.V. Aho and N.J.A. Sloane. Some doubly exponential sequences. Fibonacci
Quarterly, 429–437, 1973.

2. M. Aida and T. Abe. Pseudo-address generation algorithm of packet destinations
for internet performance simulation. In IEEE INFOCOM, 1425–1433, 2001.

3. A. L. Buchsbaum, G. S. Fowler, B. Kirishnamurthy, K.-P. Vo, and J. Wang. Fast
prefix matching of bounded strings. J. Exp. Algorithmics, 8:1–3, 2003.

4. P. Crescenzi, L. Dardini, and R. Grossi. IP address lookup made fast and simple.
Proce. 7th Annual European Symposium on Algorithms, 65–76, 1999.

5. S. Deering and R. Hinden. Internet protocol, version 6 (IPv6). RFC 1883, 1995.
6. S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor. Longest prefix matching

using bloom filters. In IEEE INFOCOM, 201–212, 2003.
7. W. Eatherton, G. Varghese, and Z. Dittia. Tree bitmap: hardware/software IP

lookups with incremental updates. SIGCOMM Comput. Commun. Rev., 34(2):97–
122, 2004.

8. F. Geraci and R. Grossi. Distilling router data analysis for faster and simpler
dynamic IP lookup algorithms. Tech. Report TR-05-01, Università di Pisa, January
2005.

9. G. Goodell, W. Aiello, T. Griffin, J. Ioannidis, P. McDaniel, and A. Rubin. Working
around BGP: An incremental approach to improving security and accuracy of
interdomain routing. Network and Distributed System Security Symposium, 2003.

10. C. Labovitz, F. Jahanian, S. Johnson, R. Malan, S.R. Harris, J. Wan, M. Agrawal,
D. Zhu, A. Ahuja, and J. Poland. Internet Performance Measurement and Analysis
(IPMA) statistics. http://www.merit.edu/ipma, 1999.

11. B. Lampson, V. Srinivasan, and G. Varghese. IP lookups using multiway and
multicolumn search. IEEE/ACM Transactions on Networking, 7(3):324–334, 1999.

12. M. Pellegrini and G. Fusco. Efficient IP table lookup via adaptive stratified trees
with selective reconstructions. 12th European Symp. on Algorithms, 24–35, 2004.

13. J. Postel. Internet protocol. RFC 791, 1981.
14. Network Coordination Centre of the Réseaux IP Européens (RIPE

NCC). Routing information service project (Amsterdam router).
http://www.ripe.net/ris/index.html, 2003.

15. L. Rizzo. Personal communication, 2003.
16. M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous. Survey and taxonomy of

IP address lookup algorithms. In IEEE Network, 8–23, 2001.

