LL(k) grammars

Predictive Parsing

Basic idea
Given $A \rightarrow \alpha \mid \beta$, the parser should be able to choose (between $\alpha \& \beta$) the right production to expand A in the parser tree at each step

How can it do it?

Guided by the input string!

LL(k) grammars

- An LL(k) grammar is a context-free grammar that can be parsed by predictive parser (no backtracking) which reads the input Left \dagger to right and construct a Leftmost derivation looking to k symbols in the input string
- A language that has a $L L(k)$ grammar is said an $\operatorname{LL}(k)$ language
- $L L(k)$ is a grammar that can predict the right production to apply with lookhead of most k symbols

$$
L L(0) \subset L L(1) \subset L L(2) \subset \ldots \subset L L(*)
$$

Predictive Parsing

Basic idea
Given $A \rightarrow a \mid \beta$, the parser should be able to choose between $a \& \beta$

The parser will decide what to choose on the base of the input and of the following sets:

- The FIRST set: $\operatorname{FIRST}(a)$ with $a \in(T \cup N T) *$
- The FOLLOW set: $\operatorname{FOLLOW}(A)$ with $A \in N T$

The FIRST set

FIRST sets

For some rhs $\alpha \in G$, define FIRST(α) as the set of tokens that appear as the first symbol in some string that derives from α
That is, $\underline{x} \in \operatorname{FIRST}(\alpha)$ iff $\alpha \Rightarrow^{*} \underline{x} \gamma$, for some $\gamma \quad$ We will learn how to compute it!

The LL(1) Property
If $A \rightarrow \alpha$ and $A \rightarrow \beta$ both appear in the grammar, we would like

This would allow the parser to make a correct choice with a lookahead of exactly one symbol!

Example

0 1	Goal Expr	\rightarrow	Expr Term Expr'	
2	Expr ${ }^{\prime}$	\rightarrow	+ Term Expr'	
3		1	- Term Expr'	first(Expr') $=\{+,-, \varepsilon\}$
4		1	ε	
5	Term	\rightarrow	Factor Term'	But what else I need to consider?
6	Term'	\rightarrow	* Factor Term'	\{eof,) \}
7		1	/ Factor Term ${ }^{\prime}$	
8		1	ε	
9	Factor	\rightarrow	(Expr)	
10		1	number	
11			id	

Predictive Parsing

What about ε-productions?
\Rightarrow They complicate the definition of $\operatorname{LL}(1)$
If $A \rightarrow \alpha$ and $A \rightarrow \beta$ and $\varepsilon \in \operatorname{FIRST}(\alpha)$, then we need to ensure that $\operatorname{FIRST}(\beta)$ is disjoint from $\operatorname{FOLLOW}(A)$, too, where

Follow $(A)=$ the set of terminal symbols that can immediately follow A in a sentential form

Define FIRST ${ }^{+}(A \rightarrow \alpha)$ as

Later we will learn

 how to compute them!- First $(\alpha) \cup \operatorname{FOLLOW}(A)$, if $\varepsilon \in \operatorname{First}(\alpha)$
- First (α), otherwise

Then, a grammar is LL(1) iff $A \rightarrow \alpha$ and $A \rightarrow \beta$ implies

$$
\operatorname{FIRST}^{+}(A \rightarrow \alpha) \cap \operatorname{FIRST}^{+}(A \rightarrow \beta)=\varnothing
$$

Predictive Parsing

Given a grammar that has the LL(1) property

- Can write a simple routine to recognize each Ihs
- Code is both simple \& fast

Consider $A \rightarrow \beta_{1}\left|\beta_{2}\right| \beta_{3}$, with

One kind of predictive parser is the recursive descent parser.

$$
\operatorname{FIRST}^{+}\left(A \rightarrow \beta_{i}\right) \cap \text { FIRST }^{+}\left(A \rightarrow \beta_{j}\right)=\varnothing \text { if } i \neq j
$$

```
/* find an A */
if (current_word }\in\mathrm{ FIRST + (A }->\mp@subsup{\beta}{1}{})\mathrm{ )
recognise a }\mp@subsup{\beta}{1}{}\mathrm{ and return true
else if (current_word }\in\mathrm{ FIRST+(A }->\mp@subsup{\beta}{2}{})\mathrm{ )
    recognise a }\mp@subsup{\beta}{2}{}\mathrm{ and return true
else if (current_word }\in\mathrm{ FIRST + ( }A->\mp@subsup{\beta}{3}{})\mathrm{ )
    recognise a }\mp@subsup{\beta}{3}{}\mathrm{ and return true
else
    report an error and return false
```

Of course, there is more detail to " recognize a β_{i} " a procedure for each nonterminal

Recursive Descent Parsing

Recall the expression grammar, after transformation
This produces a parser with six

0	Goal	\rightarrow	Expr
1	Expr	\rightarrow	Term Expr'
2	Expr'	\rightarrow	+ Term Expr'
3		\mid	- Term Expr'
4		\mid	ε
5	Term	\rightarrow	Factor Term'
6	Term	\rightarrow	* Factor Term
7		$\mid ~ / ~ F a c t o r ~ T e r m ~$	

- Goal
- Expr
- EPrime
- Term
- TPrime
- Factor

Each recognizes one NT or T
The term descent refers to the direction in which the parse tree is built.

Recursive Descent Parsing
 (Procedural)

A couple of routines from the expression parser they return a boolean

```
Goal()
    token \leftarrow next_token();
```

 if \((\) Expr ()\(=\) true \& token \(=\) EOF)
 then next compilation step;
 else
 report syntax error;
 return false;
 Expr()
if (Term() = false)
then return false;
else return Eprime();

Recursive Descent Parsing II

```
Eprime()
    if (token = '+'OR token = '`')
    then begin
        token \leftarrow next_token();
    if Term() then return Eprime ();
    else report syntax error;
    end;
else if (token = `'OR token = EOF )
    then return true;
    else return false;
```

2	Expr'	+ Term Expr'
3		1 - Term Expr'
4		ε
```FIRST+(Expr'-> + Term Expr')={+} FIRST+(Expr'-> - Term Expr')={-} FIRST+(Expr'>> \varepsilon)={EOF ,)}```		

Term, \& Tprime follow the same basic lines

## Recursive Descent Parsing III

```
Factor()
 if (token = Number) then
 token }\leftarrow\mathrm{ next_token();
 return true;
 else if (token = Identifier) then
 token \leftarrow next_token();
 return true;
 else if (token = Lparen)
 token \leftarrow next_token();
 if (Expr() = true & token = Rparen) then
 token \leftarrow next_token();
 return true;
// fall out of if statement
 report syntax error;
 return false;
```

looking for Number, Identifier, or "(", found token instead, or failed to find Expr or ")" after "("

## Roadmap (Where are we?)

We set out to study parsing

- Specifying syntax
- Context-free grammars $\checkmark$
- Top-down parsers
- Algorithm \& its problem with left recursion $\checkmark$
- Ambiguity $\checkmark$
- Left-recursion removal $\checkmark$
- Predictive top-down parsing
- The LL(1) condition $\checkmark$
- Simple recursive descent parsers $\checkmark$
- Transforming a grammar to be LL(1)
- First and Follow sets
- Table-driven LL(1) parsers


## What If My Grammar Is Not LL(1)?

Can we transform a non-LL(1) grammar into an LL(1) grammar?

- In general, the answer is no, however, sometime it is yes

Assume a grammar $G$ with productions $A \rightarrow \alpha \beta_{1}$ and $A \rightarrow \alpha \beta_{2}$

- If $\alpha$ derives anything other than $\varepsilon$, then

$$
\text { FIRST+ }\left(A \rightarrow \alpha \beta_{1}\right) \cap \text { FIRST }+\left(A \rightarrow \alpha \beta_{2}\right) \neq \varnothing
$$

- And the grammar is not LL(1)
- If we pull the common prefix, $\alpha$, into a separate production, we may make the grammar LL(1).

$$
A \rightarrow \alpha A^{\prime}, A^{\prime} \rightarrow \beta_{1} \text { and } A^{\prime} \rightarrow \beta_{2}
$$

Now, if FIRST $+\left(A^{\prime} \rightarrow \beta_{1}\right) \cap \operatorname{FIRST}^{+}\left(A^{\prime} \rightarrow \beta_{2}\right)=\varnothing, G$ may be LL(1)

## What If My Grammar Is Not LL(1)?

## Left Factoring

```
For each nonterminal A
 find the longest prefix a common to 2 or more alternatives
for A
 if \alpha\not=\varepsilon then
 replace all of the productions
 A ->\alpha \beta
 with
 A }->\alpha\mp@subsup{A}{}{\prime}|
 A'}->\mp@subsup{\beta}{1}{\prime}|\mp@subsup{\beta}{2}{}|\mp@subsup{\beta}{3}{}|\ldots||\mp@subsup{\beta}{n}{
```

    Repeat until no nonterminal has alternative rhs' with a common
    prefix
    This transformation makes some grammars into LL(1) grammars
There are languages for which no $\operatorname{LL}(1)$ grammar exists

## Left Factoring Example

Consider a simple right-recursive expression grammar

0	Goal	$\rightarrow$	Expr
1	Expr	$\rightarrow$	Term + Expr
2		1	Term-Expr
3		1	Term
4	Term	$\rightarrow$	Factor * Term
5		1	Factor / Term
6		1	Factor
7	Factor	$\rightarrow$	number
8		1	id

To choose between $1,2, \& 3$, an LL(1) parser must look past the number or id to see the operator.
$\operatorname{FIRST}^{+}(1)=\operatorname{FIRST}^{+}(2)=\operatorname{FIRST}^{+}(3)$ and
$\operatorname{FIRST}^{+}(4)=\operatorname{FIRST}^{+}(5)=\operatorname{FIRST}^{+}(6)$
Let's left factor this grammar.

## Left Factoring Example

After Left Factoring, we have

0	$\mid$ Goal	$\rightarrow$	Expr
1	Expr	$\rightarrow$	Term Expr'
2	Expr'	$\rightarrow$	+ Expr
3		$\mid$	- Expr
4		$\mid$	$\varepsilon$
5	Term	$\rightarrow$	Factor Term
6	Term	$\rightarrow$	* Term
7		$\mid$	$/$ Term
8		$\mid$	$\varepsilon$
9	Factor	$\rightarrow$	$\underline{\text { number }}$
10			id

## Clearly,

## FIRST+(2), FIRST+(3), \& FIRST+(4)

 are disjoint, as are FIRST ${ }^{+}(6), \operatorname{FIRST}^{+}(7), \& \operatorname{FIRST}^{+}(8)$The grammar now has the $\operatorname{LL}(1)$ property

## First and Follow Sets

FIRst( $\alpha$ )
For some $\alpha \in(T \cup N T)^{\star}$, define $\operatorname{FIRST}(\alpha)$ as the set of symbols that appear as the first one in some string that derives from $\alpha$
That is, $\underline{x} \in \operatorname{FIRST}(\alpha)$ iff $\alpha \Rightarrow^{*} \underline{x} \gamma$, for some $\gamma$
FOLLOW(A)
For some $A \in N T$, define FOLLOW $(A)$ as the set of symbols that can occur immediately after $A$ in a valid sentential form
FOLLOW $(S)=\{E O F\}$, where $S$ is the starting symbol
To build Follow sets, we need FIRST sets ...

## Computing FIRST Sets

For a grammar symbol $X, \operatorname{FIRST}(X)$ is defined as follows.

- For every terminal $X, \operatorname{FIRST}(X)=\{X\}$.
- For every nonterminal $X$, if $X \rightarrow Y_{1} Y_{2} \ldots Y_{n}$ is a production, then
- $\operatorname{FIRST}\left(\mathrm{Y}_{1}\right) \subseteq \operatorname{FIRST}(X)$.
- Furthermore, if $Y_{1}, Y_{2}, \ldots, Y_{k}$ are nullable $\left(Y_{i}^{*} \rightarrow \varepsilon\right)$ then $\operatorname{FIRST}\left(\mathrm{Y}_{\mathrm{k}+1}\right) \subseteq \operatorname{FIRST}(\mathrm{X})$.


## FIRST

- We are concerned with FIRST $(X)$ only for the nonterminals of the grammar
- FIRST(X) for terminals is trivial
- According to the definition, to determine FIRST(A), we must inspect all productions that have $A$ on the left


## FIRST Example

Let the grammar be

## Find FIRST(E)

$$
\begin{aligned}
& E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow+T E^{\prime} \mid \varepsilon \\
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow \star \mathrm{F} \mathrm{~T}^{\prime} \mid \varepsilon \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \text { id } \mid \text { num }
\end{aligned}
$$

- E occurs on the left in only one production

$$
E \rightarrow T E^{\prime}
$$

- Therefore, $\operatorname{FIRST}(T) \subseteq \operatorname{FIRST}(E)$
- Furthermore, $T$ is not nullable

Therefore, $\operatorname{FIRST}(E)=\operatorname{FIRST}(T)$

- We have yet to determine FIRST(T)


## FIRST Example

Let the grammar be

$$
\begin{aligned}
& E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow+T E^{\prime} \mid \varepsilon \\
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow \star F \mathrm{~T}^{\prime} \mid \varepsilon \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \text { id } \mid \text { num }
\end{aligned}
$$

Find FIRST(T)

- Toccurs on the left in only one production

$$
\mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime}
$$

- Therefore, $\operatorname{FIRST}(F) \subseteq \operatorname{FIRST}(T)$
- Furthermore, F is not nullable
- Therefore, $\operatorname{FIRST}(T)=\operatorname{FIRST}(F)$
- We have yet to determine FIRST(F)

FIRST Example

Let the grammar be

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T}^{\prime} \\
& \mathrm{E}^{\prime} \rightarrow+\mathrm{T} E^{\prime} \mid \varepsilon \\
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow{ }^{*} \mathrm{~F} \mathrm{~T}^{\prime} \mid \varepsilon \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \text { id } \mid \text { num }
\end{aligned}
$$

- Find FIRST(F).

FIRST(F) $=\{($, id, num $\}$

- Therefore,
- $\operatorname{FIRST}(E)=\{($, id, num $\}$
- $\operatorname{FIRST}(T)=\{$ (, id, num $\}$
- Find FIRST(E')
- FIRST(E') = \{+\}
- Find FIRST( $T^{\prime}$ )
- $\operatorname{FIRST}\left(T^{\prime}\right)=\{\star\}$


## Computing Follow Sets

- For a grammar symbol X, FOLLOW $(X)$ is defined as follows
- If $S$ is the start symbol, then EOF $\in$ FOLLOW(S)
- If $A \rightarrow a B \beta$ is a production, then FIRST( $\beta) \subseteq$ FOLLOW $(B)$
- If $A \rightarrow a B$ is a production, or $A \rightarrow a B B$ is a production and $\beta$ is nullable, then $\operatorname{FOLLOW}(A) \subseteq$ FOLLOW $(B)$


## FOLLOW

- We are concerned about FOLLOW $(X)$ only for the nonterminals of the grammar.
- According to the definition, to determine FOLLOW(A), we must inspect all productions that have $A$ on the right.


## FOLLOW Example

Let the grammar be

$$
\begin{aligned}
& E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow+T E^{\prime} \mid \varepsilon \\
& T \rightarrow F T^{\prime} \\
& T^{\prime} \rightarrow \star F T^{\prime} \mid \varepsilon \\
& F \rightarrow(E) \mid \text { id } \mid \text { num }
\end{aligned}
$$

## Find FOLLOW(E).

- $E$ is the start symbol, therefore EOF $\in \operatorname{FOLLOW}(E)$.
- E occurs on the right in only one production.

$$
F \rightarrow(E) .
$$

- Therefore FOLLOW $(E)=\{E O F$, ) \}


## FOLLOW Example

Let the grammar be

$$
\begin{aligned}
& E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow+T E^{\prime} \mid \varepsilon \\
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow \star \mathrm{F} \mathrm{~T}^{\prime} \mid \varepsilon \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \text { id } \mid \text { num }
\end{aligned}
$$

Find FOLLOW(E').

- $E^{\prime}$ occurs on the right in two productions.

$$
\begin{aligned}
& E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow+E^{\prime}
\end{aligned}
$$

- Therefore, FOLLOW $\left(E^{\prime}\right)=$ FOLLOW $(E)=\{E O F$, \}


## FOLLOW Example

Let the grammar be

$$
\begin{aligned}
& E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow+T E^{\prime} \mid \varepsilon . \\
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow \star \mathrm{F} \mathrm{~T}^{\prime} \mid \varepsilon . \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \text { id } \mid \text { num }
\end{aligned}
$$

Find FOLLOW(T)

- Toccurs on the right in two productions

$$
\begin{aligned}
& E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow+E^{\prime}
\end{aligned}
$$

- Therefore, FOLLOW(T) contains FIRST(E') $=\{+\}$
- However, E ' is nullable, therefore it also contains FOLLOW(E) $=\{E O F)$,$\} and$ FOLLOW(E') = \{EOF, ) \}
- Therefore, FOLLOW(T) $=\{+$, EOF, $)\}$

FOLLOW Example

Let the grammar be
$\mathrm{E} \rightarrow \mathrm{T} \mathrm{E}^{\prime}$
$E^{\prime} \rightarrow+T E^{\prime} \mid \varepsilon$.
$\mathrm{T} \rightarrow \mathrm{F} \mathrm{T}^{\prime}$
$\mathrm{T}^{\prime} \rightarrow{ }^{\star} \mathrm{F} \mathrm{T}^{\prime} \mid \varepsilon$.
$F \rightarrow(E) \mid$ id $\mid$ num

Find FOLLOW( $\mathrm{T}^{\prime}$ )

- T' occurs on the right in two productions.

$$
\begin{aligned}
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow \mathrm{F}^{\prime}
\end{aligned}
$$

- Therefore, FOLLOW (T') $=\operatorname{FOLLOW}(T)=\{E O F$,$) ,$ + \}.


## FOLLOW Example

Let the grammar be
Find FOLLOW(F)

$$
\begin{aligned}
& E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow+T E^{\prime} \mid \varepsilon \\
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow \star \mathrm{F} \mathrm{~T}^{\prime} \mid \varepsilon \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \text { id } \mid \text { num }
\end{aligned}
$$

- F occurs on the right in two productions.

$$
\begin{aligned}
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow{ }^{*} \mathrm{~F} \mathrm{~T}^{\prime}
\end{aligned}
$$

- Therefore, FOLLOW(F) contains $\operatorname{FIRST}\left(T^{\prime}\right)=\{\star\}$
- However, $T^{\prime}$ is nullable, therefore it also contains
$\operatorname{FOLLOW}(T)=\{+, E O F)$,$\} and$ FOLLOW (T') $=\{$ EOF, $),+\}$
- Therefore, FOLLOW $(F)=\{\star, E O F),+$,$\} .$


## Classic Expression Grammar

Symbol	FIRST	FOLLOW
num	num	$\varnothing$
id	id	$\varnothing$
+	+	$\varnothing$
-	-	$\varnothing$
*	*	$\varnothing$
/	1	$\varnothing$
$\checkmark$	1	$\varnothing$
2	$)$	$\varnothing$
eof	eof	$\varnothing$
$\varepsilon$	$\varepsilon$	$\varnothing$
Goal	(,id, num	EOF
Expr	(,id, num	L, EOF
Expr'	+, - , $\varepsilon$	2, EOF
Term	(,id, num	+,-, ), EOF
Term'	*, /, \&	+,-, ), EOF
Factor	(,id, num	+,-, *, /, ), EOF

Classic Expression Grammar


## Building Top-down Parsers for LL(1) Grammars

Given an LL(1) grammar, and its FIRST \& Follow sets ...

- Emit a routine for each non-terminal
- Nest of if-then-else statements to check alternate rhs's
- Each returns true on success and throws an error on false
- Simple, working (perhaps ugly) code
- This automatically constructs a recursive-descent parser

Improving matters

- Nest of if-then-else statements may be slow
- Good case statement implementation would be better
- What about a table to encode the options?
- Interpret the table with a skeleton, as we did in scanning

```
Cannot expand Factor into an
operator }=>\mathrm{ error
```


## Building Top-down Parsers

## Strategy

- Encode knowledge in a table
- Use a standard "skeleton" parser to interpret the table


## Example

- The non-terminal Factor has 3 expansions
- (Expr) or Identifier or Number
- Table might look like: Terminal Symbols

0	Goal	$\rightarrow$	Expr
1	Expr	$\rightarrow$	Term Expr'
2	Expr'	$\rightarrow$	+ Term Expr'
3		$\mid$	- Term Expr'
4		$\mid$	$\varepsilon$
5	Term	$\rightarrow$	Factor Term'
6	Term	$\rightarrow$	* Factor Term
7		$\mid$	$/$ Factor Term
8		$\mid$	$\varepsilon$
9	Factor	$\rightarrow$	number
10		$\mid$	$\underline{\text { id }}$
11		1	(Expr 2



## Building Top-down Parsers

Building the complete table

- Need a row for every NT \& a column for every T

	+	-	$*$	$/$	Id	Num	$($	$)$	EOF
Goal	-	-	-	-	0	0	0	-	-
Expr	-	-	-	-	1	1	1	-	-
Expr'	2	3	-	-	-	-	-	4	4
Term	-	-	-	-	5	5	5	-	-
Term	8	8	6	7	-	-	-	8	8
Factor	-	-	-	-	10	9	11	-	-

## Building Top-down Parsers

Building the complete table

- Need a row for every NT \& a column for every T
- Need an interpreter for the table (skeleton parser)


## LL(1) Skeleton Parser

```
word < NextWord() // Initial conditions,including
push $ onto Stack // a stack to track the border of the parse tree
push the start symbol, S, onto Stack
TOS \leftarrow top of Stack
loop forever
 if TOS = $ and word = EOF then
 break & report success // exit on success
 else if TOS is a terminal then
 if TOS matches word then
 pop Stack // recognized TOS
 word }\leftarrow\mathrm{ NextWord()
 else report error looking for TOS // error exit
 else // TOS is a non-terminal
 if TABLE[TOS,word] is A-> B B 的... }\mp@subsup{B}{k}{}\mathrm{ then
 pop Stack // get rid of A
 push \mp@subsup{B}{k}{},\mp@subsup{B}{k-1}{},\ldots,\mp@subsup{B}{1}{}\quad// in that order
 else break & report error expanding TOS
 TOS \leftarrowtop of Stack
```


## Building Top-down Parsers

Building the complete table

- Need a row for every NT \& a column for every T
- Need a table-driven interpreter for the table
- Need an algorithm to build the table


## Filling the table

	+	-	$*$	1	Id	Num	$($	$)$	EOF
Goal	-	-	-	-	0	0	0	-	-
Expr	-	-	-	-	1	1	1	-	-
Expr'	2	3	-	-	-	-	-	4	4
Term	-	-	-	-	5	5	5	-	-
Term'	8	8	6	7	-	-	-	8	8
Factor	-	-	-	-	10	9	11	-	-

Filling in TABLE $[X, y], X \in N T, y \in T$

1. write the rule $X \rightarrow \beta$, if $y \in \operatorname{FIRST}^{+}(X \rightarrow \beta)$
2. write error if rule 1 does not define

If any entry has more than one rule, $G$ is not

Prod'n	FIRST+	
0	(.id, num	Goal --Expr
1	(.id, num	Expr $\rightarrow$ Term Expr'
2	+	Expr'> + Term Expr'
3	-	Expr'> - Term Expr ${ }^{\prime}$
4	2,EOF	Expr'> ${ }^{\text {c }}$
5	(id, num	Term-> Factor Term'
6	*	Term'->*Factor Term'
7	1	Term'->/ Factor Term'
8	+,-, L, EOF	Term' $\rightarrow$ ¢
9	number	Factor-> number
10	id	Factor $\rightarrow$ id
11	(	Factor-> (Expr)

We call this algorithm the LL(1) table construction algorithm

## Actions of the $L L(1)$ Parser for $x+y x z$

Rule	Stack	Input
-	eof Goal	$\uparrow$ name + name x name
0	eof Expr	$\uparrow$ name + name $x$ name
1	eof Expr' Term	$\uparrow$ name + name $x$ name
5	eof Expr' Term' Factor	$\uparrow$ name + name $x$ name
11	eof Expr' Term' name	$\uparrow$ name + name $\times$ name
$\rightarrow$	eof Expr' Term'	name $\uparrow+$ name $\times$ name
8	eof Expr'	name $\uparrow+$ name $\times$ name
2	eof Expr' Term +	name $\uparrow+$ name $\times$ name
$\rightarrow$	eof Expr' Term	name $+\uparrow$ name $\times$ name
5	eof Expr' Term' Factor	name + 个 name x name
11	eof Expr' Term' name	name $+\uparrow$ name $\times$ name
$\rightarrow$	eof Expr' Term'	name + name $\uparrow \times$ name
6	eof Expr' Term' Factor x	name + name $\uparrow \times$ name
$\rightarrow$	eof Expr' Term' Factor	name + name $x \uparrow$ name
11	eof Expr' Term' name	name + name $x$ 个 name
$\rightarrow$	eof Expr' Term'	name + name x name $\uparrow$
8	eof Expr'	name + name $x$ name $\uparrow$
4	eof	name + name x name $\uparrow$


	Prod'n	FIRST+						
	0		(,id, num		Goal ->Expr			
	1		(id, num		Expr $\rightarrow$ Term Expr'			
	2		+		Expr'> ${ }^{\prime}$ Term Expr			
	3		-		Expr'->-Term Expr'			
	4		2,EOF		$\text { Expr'-> } \varepsilon$			
	5		(,id, num		Term-> Factor Term ${ }^{\prime}$			
	6		*		Term'->^Factor Term'			
	7		1		Term' $>$ / Factor Term'			
	8		,,+- 2, EOF		Term' ${ }^{\text {¢ }}$ ¢			
	9		number		Factor-> number			
	10		id		Factor-> id			
	11		1		Factor-> (Expr)			
	+	-	* 1	Id	Num	(	)	EOF
Goal	-	-	- -	0	0	0	-	-
Expr	-	-	- -	1	1	1	-	-
Expr'	2	3	- -	-	-	-	4	4
Term	-	-	- -	5	5	5	-	-
Term'	8	8	$6 \quad 7$	-	-	-	8	8
Factor	-	-	- -	10	9	11	-	-



## Exercises

Let G be the following grammar:
S::= prog B end
$B::=L B I L$
$L::=x A$
$A::=a \operatorname{AlxAl}$;

- Is $G$ in $L L(1)$ ? If yes, write its parsing table. If not, explain why.

Let $G$ be the grammar below:
$S::=S U I x$
$\mathrm{U}::=\mathrm{x}$ U U Ix z

- Is $G$ in $\operatorname{LL}(1)$ ? If yes, write its parsing table. If not, explain why
$S::=A u l b v$
$A=a l b A v$
- $G$ e` in $L L(1)$ ? If not modify the grammar (if it is possible) to make it $\operatorname{LL}(1)$ and then write its parsing table.

