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Abstract

Questions about order versus disorder in systems and models have been fascinating scientists
over the years. In Computer Science, order is intimately related to sorting, commonly meant
as the task of arranging keys in increasing or decreasing order with respect to an underlying
total order relation. The sorted organization is amenable for searching a set of n keys, since
each search requires Θ(log n) comparisons in the worst case, which is optimal if the cost of a
single comparison can be considered a constant. Nevertheless, we prove that disorder implicitly
provides more information than order does. For the general case of searching an array of multi-
dimensional keys, whose comparison cost is proportional to their length (and hence cannot be
considered a constant), we demonstrate that “suitable” disorder gives better bounds than those
derivable by using the natural lexicographic order.

We start out from previous work done by Andersson, Hagerup, H̊astad and Petersson [SIAM
Journal on Computing, 30(2), 2001], who proved that

Θ
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k log log n

log log(4 + k log log n

log n
)
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)

character comparisons (or probes) are the tight complexity for searching a plain sorted array of
n keys, each of length k, arranged in lexicographic order. We describe a novel permutation of
the n keys that is different from the sorted order. When keys are kept “unsorted” in the array
according to this permutation, the complexity of searching drops to

Θ (k + log n)

character comparisons (or probes) in the worst case, which is optimal among all possible per-
mutations, up to a constant factor. Consequently, disorder carries more information than order
does; this fact was not observable before, since the latter two bounds are Θ(log n) when k = O(1).
More implications are commented in the paper, including searching in the bit probe model.

∗The results in this paper have been presented at the 45th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2004.
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Research and Education.

‡Supported in part by the Italian Ministry of Research and Education.



1 Introduction

“Imagine how hard it would be to use a dictionary

if its words were not alphabetized!”

—D.E. Knuth, The Art of Computer Programming III (1998)

As noted at the beginning of Knuth’s book [14], sorting n keys with respect to an underlying total
order provides a basic data organization for optimal searching with Θ(log n) time and comparisons
in the worst case. This fact is corroborated by our common sense and everyday practice; sorting
and searching are strictly related companions in designing and analyzing many algorithms for the
comparison model. In this paper we demonstrate that “suitable” disorder provides better bounds
for searching than those derivable by using the sorted order. In particular, we prove that sorting is
not the best general way to organize multi-dimensional keys (e.g. vectors) in an array for optimal
searching.

We are given n keys, where each key is a sequence of k symbols drawn from an arbitrary, possibly
unbounded, totally ordered alphabet. The keys can be maintained in any permutation, and the
ith key in the permutation can be selected in constant time. Given any such key, the jth symbol
in it can be accessed in constant time. Conceptually, it is more useful to think of the permutation
as a k × n matrix A in which the ith column contains the ith key, say x; hence, x itself can be
considered as an array x ≡ x[1 . . . k] of k entries. The keys underlie the lexicographic (alphabetic)
order, namely, for any two keys x, y in A , we have x ≤ y if and only if either x = y or there exists
j < k such that x[1 . . . j] = y[1 . . . j] and x[j+1] < y[j+1]. Since this model extends the comparison
model to keys of arbitrary length, we can only compare the individual symbols of the keys (without
hashing or bit manipulation). We measure the time complexity by accounting interchangeably for
the number of character comparisons or probes, as they are linearly proportional to each other in
our case. Hence, comparing any two keys x and y requires O(k) time.

We study the fundamental problem of establishing whether a given key of length k appears in A

as one of its stored keys. Setting k = 1 gives the classical searching problem. After sorting A , we
can run the binary search on A with optimal cost of Θ(log n). In general, when k ≥ 1, previous
work focused on keys sorted under the lexicographic order.

The problem was introduced by Hirschberg [12], with upper bounds of O(k + n) and O(k log n)
in the worst case. The former is obtained by scanning A while the latter is a simple binary search
on A . The worst-case lower bound of Ω(k + log n) follows quite easily. The logarithmic term in n
comes from the decision tree for searching in a set of n keys, while the linear term in k comes from
the need of reading all the k symbols in the search key.

The first nontrivial upper bound was O(k log n/ log k) by Hirschberg [13]. Kosaraju [15] later
improved it to O(k

√
log n + log n). With sophisticated techniques for proving upper and lower

bounds on the complexity of searching the sorted array without exploiting any preprocessed auxil-
iary information, Andersson, Hagerup, H̊astad and Petersson closed the gap by proving in [1, 3, 2]
that the cost is

Θ




k log log n

log log(4 + k log log n
log n

)
+ k + log n





character comparisons in the worst case. Note that the bound is Θ(log n) when k = 1, which is
an established fact in algorithmics. However, when k ≥ log n, the cost is larger than the previous
lower bound of Ω(k + log n).

Using the same model as that adopted in previous work, we describe a novel permutation of
the n keys in A that is different from the sorted order but that can be obtained efficiently from it.

2



When keys are stored according to this “unsorted” order in the array, the worst-case complexity of
searching in the array drops to

Θ (k + log n)

character comparisons, which is asymptotically optimal among all possible permutations of the n
keys in the array included the lexicographically sorted one.

As a result, we provide a (hopefully!) unexpected insight on the relation between sorting and
searching, which can be restated in terms of the basic question of the informative power of order
versus disorder. We show that sorted arrays are not the best data organization suitable for searching
k-dimensional keys. In this sense, sorting is an optimal placement of keys only for searching an
array when k = O(1).

Our algorithms are also suitable for more powerful queries in optimal time, such as computing
the rank of a search key among those stored in A , still with a cost of Θ(k + log n). We can
identify its predecessor or successor within the same bounds. We can also list the keys in A

belonging to a given input interval [a, b] for any two keys a ≤ b. We attain an output-sensitive
cost of Θ(k + log n + #retrieved), where #retrieved denotes the number of keys in A that belong
to the interval [a, b]. Since the latter bounds cannot be achieved with the sorted array alone, this
strengthens the fact that our permutation is more powerful than the sorted one. Furthermore,
our permutation is efficiently computable and reversible: we can obtain our permutation from the
sorted one and vice versa in O(nk) time.

We point out that our optimal bounds can be achieved with other data structures keeping the
keys sorted and exploiting additional information in extra space (e.g. the longest common prefix
information in suffix arrays by Manber and Myers [16], applied to A in sorted order, or the extra
fields in ternary search trees by Bentley and Sedgewick [4]). The current and previous work touched
in this paper does not make use of this extra space. The result of Andersson et al. deals with an
array alone, without the possibility of exploiting any additional preprocessing information (e.g. no
pointers or integers) apart from O(1) values, namely, the address of the array and its size n × k.
In this sense, we obtain the first optimal implicit organization for k-dimensional keys, since sorted
arrays are optimal just for k = O(1). To appreciate the connection, let us recall that Munro and
Suwanda [18] define an implicit data structure as a permutation of the keys plus just O(1) auxiliary
cells each of O(log n) bits. Closely related is the problem of arranging n records with k fields into
a k × n array so that searches can be performed quickly for any given field value. Searches under
this model can be supported in O(log n) time by Fiat et al. [7], where the “O” includes a factor of
k log k. This method cannot be extended to solve our problem optimally.

We remark that our bounds hold also for the dictionary problem in the bit probe model [5, 19].
In this model, the keys are binary strings and the complexity accounts for the number of bits probed
in the binary array A storing them. We can store these keys permuted in nk bits (i.e. a k × n
binary matrix), so that membership requires Θ(k) bit probes in the worst case, which is optimal.
Note that our bound gives an alternative perspective to Yao’s result [19] on achieving an optimal
search for keys that can be permuted in an array without using extra space (i.e. without storing the
name of a suitable hashing function). It also relates to the issues on extra space studied for perfect
hashing by Fredman, Komlós and Szemerédi [11], non-oblivious hashing by Fiat, Naor, Schmidt
and Siegel [9, 10], and implicit probe search by Fiat and Naor [6, 8].

The paper is organized as follows. In Section 2, we show how to encode bits with keys of non-
constant length and, hence, how to implicitly represent the extra information for optimal searching.
In Section 3, we describe how to exploit the encoding by devising a search algorithm that probes
fews bits during its execution. We draw our conclusions in Section 4.
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2 Permuting for Encoding Bits of Information

In this section we provide a novel tool for encoding and decoding bits with keys of non-constant
length k. What is easily done in the implicit data organizations presented in the previous litera-
ture [17], namely, encoding a bit by swapping or not two consecutive keys, is non-trivial in our case.
(We recall that the technique in [17] assumes by default that, between two certain consecutive keys,
the smallest comes first; so, when the largest is first met, a 1 is encoded, otherwise a 0 is.) First,
the keys are not necessarily distinct under our model. Second, decoding just one bit requires an
O(k)-time comparison of two keys when done naively. Starting out from the sorted sequence of a
given sequence of r keys, in non-decreasing order, we show how to encode bits according to a new
scheme, which we call ditch. We employ two incarnations of this scheme:

• small ditches, obtained by permuting r = O(log n) keys;

• large ditches, obtained by permuting r = O(n) keys.

We recall that the n input keys are maintained in A , which is conceptually a k × n matrix
to be permuted column-wise, and initially sorted in non-decreasing order. Here, the columns are
the n keys, where aj is the key in the jth column of A . The ith symbol aj [i] in that key is in entry
A [i, j]. Hence, the ith row in the matrix contains the ith symbols of all the keys. For any two keys
x and y, we introduce the notation lcp(x, y) = max({0} ∪ {1 ≤ ` ≤ k : x[1 . . . `] = y[1 . . . `]}) to
denote the length of their longest common prefix, widely adopted in string searching [16]. Indeed,
if we can infer ` = lcp(x, y), we can compare x and y in constant time (either x = y or it suffices
to compare the first mismatching symbols, x[` + 1] and y[` + 1]).

We first describe the ditch in Section 2.1, along with some properties common to small and
large ditches. We then show how to encode the information on the inner structure of a large ditch
in Section 2.2. We describe in Section 2.3 how to preprocess A by laying out a large ditch in it.

2.1 The ditch: A basic tool for encoding and decoding bits

We start out from a sequence of r keys, x1, . . . , xr, initially in sorted order. We say that i and j
are twin positions (for 1 ≤ i < j ≤ r) if and only if they are specular, namely, i + j = r + 1. In
other words, the number of keys up to position i equals that of keys from position j to the end of
the sequence. Let us “dig” into the sequence by comparing incrementally the keys at consecutive
twin positions, starting from the two extreme positions of the sequence. We trace this process with
an integer d, called digging depth, according to the procedure below:

Digging(x1, . . . , xr):

1: d ← 1, i ← 1, j ← r
2: while i < j do

3: while d ≤ k and xi[d] = xj [d] do

4: d ← d + 1
5: i ← i + 1, j ← j − 1

The pseudocode determines a ditch, illustrated by the example in Figure 1, which we characterize
formally by its useful properties. The relevant one is that of encoding bits so that they can be
quickly decoded. We first note an important property for Digging.

Lemma 1 The inner loop of procedure Digging computes d = lcp(xi, xj) + 1 for any twin posi-
tions i and j. The total cost of Digging for a sorted sequence of r keys is O(k + r) time, where
the keys are of length k.
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Figure 1: A ditch whose keys in twin positions are not yet swapped. The mismatching symbols,
xi[d] 6= xj [d], yielding the digging depth d for any twin positions i and j are shown in light gray.

Proof : Since lcp(xi′ , xj′) ≤ lcp(xi, xj) for any i′ < i < j < j′, the digging depth for twin positions i
and j is surely at least d, before the execution of the inner loop in Digging. After that loop, we
consequently update d so that d = lcp(xi, xj)+1. The monotonicity of the digging depths accounts
for the total cost of digging. Hence, the incremental cost of comparing keys in twin positions
i = i′ + 1 and j = j′ − 1, after having done it with i′ and j′, is proportional to lcp(xi, xj) −
lcp(xi′ , xj′) + O(1). The total cost is a telescopic sum that evaluates to the maximum lcp value,
O(k), plus a cost proportional to the number r of keys in the sequence. This gives the final bound
on the cost of digging.

With reference to Figure 1, we can interpret Lemma 1 as saying that the digging cost is pro-
portional to the perimeter, O(k + r), of the ditch rather than its area, O(k × r). Since the keys
involved in digging are initially in sorted order, we can easily verify that the following holds.

Fact 1 For any pair of twin positions i and j with i < j, if the digging depth satisfies d ≤ k, then
xi[d] < xj [d].

We exploit Fact 1 and the knowledge of d for encoding and decoding bits. We adopt a simple,
but effective, rule for encoding a bit with a pair of twin positions i and j: swap keys xi and xj to
encode 1, so that xj is in position i and xi is in position j; otherwise, leave xi and xj at their own
positions i and j, respectively, thus encoding 0.

Decoding is simple and takes constant time for any given pair of twin positions i and j, provided
that their digging depth d is given. Namely, let zi and zj be the keys in these positions (note that
either zi = xi and zj = xj , or zi = xj and zj = xi). We decode the ith bit by simply comparing
zi[d] and zj [d]: that bit is 1 if and only if zi[d] > zj [d], as a consequence of Fact 1.

We can extend the property above to b contiguous (and nested) pairs of twin positions. We say
that two pairs i, j and i′, j′ are contiguous (where i′ < i < j < j′) if i = i′ + 1 and j = j′ − 1.
Suppose that we do not know their digging depths. Hence, we cannot apply directly the constant-
time decoding of individual bits described above. Fortunately, we can exploit the computational
pattern of procedure Digging to circumvent this drawback as shown below.

Lemma 2 We can decode the b bits encoded by b consecutive pairs of twin positions in O(b + k)
time.
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Proof : Decoding all the b bits is like digging. What changes in decoding is that the keys are pairwise
permuted in twin positions. Interestingly the inner (i.e. matching) characters of the ditch do not
change. So the matched characters in the inner while loop at lines 3–4 of procedure Digging are
likewise matched in decoding. As a result, decoding computes on the fly all the digging depths d
of the first b twin positions. What changes are the mismatching characters. A mismatch causing
a loop exit in Digging might find that the keys in the current twin positions are swapped for
encoding purposes. Since we know at this point d, we can decode the current bit by looking at the
mismatch according to Fact 1. The analysis for the time complexity of decoding goes along the
same lines as that of Lemma 1.

We remark that our use of ditches will be twofold. For a small ditch, with r = O(log n), we
will scan all the r keys for decoding b = r = O(log n) bits in O(k + log n) time by Lemma 2. For a
large ditch, with r = O(n), we need to record and encode the positional information of the ditch’s
components to avoid a full scan of the r keys, which is not that efficient. Hence, we focus on how
to encode the inner structure of large ditches.

2.2 Encoding large ditches

We recall that a large ditch contains r = O(n) keys that are initially sorted, and need to be
permuted suitably for encoding purposes. However, we should encode information also for the
encoder itself, the large ditch. Hence, we need a two-level approach. First, we use few keys to
encode the information representing the large ditch, and define its structure deriving from the
digging process. We discuss this topic in this section. Second, we use the rest of the keys in the
large ditch to encode an implicit search data structure, which is detailed in Section 3.

Here we focus on encoding the large ditch. Pictorially, the border of the ditch is the concate-
nation of two specular stairs, one descending and one ascending, shown in ligth gray in Figure 1.
The characters implicitly matched inside a ditch during the digging, are equal to the homologous
characters of the median key. Let us fix any row d, such that d is one of the digging depths com-
puted by procedure Digging. In that row, there can be further characters (in the dark gray part
of Figure 1, outside the border of the ditch) that are equal to the median’s: however, they can
only extend beyond one side of the ditch rather than both sides, since otherwise the ditch would
be deeper.

As noted in the proof of Lemma 1, the digging depth d is monotonically non-decreasing. Thus
we can split the positions in the sequence into twin intervals, as shown in Figure 1. A pair of
twin intervals, T ′, T ′′, for a given digging depth d collects all the twin positions with the same
digging depth d. These intervals are well defined since their twin positions are contiguous, with
|T ′| = |T ′′|. For reference purposes, we can number the twin intervals from left to right. Note
that we cannot have more than 2k twin intervals.

The twin intervals represent the inner structure of a large ditch. Consequently, we represent a
ditch by the positional information of each pair of twin intervals in it, say T ′, T ′′:

• The leftmost and rightmost position in T ′, in O(log n) bits. We can infer that of T ′′ from T ′

as they are specular with respect to the median position in the ditch.

• Their digging depth d, in O(log k) bits. However, we do not need to store d explicitly. It can
be recovered in O(k) time by computing d = lcp(xi′ , xi′′)+1 on the fly, for any two keys with
i′ ∈ T ′ and i′′ ∈ T ′′.

As a result, we have to encode just O(log n) bits per pair of twin intervals. Since there are O(k)
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of them in a ditch, we need to encode a total of O(k log n) bits to represent a ditch implicitly. We
will single out O(k log n) keys from the sequence to this end.

The importance of using twin intervals is made clear by providing a glimpse on our searching
scheme. In addition to the O(k log n) keys, previously mentioned for encoding a large ditch, let us
single out the leftmost key in each twin interval, from left to right. We can search in these keys in
O(k + log n) time and identify a unique twin interval, say T , in which we will continue the search.
In other words, the ditch is able to route the search optimally towards a twin interval T . What
makes a difference with respect to the original search problem is that searching inside T is an easier
task as we can rely on the implicitly encoded bits in it. The pair of twin intervals, T , T̂ , encodes b
bits, where b = |T | = |T̂ |. We go through the convention of assigning b/2 bits to each of them;
say, the bits encoded by odd positions to T and those encoded by even positions to T̂ (assuming
that T is to the left of T̂ ). When the search is routed to a twin interval T , the digging depth
d of T can be easily retrieved. Using d, any encoded bit associated with T can be subsequently
decoded with a character comparison in O(1) time.

We discuss how to preprocess and search each T to this end in Section 3. Here we describe the
rest of the preprocessing of the input array A .

2.3 Preprocessing array A

We now have a better picture of how to permute the keys by preprocessing the input array A .
We recall that it is a two-dimensional k × n matrix of keys, initially in lexicographic order. We
divide A into four zones with the (exotic) name of zones A, B, C and D.

Zones A and B contain overall O(k log n) distinct keys from A while the rest of the keys form
the large ditch in zones C and D. If we have less than O(k log n) distinct keys in A , we are in a
special case that we can easily handle using [2], for example. Hence, let us assume that we have a
sufficient number of distinct keys. We move them to zones A and B, maintaining the initial sorted
order, and dividing them into k blocks each of Θ(log n) keys. We move the leftmost key of each
block, in left-to-right order, to zone A. We obtain a two-level structure, zone A and zone B, in
which the O(k) keys of zone A form a small search directory for identifying a block in zone B,
which hosts the rest of these keys. In this way, we can support searching in these two zones.
(Alternatively, we can employ the techniques from [2] to combine zones A and B.)

However, the main purpose of the keys in zone B is for encoding the large ditch in zones C
and D. Specifically, the ith block in zone B implicitly encodes the O(log n) bits representing the
positional information for the ith pair of twin intervals in the large ditch (see Section 2.2). These
bits are encoded using a small ditch built within the ith block itself. We use Lemma 2 to this
end, with b = O(log n). Hence, decoding the information for the ith pair of twin intervals requires
O(k + log n) time by accessing the ith block in zone B. We repeat this task for i = 1, 2, . . . , k to
complete the preprocessing of zones A and B.

Zones C and D contain the rest of the keys and properly form the large ditch. Analogously to
zone A, we move the leftmost key from each twin interval to zone C (note that the keys in this
zone are still in lexicographic order). Searching zone C is like searching zone A. The remaining
keys are in zone D (and they are still sorted at this stage but will be permuted later on). We refer
the reader to Section 3 for the rest of the preprocessing, which deals with searching inside a twin
interval.
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3 Searching with a Few Bits of Information

We now can give a description of our search, which uses Hirschberg’s search [12] as a basic routine
taking O(k + r) time for r keys. However, we need to adapt this search to a ditch, since the keys
in twin position can be pairwise permuted to encode bits. It is not difficult to combine our on-
the-fly decoding based on digging (Section 2.1) and Hirschberg’s search, attaining O(k + r) total
search time for a ditch with r keys. This is an immediate corollary to Lemma 2. We will refer to
Hirschberg’s search thus modified as scanning search.

3.1 Restricting the range for searching

Given a search key x, we first check whether x occurs in zones A or B. For this, we apply the
scanning search to the r = O(k) keys that form the directory in zone A, in O(k) time. We then
identify a block in zone B with r = Θ(log n) keys. We also apply here the scanning search in
O(k + log n) time.

If we do not find the key in zones A and B, we search it in the large ditch represented by
zones C and D. First we check if the search key equals the median key in the ditch in O(k) time.
If not, we proceed to search in the directory of zone C. Like zone A, it takes O(k) time.

If the key is not in zone C, we end up in one position, say, of the ith key in zone C. By
our preprocessing of Section 2.3, we infer that we have to access the ith twin interval, say T ,
containing x in zone D (if any; if x occurs more than once, we take its leftmost occurrence). At
this point, we need the positional information of T (see Sections 2.2– 2.3). Assume without loss of
generality that T belongs to the ith pair of twin intervals. We decode T ’s information by scanning
b = O(log n) keys in the ith block of zone B, in O(k + log n) time by Lemma 2. We also compute,
on the fly, the digging depth of T in O(k) time. We recall that this depth, say d, can be computed
as d = lcp(y, z) + 1 for any chosen pair of keys y in T and z in T ’s twin interval.

As a result we have reduced, in O(k + log n) time, the problem of searching a key x in the
array A into the problem of searching x in a suitable twin interval, T , of zone D in A . We
therefore describe how to preprocess a twin interval T to this end, exploiting the fact that we can
encode implicitly up to |T |/2 bits in it.

Lemma 3 The keys in the input array A can be permuted to form a ditch so that searching in A

reduces, in O(k + log n) time, to searching in one of its twin intervals.

3.2 Searching within a twin interval

We describe how to preprocess a twin interval T for searching purposes, assuming that we can
encode up to |T |/2 bits by permuting keys. If |T | = O(log n), we run the scanning search in
O(k + log n) and we are done. We assume hereafter that |T | = Ω(log n).

The ideal approach is that of using the search adopted for Manber and Myers’ suffix array [16],
which we refer to as MM-search in the rest of the paper. Originally designed for an array of
suffixes, it finely works also for arbitrary keys of unbounded length in lexicographic order as is our
case. However, MM-search and its variations devised thereafter access Ω(log n log k) extra bits
and O(k) characters of the keys. The problem comes with the extra bits, since decoding them
would require Ω(log n log k) time (we need to perform at least a comparison to establish the value
of an encoded bit), which gives a sub-optimal bound for our problem. We propose a variant that is
tailored for the encoded bits in twin intervals, in that it is less demanding for the number of extra
bits accessed during the process.
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We first review in a nutshell how MM-search works for a sequence of r keys each of length s (we
use s in place of k since we will apply MM-search to keys of length different from k). It performs
a variation of the classical binary search according to three cases. For the current search interval,
[L . . . R], it maintains the invariant that xL ≤ x ≤ xR, and the lcp values between the search key x
and the keys xL, xR at the extreme positions L and R, respectively. Let M = (L + R)/2 be the
middle point of the interval. MM-search infers the outcome of the comparison of x versus xM

(the key in position M) while preserving the invariant on searching into a smaller interval, either
[L . . .M ] (if x ≤ xM ) or [M . . .R] (if xM < x). Namely, let us suppose that lcp(xL, x) ≥ lcp(x, xR)
without loss of generality, so that m = lcp(xL, x) is the number of initial symbols in x that have
been successfully matched so far. MM-search makes use of a precomputed value, lcp(xL, xM ),
which is independent of the search key x:

1. Case m < lcp(xL, xM ). Set L = M .

2. Case m = lcp(xL, xM ). Compute lcp(x, xM ) by comparing x and xM from position m+1 on.
Set m = lcp(x, xM ) to the value thus computed. Access symbols in positions m + 1 (if any)
of x and xM . If x[m + 1] > xM [m + 1], set L = M ; else, set R = M .

3. Case m > lcp(xL, xM ). Set R = M .

Another precomputed value, lcp(xM , xR), is employed for the symmetric case, lcp(xL, x) <
lcp(x, xR). Since we are not allowed to use more than O(1) auxiliary cells of memory, these
precomputed values must be encoded somewhere in the twin interval. Hence, MM-search needs
to read these O(log s) encoded bits anyway, and there are O(log r) steps in the binary search.
Hence, it cannot read less than O(log r log s) decoded bits, which gives a sub-optimal search in
our case. We can draw an analogous conclusion when MM-search maintains its invariant. It
requires to maintain the values of lcp(xL, x) and lcp(x, xR) after dealing with each of the three
cases (and their symmetric cases). The first two cases are not a problem. After the first case,
lcp(xL, x) = lcp(x, xM ), which is also the current value of m. So, there are no extra bits to decode.
After the second case, lcp(xL, x) or lcp(x, xR) has been just computed as well since it becomes
equal to m. Again, no bits to decode. However, after the third case, MM-search needs to know
lcp(xL, xM ) since it becomes the new value of lcp(x, xR). As previously remarked, this leads to a
sub-optimal search in our case.

We make MM-search more parsimonious by introducing two modifications:

• First, we encode the precomputed lcp information in unary using a ternary string. For a
non-negative integer ` ≤ s (i.e. an lcp value), we define its “unary-ternary” representation as
a0, a1, . . . , as, where a0 = · · · = a`−1 = 0, a` = 1, and a`+1 = · · · = as = 2. Each such digit
can be encoded by two bits. The clear advantage is that comparing an integer g to `, where
0 ≤ g ≤ s, just requires decoding an individual digit, ag. The price to pay is that we require
now O(s) bits to represent an lcp value, instead of O(log s) bits.

• Second, we change the invariant maintained by the MM-search on interval [L . . . R]. Since it
requires the value of lcp(xL, xM ) to handle the third case (resp., lcp(xM , xR) in the symmetric
case), we have to decode the value of lcp(xL, xM ) from its “unary-ternary” representation,
which gives a sub-optimal solution as previously mentioned. Instead, we make a simple but
effective observation. We only keep m, which is the lcp value between the search key x and
the key in {xL, xR} that maximizes that lcp, say xL. The actual value of lcp(x, xR) in the
third case above is not functional to the search: we only need it to compare against m.
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In summary, we only need the “unary-ternary” representation a0, a1, . . . , as of lcp(xL, xM )
(resp., lcp(xM , xR)), without explicitly computing its actual value. We rephrase the three cases of
MM-search by examining am according to our modifications:

1. Case am = 0: Inferring that m < lcp(xL, xM ), set L = M and do not change m (since xL

still maximizes the lcp value).

2. Case am = 1: Inferring that m = lcp(xL, xM ), proceed as in the original MM-search . The
new value of m = lcp(x, xM ) indicates that xM is the best match (which becomes either xL

or xR in the next search step, as previously mentioned).

3. Case am = 2: Inferring that m > lcp(xL, xM ), set R = M and do not change m (since xL

still maximizes the lcp value).

As it should be clear, we do not need the actual value of lcp(xL, xM ), but only the outcome
of its comparison with m (i.e. am, which are two bits). Moreover, when m 6= lcp(xL, xM ), the
value of m is unchanged and xL still maximizes the lcp value. Therefore, we can circumvent the
drawback of decoding the entire value of lcp(xL, xM ) as required in MM-search and we can state
the following lemma:

Lemma 4 We can modify MM-search for r keys each of length s, so as to access O(1) bits of
precomputed lcp values per step during the binary search but still performing O(s+ log r) character
comparisons for the whole process. The total number of required bits to encode is O(rs).

We are now ready to describe the preprocessing of a twin interval T of length b = |T |. We first
partition T into blocks each of size Θ(log b). We take the leftmost key in each block (from left to
right) as the leading key of the block. So, we have overall O(b/ log b) leading keys in T . Finding a
key inside a block can be done with the scanning search, in O(k + log n) time (since b ≤ n).

In order to identify the suitable block of T , we first need to search among the leading keys.
We build an implicit suffix array on them for running the modified MM-search as follows. We
consider each leading key, of length k, as composed by s = log b macro-characters. Each macro-
character is made up of Θ(1 + k/ log b) symbols of the original key. So the comparison of any two
macro-characters requires O(1 + k/ log b) time. We encode the O(s) = O(log b) bits needed by the
our modification of MM-search for each leading key, in its corresponding block of T .

We recall that we measure the cost by accounting interchangeably for the number of comparisons
and character probes, as they are linearly proportional to each other in our case.

Theorem 1 For any (multi)set S of n keys each of length k, there exists a permutation ΠS of S
that can be searched with Θ(k + log n) comparisons and O(1) auxiliary space. Starting from S in
lexicographical order, ΠS can be constructed in O(nk) time and O(1) auxiliary space.

Proof : We have shown so far how to reduce the search in A to the search in a twin interval, in
O(k + log n) time by Lemma 3. We then continue the search among the leading keys of the twin
interval. By Lemma 4, since r = O(b/ log b) and s = log b, we can perform a search with O(log b)
macro-character comparisons, decoding O(log b) bits. This gives a total of O(k + log b) time as
each macro-character comparison requires O(1 + k/ log b) time. We then search inside a block in
O(k + log b) time by applying the scanning search on r = O(log b) keys. We get the final bound
since b ≤ n. The preprocessing steps require a constant number of scans of the input array, A ,
thus giving O(nk) time.

10



3.3 Answering rank and interval queries

A quick review of the search algorithm yielding the cost stated in Theorem 1, identifies four main
search steps:

1. Zone A: here we have the keys in sorted order.

2. Zone B: here the blocks are relatively sorted, while inside each block we have a permutation.

3. Zone C: see Zone B.

4. Zone D: the left-to-right sequence of twin intervals is relatively sorted. Internally, each twin
interval is permuted but the original order can be retrieved on the fly, since the keys in twin
positions are the only ones being (pairwise) permuted.

Using the above scheme, we show how to extend the repertoire of supported operations:

• Successor and predecessor: given any key x, find the smallest key y ∈ A such that x < y, or
the largest y ∈ A such that x > y.

• Rank: given any key x, report the number of keys y ∈ A , such that y ≤ x.

• One-dimensional range query: given any two keys a and b, where a ≤ b, report all the keys
y ∈ A , such that a ≤ y ≤ b.

These operations can be implemented with minor modifications in each of zones A–D. We can
then merge the four outcomes thus found.

Corollary 1 Reporting the rank of a search key among those stored in A , and computing its
predecessor or successor, has a cost of Θ(k + log n). Performing a one-dimensional range query
in A has an output-sensitive cost of Θ(k+log n+#retrieved), where #retrieved denotes the number
of keys in A that belong to the query interval.

3.4 Searching in the bit probe model

We have seen so far how to attain the optimal search bound in the comparison model. When keys
are strings whose characters are drawn from a constant-sized alphabet, we can opt for a different
model. We consider here the case of binary strings, but it can be generalized to σ-ary strings
for any σ ≥ 2. We show how obtain an optimal bound for searching (membership) in the bit
probe model [5, 19], as a corollary of Theorem 1. In this model, the keys are binary strings and
the complexity accounts for the number of bits probed in the array A storing them. Array A is
therefore a k × n binary matrix, where we store the keys permuted, so that membership requires
Θ(k) bit probes in the worst case, which is optimal (i.e. we can drop the log n term resulting from
the comparison model, as previously discussed). The occupied space is that of the keys, namely,
nk bits.

Corollary 2 In the bit probe model, n keys each of k bits can be permuted in A , so that they
occupy just nk bits and searching a key probes O(k) bits in the worst case.

Proof : Let n′ be the number of distinct binary strings in A , where n′ ≤ n. Note that k ≥ log n′,
since there are at most 2k distinct binary keys of length k. We move these distinct strings at the
beginning of A and apply Theorem 1 to them. The techniques described in this paper are suitable
for the bit probe model as well. Since their comparison cost asymptotically matches their character
probe cost, we derive that the number of bit probes is O(k + log n′) = O(k).
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4 Conclusions

In this paper, we have shown that a sorted array is not the best data organization for optimal search-
ing n multi-dimensional keys. Our result sheds a further light on the relation between searching
and sorting from a theoretical point of view. We describe a new organization of k-dimensional
keys that is based upon a suitable permutation of them, and that allows us to search optimally in
O(k +log n) time. These keys in sorted order cannot be optimally searched as a consequence of the
results in [2] and in this paper. In this sense, disorder carries more information than order does.
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