Linguaggi formali

Let's start from the beginninc_;

- A program is written in a programming language
- Every programming language (as every language in general) needs
to obey its own rules

* We need to formally define languages...

Reference books

Intoduction to Automata Theory, Languages, And Computation.
Hopcroft, Motwani, Ullman

Fondamenti dell'Informatica. Linguaggi formali, calcolabilita' e complessita'.
Dovier, Giacobazzi
Bollati Boringhieri

Strings

+ An alphabet is a finite set of symbols

+ Examples

2,={a,b,c,d, .., z} the set of letters in Italian
2, = {0, 1}: the set of binary digits

25 ={(,)}: the set of open and closed brackets

A string over alphabet X is a finite sequence of symbols in X.
+ Examples
abfbz is a string over £1={a, b, ¢, d, ..., z}

11011 is a string over 2.2 = {0, 1} The empty string is a string having
DO is a string over £3 = {(,)} no symbol, denoted by e.

Stri ngs

The length of a string x is the number of symbols
contained in the string x, denoted by |x|.

» Examples
abfbz|=5

110010(=6

)NO1=7
e|[=0

Strings

The concatenation of two strings x and y is a string xy,
i.e., x is followed by y.
it is an associative operation that admits the neutral element ¢

s is a substring of x if there exist strings y and z

such that x = ysz.
Example:

the prefixes of abc are : €, a, ab, abc

In particular,

when x = sz (substring with y=¢), s is called a prefix of x;

when x = ys (substring with z=¢), s is called a suffix of x;
e is a prefix and a suffix of € and of all strings

Power of an alphabet

We indicate the set of all strings over % of a given length
5 " denotes the strings of length n whose symbols are in =

If $={0.1)

0

> = {¢&}

s 5= {01

s> = {000111.10)

53 = {000,001010011,100.101,110 111}

+ _ y1 2 3 4 _ 7
StT=xlux?ux®uy u..._UOZ o febUst
+ 1>

> = {01,00,01,1,10,000,001,010,011, 100,101,110,111...}

Languages

A language is a set of strings over an alphabet:
L € Z* is a language over >

Examples
L, = The set of all strings over %, that contain the substring “fool"

L, = The set of all strings over Z, that are divisible by 7
={7,14,21, .}

L;. The set of all strings over X, where every (is followed by 2

occurrences of)

={.2).)0), .}

Other examEIes of Lanc_quages

L, = The set of binary numbers whose value is prime
{10,11,101,111,1011,1101,..}

L, = The set of legal English words over the English alphabet

L, . The set of legal C programs over the strings of characters

Languages

The following are operations on sets and hence also on languages.
Union: AU B

Intersectiont An B

Difference: A\ B (A -BwhenBCA)

Complement: A = Z* - A where Z* is the set of all strings on
alphabet Z.

Concatenation: AB ={ab | ac A, b € B}

Example: {0, 1}{1, 2} = {01, 02, 11, 12}.

Kleene Clousure

oo
Kleene closure: AF — U Al
i=0

* Notation: AT = U A
i=1

More example of Languages

Examples:
* The set of strings with n1's followed by nO's
{e, 01,0011, 000111, . . }

* The set of strings with an equal number of O'sand 1's
{¢, 01, 10, 0011, 0101, 1001, .. .}

* The empty language @
* The language {¢} consisting of the empty string only

Remember @ . {&}

Problems

* Does the string w belong to the language L?

Example: 11101 € L,?

We want to define a procedure to decide it!

We can try to generate all words....

We can try to recognise when a word belongs to a Language

Generating a language: Grammars

Starting from a particular initial symbol, using the rewriting rules
of the productions,
we generate the set of strings belonging to the language

Grammars I

We define a Grammar 6=(=~, N, S, P) where :

2> is the alphabet, a set of symbols (called terminals)
‘N is the set of nonterminals

+ 5€ N is the starting symbol

P is the set of productions, each of the form

U—-V
where US(Z u N)+and VE(Z uN)*.

Grammars IT

G=(2,N,S,P)

A string wE % is generated by G if there is
a derivation of w using P, starting from the starting symbol S.

G= ({a}, {S}, S, P) S —>¢
S —a
S —a$S

A language generated by grammar G is denoted L(G) and it is the set of
strings derived using G.

Grammar Example

We want to describe L1 the language of strings with an even number of
I's

L1 can be generated by a grammar ({0,1} {S,T},S,P) with P equal to

S —¢
S —0S
S— 1T
T—0T
T—1S

A string belongs to L1 iff it can be generated by the grammar

Grammar Example

Does the string 01010 belong to L1?
We need to find a derivation

S —-¢|0S|1T
T—-0T|1S

Recognising a langquage: Automata

» A finite state automaton is finite state machine with an input of
discrete values.

* The state machine consumes the input and possibly moves to a
different state.

» The system may be in a state among a finite set of possible states.
Being in a state allows him to keep track of previous history.

input: baab

Back to our Problems

* Does the string w belong to the language L?

We want to define a procedure to decide it!

» Which is the computational complexity necessary to answer
to the previous question ?

It depends on the complexity of the language!

Grammars and Languages

Restrictions on productions give different types of grammars :

*Regular (type 3)
*Context-free (type 2)

- Context-sensitive (type 1)
* Phrase-structure (type O)

U—V
where Uc (Z u N)+ and Ve (Z uN)*.

For context-free, e.g., UesN

No restrictions for phrase-structure

A language is of type i iff
there is a grammar of type i which describes it

Complexity of Languages Problems

Regular Context Context Unrestricted
Free Sensitive
Grammar Grammar Grammar ©rammar

Type 3 Type 2 Type 1 Ui @
Is W€ L(6)? P P PSPACE U
Is L(G) empty? P P U U
Is L(G1)= L(62)? PSPACE U U U

P: decidable in polynomial time
PSPACE: decidable in polynomial space (at least as hard as NP-complete)
U: undecidable

Rec_qular Ianc_quages

All the following ways to represent regular languages are equivalent:
* Regular grammars (RG, type 3)

- Deterministic finite automata (DFA)

* Non-deterministic finite automata (NFA)

- Non-deterministic finite automata with € transitions (E-NFA)

» Regular expressions (RE)

Rec_qular Grammars

A Right (or, analogously, Left) Grammar is a generative
grammar, where

» every production has the form A->aB| a
» only for the starting symbol S, we can have S— ¢
every hon terminal symbol B is always preceded by a terminal one.
Example
G=({a,b}, {S,B},S,P) where productions P are:
S->aS|aB
B->bB|b

aaabb € L(6) L(G)={a"b""| nm>0}

Deterministic Finite Automata

The states of a switch:

Push

Q&

Push

An automaton recognising the keyword then:

OO0

Deterministic Finite Automata

A deterministic finite automaton (DFA) (Q, 2, 0 qo.F)
Q@ a finite set of states
> a finite set Z of symbols

d:Qx Z->Q a transition function that takes as argument a state and a symbol
and returns one state

qo the starting state

FC Q@ the set of final or accepting states

Deterministic Finite Automata

How to represent a DFA? With a transition table

0|1

—dqo || 92 | 90
*q1 || 91 | Q1
Q2 || 92 | 91

-> indicates the starting state
* indicates the final states

This defines the following transition diagram

0

Deterministic Finite Automata

When does an automaton accept a word?
It reads a word and accept it if it stops in an accepting state

here Q= {qo0; q1, 42, 43, Qa, g5} =144
Only the word then is accepted

How DFA processes S’rrinc_;s

We build an automaton that accepts string containing the substring
01

>={0,1} .
L={x01ly| x,y€x}

We get

—A

1

0 B

C
0

*D

O Q Q Q|o
O O W W+~

Ex’rending the transition function to Strings

We define the transitive closure of O

AN

A string x is accepted by M=(Q, ~, 3 ,qo,F) iff d(qo,x) € F

AN

L(M)={x € ¥*|6(qo,x) € F}

Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) allows more than one
transition on the same input symbol.

Formally, a NFA is defined as (Q, %, § ,qo, F) where the only
difference is the transition function

5:Qx Z->0(Q) atransition function that takes as argument
a state and a symbol and
returns a set of states

Ex’rending the transition function to Strings

We define the transitive closure of o

AN

A string x is accepted by M=(Q, =, & ,qo,F) iff d&(qo,x) N EF # ()

AN

L(M) = {x € X*|6(qo,x) N F # 0}

* NFAs do not expand the class of language that can be
accepted.

Example

0 1 NFA

— qo0 | {dqo} {do, q1}
qir | {q1} {q0,d2}
* d2 | {91,492} | {do, 1,92}

AN

/]ﬂ
<~
1
0

F={qz}

0,1

L= {z€{0,1}"| x contains at least 2 occurrences of 1}

di | d1 | Q2
*d2 | d2 | 92

0 0 0,1
—p Y0 qoo q11] 1
DFA

Different characterisation of Regular' Languages

There are different ways to characterise a regular language

* Regular grammars

* Deterministic Finite Automata

* Non Deterministic Finite Automata

e Epsilon Non deterministic Finite Automata
* Regular expression

Roadmap: equivalence between NFA and RE

DFA NFA « —» RG

- £-NFA

From Reqular Grammars to NFA

Theorem 1.

For each right grammar RG (or left grammar LG), there is a nhon
deterministic finite automaton NFA such that L(RG)=L(NFA).

Construction Algorithm

For a given right grammar RG=(Z, N, S, P) there is a corresponding
NFA=(N U{F}, =,0,5, F)) where F is a newly added state and
if F'={F}U{S}if S-> ¢ belongs to P, F'= {F}, otherwise.

The transition function & is defined by the following rules.
1) For any A->a belonging to P, witha in %, set 8(A,a) = F
2) For any A-> aB belonging to P, withain Z and B in N, set 8(A,a)=B

ExamEle

G6=({a,b}, {S,B},S P) where productions P are:
S->aS|aB
B->bB|b L(G)={ a"b™ | n,m>0}

From NFA to Regular Grammars

Theorem 2

For each nondet finite automaton NFA, there is one right grammar RG (or
left grammar LG) where L(RG)=L(NFA).

For a given finite automata NFA= (Q, 2, 8 , qo,F), a corresponding right

grammar RG=(Z,Q, qo’, P) can be constructed using the following steps
1) for any 8(A,a)=B add A—aB to P,
2) if B belongs to F add also A—a to P;

If qo belongs to F then add g-> qo | € to P and qo'=q else qo'=qo.

Example

0 1 ° 1 NFA

— qo0 | {dqo} {do, q1}
qir | {q1} {do, g2} 0,1
* q2 | {91,492} | {do,q1,42)

1
&1/
0

L= {z€{0,1}"| x contains at least 2 occurrences of 1}

1
0,1

Exercises

Write the NFA for the following languages

- The set of string over the alphabet {a,b,c} containing at least one
a and at least one b

* The set of strings of O's and 1's whose tenth symbol from the
right is 1

* The set of strings of O's and 1's with at most one pair of
consecutive 1's

and derive the corresponding grammars

