
LL(k) grammars

Predictive Parsing

Basic idea
Given A → α | β, the parser should be able to choose (between α & β)

the right production to expand A in the parser tree at each step

How can it do it?

Guided by the input string!

• An LL(k) grammar is a context-free grammar that can be parsed
by predictive parser (no backtracking) which reads the input Left
to right and construct a Leftmost derivation looking to k symbols
in the input string

• A language that has a LL(k) grammar is said an LL(k) language

• LL(k) is a grammar that can predict the right production to apply
with lookhead of most k symbols

<latexit sha1_base64="ws7ezBHEzA7HTvYh1LDV4h/MDJA=">AAACJXicbVDLSgMxFM3UV62vUZdugq3QuhgmRVBwU3TjoosK1hbaoWTSTBuayQxJRihDP8aNv+LGhYoIrvwV0wdSWy8EzuNebu7xY86Udt0vK7Oyura+kd3MbW3v7O7Z+wf3KkokoXUS8Ug2fawoZ4LWNdOcNmNJcehz2vAH12O/8UClYpG408OYeiHuCRYwgrWROvZloVotuqW2SnxFNTQEzZPyL4GO48wZpyVY6Nh513EnBZcBmoE8mFWtY7+3uxFJQio04VipFnJj7aVYakY4HeXaiaIxJgPcoy0DBQ6p8tLJkSN4YpQuDCJpntBwos5PpDhUahj6pjPEuq8WvbH4n9dKdHDhpUzEiaaCTBcFCYc6guPEYJdJSjQfGoCJZOavkPSxxESbXHMmBLR48jJolB105iB0W85XrmZ5ZMEROAZFgMA5qIAbUAN1QMAjeAav4M16sl6sD+tz2pqxZjOH4E9Z3z+tDqDr</latexit>

LL(0) ⇢ LL(1) ⇢ LL(2) ⇢ ... ⇢ LL(⇤)

LL(k) grammars

Predictive Parsing

Basic idea
Given A � α | β, the parser should be able to choose between α & β

The parser will decide what to choose on the base of the input and
of the following sets:

• The FIRST set: FIRST(α) with α ∈ (T ∪ NT)*
• The FOLLOW set: FOLLOW(A) with A ∈ NT

FIRST sets
For some rhs α∈G, define FIRST(α) as the set of tokens that appear as
the first symbol in some string that derives from α
That is, x ∈ FIRST(α) iff α ⇒* x γ, for some γ

The LL(1) Property
If A → α and A → β both appear in the grammar, we would like

FIRST(α) ∩ FIRST(β) = ∅�
This would allow the parser to make a correct choice with a lookahead of exactly

one symbol !

This is almost correct See the
next slide

The FIRST set

We will learn how
to compute it!

0 Goal → Expr

1 Expr → Term Expr’

2 Expr’ → + Term Expr’

3 | - Term Expr’

4 | ε

5 Term → Factor Term’

6 Term’ → * Factor Term’

7 | / Factor Term’

8 | ε

9 Factor → (Expr)

10 | number

11 | id

Example

first(Expr’)={ +,-, ε}

But what else I need to consider?

{ eof,) }

Predictive Parsing

What about ε-productions?
⇒ They complicate the definition of LL(1)

If A → α and A → β and ε ∈ FIRST(α), then we need to ensure that
FIRST(β) is disjoint from FOLLOW(A), too, where

FOLLOW(A) = the set of terminal symbols that can immediately
follow A in a sentential form

Define FIRST+(A→α) as
• FIRST(α) ∪ FOLLOW(A), if ε ∈ FIRST(α)
• FIRST(α), otherwise

Then, a grammar is LL(1) iff A → α and A → β implies

 FIRST+(A→α) ∩ FIRST+(A→β) = ∅

Later we will learn
 how to compute them!

Predictive Parsing

Given a grammar that has the LL(1) property
• Can write a simple routine to recognize each lhs
• Code is both simple & fast

Consider A → β1 | β2 | β3, with
FIRST+(A→βi) ∩ FIRST+ (A→βj) = ∅ if i ≠ j

/* find an A */
if (current_word ∈ FIRST+(A→β1))
 recognise a β1 and return true
else if (current_word ∈ FIRST+(A→β2))
 recognise a β2 and return true
else if (current_word ∈ FIRST+(A→β3))
 recognise a β3 and return true
else
 report an error and return false

Of course, there is more detail to
“ recognize a βi” a procedure for
each nonterminal

One kind of predictive parser
is the recursive descent
parser.

Recursive Descent Parsing

Recall the expression grammar, after transformation

This produces a parser with six
mutually recursive routines:
• Goal
• Expr
• EPrime
• Term
• TPrime
• Factor
Each recognizes one NT or T

The term descent refers to the
direction in which the parse tree
is built.

0 Goal → Expr

1 Expr → Term Expr’

2 Expr’ → + Term Expr’

3 | - Term Expr’

4 | ε

5 Term → Factor Term’

6 Term’ → * Factor Term’

7 | / Factor Term’

8 | ε

9 Factor → (Expr)

10 | number

11 | id

Recursive Descent Parsing (Procedural)

A couple of routines from the expression parser
they return a boolean

Goal()
 token ← next_token();
 if (Expr() = true & token = EOF)
 then next compilation step;
 else
 report syntax error;
 return false;

Expr()
 if (Term() = false)
 then return false;
 else return Eprime();

0 Goal → Expr

1 Expr → Term Expr’

Eprime()
 if (token = ‘+’ OR token = ‘-‘)
 then begin
 token ← next_token();
 if Term() then return Eprime ();
 else report syntax error;
 end;
 else if (token = ‘)’ OR token = EOF)
 then return true;
 else return false;

2 Expr’ → + Term Expr’

3 | - Term Expr’

4 | ε

 Term, & Tprime follow the same basic lines

Recursive Descent Parsing II

FIRST+(Expr’-> + Term Expr’)={+}
FIRST+(Expr’-> - Term Expr’)={-}
FIRST+(Expr’-> ε)={EOF ,) }

Factor()
 if (token = Number) then
 token ← next_token();
 return true;
 else if (token = Identifier) then
 token ← next_token();
 return true;
 else if (token = Lparen)
 token ← next_token();
 if (Expr() = true & token = Rparen) then
 token ← next_token();
 return true;
 // fall out of if statement
 report syntax error;
 return false;

looking for Number, Identifier,
or “(“, found token instead, or
failed to find Expr or “)” after “(”

9 Factor → (Expr)

10 | number

11 | id

Recursive Descent Parsing III

FIRST+(Factor-> (Expr))={(}
FIRST+(Factor-> number)= number}
FIRST+(Factor-> id)={id}

Roadmap (Where are we?)

We set out to study parsing
• Specifying syntax

— Context-free grammars ✓

• Top-down parsers
— Algorithm & its problem with left recursion ✓
— Ambiguity ✓
— Left-recursion removal ✓

• Predictive top-down parsing
— The LL(1) condition ✓
— Simple recursive descent parsers ✓
— Transforming a grammar to be LL(1)
— First and Follow sets
— Table-driven LL(1) parsers

What If My Grammar Is Not LL(1) ?
Can we transform a non-LL(1) grammar into an LL(1) grammar?
• In general, the answer is no, however, sometime it is yes

Assume a grammar G with productions A → α β1 and A → α β2

• If α derives anything other than ε, then

FIRST+(A → α β1) ∩ FIRST+(A → α β2) ≠ ∅

• And the grammar is not LL(1)
• If we pull the common prefix, α, into a separate production, we

may make the grammar LL(1).

A → α A’, A’ → β1 and A’ → β2

Now, if FIRST+(A’ → β1) ∩ FIRST+(A’ → β2) = ∅, G may be LL(1)

For each nonterminal A
 find the longest prefix α common to 2 or more alternatives
for A
 if α ≠ ε then
 replace all of the productions
 A → α β1 | α β2 | α β3 | … | α βn | γ

 with

 A → α A’ | γ
 A’ → β1 | β2 | β3 | … | βn

Repeat until no nonterminal has alternative rhs’ with a common
prefix

What If My Grammar Is Not LL(1) ?
Left Factoring

This transformation makes some grammars into LL(1) grammars
There are languages for which no LL(1) grammar exists

0 Goal → Expr

1 Expr → Term + Expr

2 | Term - Expr

3 | Term

4 Term → Factor * Term

5 | Factor / Term

6 | Factor

7 Factor → number

8 | id

Left Factoring Example
Consider a simple right-recursive expression grammar

0 Goal → Expr

1 Expr → Term Expr’

2 Expr’ → + Expr

3 | - Expr

4 | ε

5 Term → Factor Term’

6 Term’ → * Term

7 | / Term

8 | ε

9 Factor → number

10 | id

Left Factoring Example
After Left Factoring, we have

FIRST and FOLLOW Sets

FIRST(α)
For some α ∈ (T ∪ NT)*, define FIRST(α) as the set of symbols

that appear as the first one in some string that derives from
α

That is, x ∈ FIRST(α) iff α ⇒* x γ, for some γ

FOLLOW(A)
For some A ∈ NT, define FOLLOW(A) as the set of symbols that

can occur immediately after A in a valid sentential form
FOLLOW(S) = {EOF}, where S is the starting symbol

To build FOLLOW sets, we need FIRST sets …

For a grammar symbol X, FIRST(X) is defined as follows.
● For every terminal X, FIRST(X) = {X}.
● For every nonterminal X, if X � Y1Y2…Yn is a production, then

● FIRST(Y1) ⊆ FIRST(X).
● Furthermore, if Y1, Y2, …, Yk are nullable (Yi-> ε) then

FIRST(Yk + 1) ⊆ FIRST(X).

*

Computing FIRST Sets

● We are concerned with FIRST(X) only for the nonterminals
 of the grammar
● FIRST(X) for terminals is trivial
● According to the definition, to determine FIRST(A), we must

inspect all productions that have A on the left

FIRST

Let the grammar be
 E � T E'
 E' � + T E' | ε
 T � F T'

 T' � * F T' | ε
 F � (E) | id | num

 Find FIRST(E)

• E occurs on the left in only
 one production

 E � T E’

• Therefore, FIRST(T) ⊆ FIRST(E)

• Furthermore, T is not nullable

Therefore, FIRST(E) = FIRST(T)

• We have yet to determine FIRST(T)

FIRST Example

Let the grammar be
 E � T E'
 E' � + T E' | ε
 T � F T'

 T' � * F T' | ε
 F � (E) | id | num

 Find FIRST(T)
● T occurs on the left in only

 one production
 T � F T’

● Therefore, FIRST(F) ⊆ FIRST(T)

● Furthermore, F is not nullable

● Therefore, FIRST(T) = FIRST(F)

● We have yet to determine FIRST(F)

FIRST Example

Let the grammar be
 E � T E'
 E' � + T E' | ε
 T � F T'

 T' � * F T' | ε
 F � (E) | id | num

● Find FIRST(F).
FIRST(F) = {(, id, num}

● Therefore,
● FIRST(E) = {(, id, num}
● FIRST(T) = {(, id, num}

● Find FIRST(E')
● FIRST(E') = {+}

● Find FIRST(T')
● FIRST(T') = {*}

FIRST Example

Computing FOLLOW Sets

● For a grammar symbol X, FOLLOW(X) is defined as follows

● If S is the start symbol, then EOF ∈ FOLLOW(S)

● If A � αBβ is a production, then FIRST(β) ⊆ FOLLOW(B)

● If A � αB is a production, or A � αBβ is a production and β is
nullable, then FOLLOW(A) ⊆ FOLLOW(B)

● We are concerned about FOLLOW(X) only for the nonterminals
 of the grammar.
● According to the definition, to determine FOLLOW(A),
 we must inspect all productions that have A on the right.

FOLLOW

 Find FOLLOW(E).
● E is the start symbol, therefore

EOF ∈ FOLLOW(E).
● E occurs on the right in only one

production.
F � (E).

● Therefore FOLLOW(E) = {EOF,)
}

Let the grammar be
 E � T E'
 E' � + T E' | ε
 T � F T'

 T' � * F T' | ε
 F � (E) | id | num

FOLLOW Example

 Find FOLLOW(E').
● E' occurs on the right in two

productions.
 E � T E'
 E' � + T E’

● Therefore,
FOLLOW(E') = FOLLOW(E) = {EOF,)
}

Let the grammar be
 E � T E'
 E' � + T E' | ε
 T � F T'

 T' � * F T' | ε
 F � (E) | id | num

FOLLOW Example

Let the grammar be
 E � T E'
 E' � + T E' | ε.

 T � F T'
 T' � * F T' | ε.
 F � (E) | id | num

 Find FOLLOW(T)
● T occurs on the right in two productions
 E � T E'
 E' � + T E'
● Therefore,

FOLLOW(T) contains FIRST(E') = {+}

● However, E' is nullable, therefore it
also contains
FOLLOW(E) = {EOF,) } and
FOLLOW(E') = {EOF,) }

● Therefore, FOLLOW(T) = {+, EOF,) }

FOLLOW Example

Let the grammar be
 E � T E'
 E' � + T E' | ε.
 T � F T'

 T' � * F T' | ε.
 F � (E) | id | num

 Find FOLLOW(T')
● T' occurs on the right in two

productions.
 T � F T'
 T' � * F T’
● Therefore,

FOLLOW(T') = FOLLOW(T) = {EOF,),
+}.

FOLLOW Example

 Find FOLLOW(F)

● F occurs on the right in two productions.
 T � F T'
 T' � * F T’
● Therefore, FOLLOW(F) contains

FIRST(T') = {*}
● However, T' is nullable, therefore it also

contains
 FOLLOW(T) = {+, EOF,)} and
 FOLLOW(T') = {EOF,), +}
● Therefore, FOLLOW(F) = {*, EOF,), +}.

Let the grammar be
 E � T E'
 E' � + T E' | ε
 T � F T'

 T' � * F T' | ε
 F � (E) | id | num

FOLLOW Example

Symbol FIRST FOLLOW

num num Ø

id id Ø

+ + Ø

- - Ø

* * Ø

/ / Ø

((Ø

)) Ø

eof eof Ø
ε ε Ø

Goal (,id,num EOF

Expr (,id,num), EOF

Expr’ +, -, ε), EOF

Term (,id,num +,-,),EOF

Term’ *, /, ε +,-,),EOF

Factor (,id,num +,-,*,/,),EOF

0 Goal → Expr

1 Expr → Term Expr’

2 Expr’ → + Term Expr’

3 | - Term Expr’

4 | ε

5 Term → Factor Term’

6 Term’ → * Factor Term’

7 | / Factor Term’

8 | ε

9 Factor → number

10 | id

11 | (Expr)

Classic Expression Grammar

Prod’n FIRST+

0 (,id,num Goal ->Expr

1 (,id,num Expr ->Term Expr’

2 + Expr’-> +Term Expr’

3 - Expr’-> -Term Expr’

4),EOF Expr’-> ε

5 (,id,num Term-> Factor Term’

6 * Term’->*Factor Term’

7 / Term’->/ Factor Term’

8 +,-,), EOF Term’-> ε

9 number Factor-> number

10 id Factor-> id

11 (Factor-> (Expr)

Classic Expression Grammar

Symbol FIRST FOLLOW

Goal (,id,num EOF

Expr (,id,num), EOF

Expr’ +, -, ε), EOF

Term (,id,num

Term’ *, /, ε

Factor (,id,num

Define FIRST+(A→α) as

• FIRST(α) ∪ FOLLOW(A),
 if ε ∈ FIRST(α)

• FIRST(α), otherwise

+,-,),EOF
+,-,),EOF

+,-,*,/,),EOF

Building Top-down Parsers for LL(1) Grammars

Given an LL(1) grammar, and its FIRST & FOLLOW sets …
• Emit a routine for each non-terminal

— Nest of if-then-else statements to check alternate rhs’s
— Each returns true on success and throws an error on false
— Simple, working (perhaps ugly) code

• This automatically constructs a recursive-descent parser

Improving matters
• Nest of if-then-else statements may be slow

— Good case statement implementation would be better

• What about a table to encode the options?
— Interpret the table with a skeleton, as we did in scanning

0 Goal → Expr

1 Expr → Term Expr’

2 Expr’ → + Term Expr’

3 | - Term Expr’

4 | ε

5 Term → Factor Term’

6 Term’ → * Factor Term’

7 | / Factor Term’

8 | ε

9 Factor → number

10 | id

11 | (Expr)

+ - * / Id. Num. () EOF

Factor — — — — 10 9 11 — —

Terminal Symbols

Non-
terminal
Symbols

Expand Factor by rule 9
with input “number”

Cannot expand Factor into an
operator ⇒ error

Building Top-down Parsers
Strategy
• Encode knowledge in a table
• Use a standard “skeleton” parser to
 interpret the table

Example
• The non-terminal Factor has 3 expansions

— (Expr) or Identifier or Number

• Table might look like:

Building Top-down Parsers

Building the complete table
• Need a row for every NT & a column for every T

+ – * / Id Num () EOF

Goal — — — — 0 0 0 — —

Expr — — — — 1 1 1 — —

Expr’ 2 3 — — — — — 4 4

Term — — — — 5 5 5 — —

Term’ 8 8 6 7 — — — 8 8

Factor — — — — 10 9 11 — —

Building Top-down Parsers

Building the complete table
• Need a row for every NT & a column for every T
• Need an interpreter for the table (skeleton parser)

word ← NextWord() // Initial conditions, including
push $ onto Stack // a stack to track the border of the parse tree
push the start symbol, S, onto Stack
TOS ← top of Stack
loop forever
 if TOS = $ and word = EOF then
 break & report success // exit on success
 else if TOS is a terminal then
 if TOS matches word then
 pop Stack // recognized TOS
 word ← NextWord()
 else report error looking for TOS // error exit
 else // TOS is a non-terminal
 if TABLE[TOS,word] is A→ B1B2…Bk then
 pop Stack // get rid of A
 push Bk, Bk-1, …, B1 // in that order
 else break & report error expanding TOS
 TOS ← top of Stack

LL(1) Skeleton Parser

Building Top-down Parsers

Building the complete table
• Need a row for every NT & a column for every T
• Need a table-driven interpreter for the table
• Need an algorithm to build the table

Filling in TABLE[X,y], X ∈ NT, y ∈ T
1. write the rule X→ β, if y ∈ FIRST+(X→ β)
2. write error if rule 1 does not define

If any entry has more than one rule, G is not
LL(1)

We call this algorithm the LL(1) table
construction algorithm

Filling the table

Actions of the LL(1) Parser for x + y x z

Actions of the LL(1) Parser for x + / y

Let G be the following grammar:
S::= prog B end
B::= L B | L
L::= x A
A::= a A | x A | ;
• Is G in LL(1)? If yes, write its parsing table. If not, explain why.

Let G be the grammar below:
S::= S U | x
U::= x U U | x z
• Is G in LL(1)? If yes, write its parsing table. If not, explain why

S ::= Au | bv
A = a | bAv
• G e` in LL(1)? If not modify the grammar (if it is possible) to make it LL(1) and
then write its parsing table.

Exercises

