
LL(k) grammars



Predictive Parsing

Basic idea 
Given A → α | β, the parser should be able to choose  (between α & β)

the right production to expand A in the parser tree at each step

How can it do it?

Guided by the input string!



• An LL(k) grammar is a context-free grammar that can be parsed 
by  predictive parser (no backtracking) which reads  the input Left 
to right and construct a Leftmost derivation looking to k symbols 
in the input string 

• A language that has a LL(k) grammar is said an LL(k) language 

•  LL(k)  is a grammar that can predict the right production to apply 
with lookhead of most k symbols 
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LL(k) grammars



Predictive Parsing

Basic idea 
Given A � α | β, the parser should be able to choose between α & β 

The parser will decide what to choose on the base of the input and 
of the following  sets: 

• The FIRST set:   FIRST(α )    with     α ∈ (T ∪ NT )* 
•  The FOLLOW set:  FOLLOW(A)     with  A ∈ NT 



FIRST sets 
For some rhs α∈G, define FIRST(α) as the set of tokens that appear as  
the first symbol in some string that derives from α  
That is, x ∈ FIRST(α) iff  α ⇒* x γ,  for some γ  

The LL(1)  Property   
If A → α and A → β both appear in the grammar, we would like  

FIRST(α) ∩ FIRST(β) = ∅�
This would allow the parser to make a correct choice with a lookahead of exactly 

one symbol !

This is almost correct See the 
next slide

The FIRST set

We will learn how  
to compute it!



0 Goal → Expr

1 Expr → Term Expr’

2 Expr’ → + Term Expr’

3 | - Term Expr’

4 | ε

5 Term → Factor Term’

6 Term’ → * Factor Term’

7 | / Factor Term’

8 | ε

9 Factor → ( Expr )

10 | number

11 | id

Example

first(Expr’)={ +,-, ε} 

But what else I need to consider? 

{ eof, ) }



Predictive Parsing

What about ε-productions? 
⇒ They complicate the definition of LL(1) 

If A → α and A → β and ε ∈ FIRST(α), then we need to ensure that 
FIRST(β) is disjoint from FOLLOW(A), too, where 

FOLLOW(A) = the set of terminal symbols that can immediately 
follow A in a sentential form 

Define FIRST+(A→α) as 
• FIRST(α) ∪ FOLLOW(A),  if ε ∈ FIRST(α) 
• FIRST(α), otherwise 

Then, a grammar is LL(1) iff A → α and A → β implies    

 FIRST+(A→α) ∩ FIRST+(A→β) = ∅

Later we will learn 
 how to compute them!



Predictive Parsing

Given a grammar that has the LL(1) property 
• Can write a simple routine to recognize each lhs  
• Code is both simple & fast 

Consider A → β1 | β2 | β3, with  
FIRST+(A→βi) ∩ FIRST+ (A→βj) = ∅ if i ≠ j

/* find an A */ 
if (current_word ∈ FIRST+(A→β1)) 
 recognise a β1 and return true 
else if (current_word ∈ FIRST+(A→β2)) 
    recognise a β2 and return true 
else if (current_word ∈ FIRST+(A→β3)) 
    recognise a β3 and return true 
else  
    report an error and return false

Of course, there is more detail to 
“ recognize a βi” a procedure for 
each nonterminal 

One kind of predictive parser 
is the recursive descent 
parser.



Recursive Descent Parsing

Recall the expression grammar, after transformation

This produces a parser with six 
mutually recursive routines: 
• Goal 
• Expr 
• EPrime 
• Term 
• TPrime 
• Factor 
Each recognizes one NT or T 

The term descent refers to the 
direction in which the parse tree 
is built.

0 Goal → Expr

1 Expr → Term Expr’

2 Expr’ → + Term Expr’

3 | - Term Expr’

4 | ε

5 Term → Factor Term’

6 Term’ → * Factor Term’

7 | / Factor Term’

8 | ε

9 Factor → ( Expr )

10 | number

11 | id



Recursive Descent Parsing            (Procedural)

A couple of routines from the expression parser 
they return a boolean

Goal( ) 
     token ← next_token( ); 
     if (Expr( ) = true & token = EOF)  
         then next compilation step; 
         else  
              report syntax error; 
              return false; 

Expr( ) 
   if (Term( ) = false)  
      then return false; 
      else return Eprime( );

0 Goal → Expr

1 Expr → Term Expr’



Eprime( ) 
         if (token = ‘+’ OR  token = ‘-‘  )  
         then begin 
                 token ← next_token( ); 
                 if Term( ) then return Eprime (); 
                 else report syntax error; 
                 end; 
          else if   (token = ‘)’ OR  token = EOF  ) 
                 then return true; 
                 else  return false; 
                  

2 Expr’ →    + Term Expr’

3 | - Term Expr’

4 |  ε

 Term, & Tprime follow the same basic lines 

Recursive Descent Parsing  II    

FIRST+(Expr’-> + Term Expr’)={+} 
FIRST+(Expr’-> - Term Expr’)={-} 
FIRST+(Expr’->  ε)={EOF , ) }



Factor( ) 
   if (token = Number) then 
       token ← next_token( ); 
       return true; 
   else if (token = Identifier) then 
        token ← next_token( ); 
        return true; 
   else if (token = Lparen) 
        token ← next_token( ); 
        if (Expr( ) = true & token = Rparen) then 
            token ← next_token( ); 
            return true; 
   // fall out of if statement 
   report syntax error; 
         return false; 
  

looking for Number, Identifier, 
or “(“, found token instead, or 
failed to find Expr or “)” after “(”

9 Factor → ( Expr )

10 | number

11 | id

Recursive Descent Parsing III           

FIRST+(Factor-> (Expr))={(} 
FIRST+(Factor-> number)= number} 
FIRST+(Factor-> id)={id}



Roadmap  (Where are we?)

We set out to study parsing 
• Specifying syntax                                                        

— Context-free grammars  ✓ 

• Top-down parsers                                                      
— Algorithm & its problem with left recursion ✓ 
— Ambiguity ✓ 
— Left-recursion removal ✓ 

• Predictive top-down parsing 
— The LL(1) condition ✓ 
— Simple recursive descent parsers ✓
— Transforming a grammar to be LL(1) 
— First and Follow sets 
— Table-driven LL(1) parsers 



What If My Grammar Is Not LL(1) ?
Can we transform a non-LL(1) grammar into an LL(1) grammar? 
• In general, the answer is no, however, sometime  it is yes 

Assume a grammar G with productions A → α β1 and A → α β2 

• If α derives anything other than ε, then 

FIRST+(A → α β1) ∩ FIRST+(A → α β2) ≠ ∅

• And the grammar is not LL(1) 
• If we pull the common prefix, α, into a separate production, we 

may make the grammar LL(1). 

A → α A’, A’ → β1 and A’ → β2 

Now, if FIRST+(A’ → β1) ∩ FIRST+(A’ → β2) = ∅,  G may be LL(1)



For each nonterminal A 
 find the longest prefix α common to 2 or more alternatives 
for A 
 if α ≠ ε then 
  replace all of the productions 
   A → α β1 | α β2 | α β3 | … | α βn | γ  

   with 

   A → α A’ | γ 
   A’ → β1 | β2 | β3 | … | βn  

Repeat until no nonterminal has alternative rhs’ with a common 
prefix

What If My Grammar Is Not LL(1) ?
Left Factoring 

This transformation makes some grammars into LL(1) grammars  
There are languages for which no LL(1) grammar exists



0 Goal → Expr

1 Expr → Term + Expr

2 | Term - Expr

3 | Term

4 Term → Factor * Term

5 | Factor / Term

6 | Factor

7 Factor → number

8 | id

Left Factoring Example
Consider a simple right-recursive expression grammar



0 Goal → Expr

1 Expr → Term Expr’

2 Expr’ → + Expr

3 | - Expr

4 | ε

5 Term → Factor Term’

6 Term’ → * Term

7 | /  Term

8 | ε

9 Factor → number

10 | id

Left Factoring Example
After Left Factoring, we have



FIRST and FOLLOW Sets

FIRST(α) 
For some α ∈ (T ∪ NT )*, define FIRST(α) as the set of symbols 

that appear as the first one in some string that derives from 
α  

That is, x ∈ FIRST(α) iff  α ⇒* x γ,  for some γ  

FOLLOW(A) 
For some A ∈ NT, define FOLLOW(A) as the set of symbols that 

can occur immediately after A in a valid sentential form 
FOLLOW(S) = {EOF}, where S is the starting symbol 

To build FOLLOW sets, we need FIRST sets …



For a grammar symbol X, FIRST(X) is defined as follows. 
● For every terminal X, FIRST(X) = {X}. 
● For every nonterminal X, if X � Y1Y2…Yn is a production, then 

● FIRST(Y1) ⊆ FIRST(X). 
● Furthermore, if Y1, Y2, …, Yk are nullable (Yi-> ε ) then  

FIRST(Yk + 1) ⊆ FIRST(X).

*

Computing FIRST Sets



● We are concerned with FIRST(X) only for the nonterminals  
    of the grammar 
● FIRST(X) for terminals is trivial 
● According to the definition, to determine FIRST(A), we must 

inspect all productions that have A on the left

FIRST



Let the grammar be 
  E � T E' 
  E' � + T E' | ε 
  T � F T' 

  T' � * F T' | ε 
  F � (E) | id | num

                 Find FIRST(E) 

• E occurs on the left in only 
                one production 

         E � T E’ 

• Therefore, FIRST(T) ⊆ FIRST(E) 

• Furthermore, T is not nullable 

Therefore, FIRST(E) = FIRST(T) 

• We have yet to determine FIRST(T)

FIRST Example



Let the grammar be 
  E � T E' 
  E' � + T E' | ε 
  T � F T' 

  T' � * F T' | ε 
  F � (E) | id | num

                  Find FIRST(T) 
● T occurs on the left in only  

           one production 
   T � F T’ 

● Therefore, FIRST(F) ⊆ FIRST(T) 

● Furthermore, F is not nullable 

● Therefore, FIRST(T) = FIRST(F) 

● We have yet to determine FIRST(F)

FIRST Example



Let the grammar be 
  E � T E' 
  E' � + T E' | ε 
  T � F T' 

  T' � * F T' | ε 
  F � (E) | id | num

● Find FIRST(F). 
FIRST(F) = {(, id, num} 

● Therefore,  
● FIRST(E) = {(, id, num} 
● FIRST(T) = {(, id, num}

● Find FIRST(E') 
● FIRST(E') = {+} 

● Find FIRST(T') 
● FIRST(T') = {*}

FIRST Example



Computing FOLLOW Sets

● For a grammar symbol X, FOLLOW(X) is defined as follows 

● If S is the start symbol, then EOF ∈ FOLLOW(S) 

● If A � αBβ is a production, then FIRST(β) ⊆ FOLLOW(B) 

● If A � αB is a production, or A � αBβ is a production and β is 
nullable, then FOLLOW(A) ⊆ FOLLOW(B)



● We are concerned about FOLLOW(X) only for the nonterminals  
     of the grammar. 
● According to the definition, to determine FOLLOW(A), 
    we must inspect all productions that have A on the right.

FOLLOW



                  Find FOLLOW(E). 
● E is the start symbol, therefore 

EOF ∈ FOLLOW(E). 
● E occurs on the right in only one 

production. 
F � (E). 

● Therefore FOLLOW(E) = {EOF, ) 
}

Let the grammar be 
  E � T E' 
  E' � + T E' | ε 
  T � F T' 

  T' � * F T' | ε 
  F � (E) | id | num

FOLLOW Example



                Find FOLLOW(E'). 
● E' occurs on the right in two 

productions. 
    E � T E' 
    E' � + T E’ 

● Therefore,  
FOLLOW(E') = FOLLOW(E) = {EOF, ) 
}

Let the grammar be 
  E � T E' 
  E' � + T E' | ε 
  T � F T' 

  T' � * F T' | ε 
  F � (E) | id | num

FOLLOW Example



Let the grammar be 
  E � T E' 
  E' � + T E' | ε. 

  T � F T' 
  T' � * F T' | ε. 
  F � (E) | id | num

                       Find FOLLOW(T) 
● T occurs on the right in two productions 
    E � T E' 
    E' � + T E' 
● Therefore,  

FOLLOW(T) contains FIRST(E') = {+}  

● However, E' is nullable, therefore it  
also contains  
FOLLOW(E) = {EOF, ) } and  
FOLLOW(E') = {EOF, ) } 

● Therefore, FOLLOW(T) = {+, EOF, ) }

FOLLOW Example



Let the grammar be 
  E � T E' 
  E' � + T E' | ε. 
  T � F T' 

  T' � * F T' | ε. 
  F � (E) | id | num

               Find FOLLOW(T') 
● T' occurs on the right in two 

productions. 
    T � F T' 
    T' � * F T’  
● Therefore,  

FOLLOW(T') = FOLLOW(T) = {EOF, ), 
+}.

FOLLOW Example



                 Find FOLLOW(F) 

● F occurs on the right in two productions. 
    T � F T' 
    T' � * F T’ 
● Therefore, FOLLOW(F) contains          

FIRST(T') = {*}  
● However, T' is nullable, therefore it also 

contains  
      FOLLOW(T) = {+, EOF, )} and       
      FOLLOW(T') = {EOF, ), +} 
● Therefore, FOLLOW(F) = {*, EOF, ), +}.

Let the grammar be 
  E � T E' 
  E' � + T E' | ε 
  T � F T' 

  T' � * F T' | ε 
  F � (E) | id | num

FOLLOW Example



Symbol FIRST FOLLOW

num num Ø

id id Ø

+ + Ø

- - Ø

* * Ø

/ / Ø

( ( Ø

) ) Ø

eof eof Ø
ε ε Ø

Goal (,id,num EOF

Expr (,id,num ), EOF

Expr’ +, -, ε ), EOF

Term (,id,num +,-,),EOF

Term’ *, /, ε +,-,),EOF

Factor (,id,num +,-,*,/,),EOF

0 Goal → Expr

1 Expr → Term Expr’

2 Expr’ → + Term Expr’

3 | - Term Expr’

4 | ε

5 Term → Factor Term’

6 Term’ → * Factor Term’

7 | / Factor Term’

8 | ε

9 Factor → number

10 | id

11 | ( Expr )

Classic Expression Grammar



Prod’n FIRST+

0 (,id,num Goal ->Expr

1 (,id,num Expr ->Term Expr’

2 + Expr’-> +Term Expr’

3 - Expr’-> -Term Expr’

4 ),EOF Expr’-> ε

5 (,id,num Term-> Factor Term’

6 * Term’->*Factor Term’

7 / Term’->/ Factor Term’

8 +,-, ), EOF Term’-> ε

9 number Factor-> number

10 id Factor-> id 

11 ( Factor-> ( Expr )

Classic Expression Grammar

Symbol FIRST FOLLOW

Goal (,id,num EOF

Expr (,id,num ), EOF

Expr’ +, -, ε ), EOF

Term (,id,num

Term’ *, /, ε

Factor (,id,num

Define FIRST+(A→α) as 

• FIRST(α) ∪ FOLLOW(A),   
                                         if ε ∈ FIRST(α) 

• FIRST(α),                         otherwise 

+,-,),EOF
+,-,),EOF

+,-,*,/,),EOF



Building Top-down Parsers for LL(1) Grammars

Given an LL(1) grammar, and its FIRST & FOLLOW sets … 
• Emit a routine for each non-terminal 

— Nest of if-then-else statements to check alternate rhs’s 
— Each returns true on success and throws an error on false 
— Simple, working (perhaps ugly) code 

• This automatically constructs a recursive-descent parser 

Improving matters 
• Nest of if-then-else statements may be slow 

— Good case statement implementation would be better 

• What about a table to encode the options? 
— Interpret the table with a skeleton, as we did in scanning



0 Goal → Expr

1 Expr → Term Expr’

2 Expr’ → + Term Expr’

3 | - Term Expr’

4 | ε

5 Term → Factor Term’

6 Term’ → * Factor Term’

7 | / Factor Term’

8 | ε

9 Factor → number

10 | id

11 | ( Expr )

+ - * / Id. Num. ( ) EOF

Factor — — — — 10 9 11 — —

Terminal Symbols

Non- 
terminal 
Symbols

Expand Factor by rule 9 
with input “number”

Cannot expand Factor into an 
operator ⇒ error 

Building Top-down Parsers
Strategy 
• Encode knowledge in a table 
• Use a standard “skeleton” parser to  
     interpret the table 

Example 
• The non-terminal Factor has 3 expansions 

— ( Expr )  or  Identifier  or  Number 

• Table might look like:



Building Top-down Parsers

Building the complete table 
• Need a row for every NT & a column for every T

+ – * / Id Num ( ) EOF

Goal — — — — 0 0 0 — —

Expr — — — — 1 1 1 — —

Expr’ 2 3 — — — — — 4 4

Term — — — — 5 5 5 — —

Term’ 8 8 6 7 — — — 8 8

Factor — — — — 10 9 11 — —



Building Top-down Parsers

Building the complete table 
• Need a row for every NT & a column for every T 
• Need an interpreter for the table (skeleton parser)



word ← NextWord()             // Initial conditions, including  
push $ onto Stack             // a stack to track the border of the parse tree 
push the start symbol, S, onto Stack 
TOS ← top of Stack 
loop forever 
   if TOS = $ and word = EOF then 
       break & report success   // exit on success 
    else if TOS is a terminal then 
       if TOS matches word then 
           pop Stack        // recognized TOS 
           word ← NextWord() 
       else report error looking for TOS  // error exit 
    else            // TOS is a non-terminal 
       if TABLE[TOS,word] is A→ B1B2…Bk then 
           pop Stack                  // get rid of A 
           push Bk, Bk-1, …, B1      // in that order 
       else break & report error expanding TOS 
   TOS ← top of Stack

LL(1) Skeleton Parser



Building Top-down Parsers

Building the complete table 
• Need a row for every NT & a column for every T 
• Need a table-driven interpreter for the table 
• Need an algorithm to build the table 



Filling in TABLE[X,y], X ∈ NT, y ∈ T 
1. write the rule X→ β, if y ∈ FIRST+(X→ β) 
2. write error if rule 1 does not define 

If any entry has more than one rule, G is not 
LL(1) 

We call this algorithm the LL(1) table 
construction algorithm

Filling the table



Actions of the LL(1) Parser for x + y x z



Actions of the LL(1) Parser for x + / y



Let G be the following grammar:
S::= prog B end
B::= L B | L
L::= x A
A::= a A | x A | ;
• Is G in LL(1)? If yes, write its parsing table. If not, explain why.

Let G be the grammar below:
S::= S U | x
U::= x U U | x z
• Is G in LL(1)? If yes, write its parsing table. If not, explain why

S ::= Au | bv
A = a | bAv
• G e` in LL(1)? If not modify the grammar (if it is possible) to make it LL(1) and 
then write its parsing table.

Exercises


