The fix point THEORY

POSET (Partially ordered set, PO)

$$(P,\sqsubseteq)$$
 $\sqsubseteq \subseteq P \times P$

reflexive
$$\forall p \in P.$$
 $p \sqsubseteq p$ antisymmetry $\forall p,q \in P.$ $p \sqsubseteq q \land q \sqsubseteq p \Rightarrow p = q$ transitive $\forall p,q,r \in P.$ $p \sqsubseteq q \land q \sqsubseteq r \Rightarrow p \sqsubseteq r$

$$\begin{array}{ll} p \sqsubseteq q & \text{means that p is less than (or equal to) } q \\ \uparrow & \\ p & p \sqsubseteq q & \text{means} & p \sqsubseteq q \ \land \ p \neq q \end{array}$$

Total Order

A PO
$$(P,\sqsubseteq)$$
 is total iff

$$\forall p, q \in P. \quad p \sqsubseteq q \lor q \sqsubseteq p$$

A PO where every two elements are comparable

Discrete orders

$$(P,\sqsubseteq)$$
 PO

discrete
$$\forall p, q \in P$$
. $p \sqsubseteq q \Leftrightarrow p = q$

any element is comparable only to itself

Flat orders

$$(P,\sqsubseteq)$$
 PO

$$\forall p, q \in P. \quad p \sqsubseteq q \Leftrightarrow p = q \lor p = \bot$$

any element is **comparable** only to itself and with a distinguished (smaller) element \bot

 (\mathbb{N},\leq) Total? Discrete? Flat? PO?

$$(\wp(S),\subseteq)$$

Total?

Discrete?

Flat?

|S| < 2

 $S = \emptyset \qquad |S| < 2$

example: $S = \{a, b, c\}$

$$\{a,b\} \quad \not\subseteq \\ \not\supseteq \quad \{b,c\}$$

$$\{a\} \quad \stackrel{\not\subseteq}{\not\supseteq} \quad \{b\}$$

 $(\mathbb{N},=)$ PO? Total? Discrete? Flat?

0 1 2 3 ...

$$(\mathbb{N} \cup \{\bot\}, \{(\bot, n) \mid n \in \mathbb{N}\})$$
 PO? Total? Discrete? Flat?

	PO?	Total?	Discrete?	rlat?
$(\mathbb{N},<)$	×	×	×	×
(\mathbb{Z},\leq)			×	×
$(\mathbb{Z} \cup \{-\infty, \infty\}, \leq)$			×	×
(\mathbb{N}, eq)	×	×	×	×

Element properties (least, minimal, ...)

Least element

- (P,\sqsubseteq) PO $Q\subseteq P$ $\ell\in Q$
- ℓ is a least element of Q if $\forall q \in Q$. $\ell \sqsubseteq q$

TH. (uniqueness of least element)

 $(P,\sqsubseteq)\,\mathsf{PO}\ Q\subseteq P\ \ell_1,\ell_2$ least elements of $\ Q\$ implies $\ \ell_1=\ell_2$

Bottom

$$(P,\sqsubseteq)$$
 PO

 (P, \sqsubseteq) PO the least element of P(if it exists) is called bottom and denoted \perp

sometimes written \perp_P

Examples		
РО	bottom?	
$(\mathbb{N} \cup \{\infty\}, \leq)$	0	
$(\wp(S),\subseteq)$	Ø	
(\mathbb{Z},\leq)	× ×	

Minimal element

$$(P,\sqsubseteq)$$
 PO $Q\subseteq P$ $m\in Q$

m is a minimal element of Q if $\forall q \in Q$. $q \sqsubseteq m \Rightarrow q = m$ (no smaller element can be found in Q)

least $\forall q \in Q. \ell \sqsubseteq q$	minimal $\forall q \in Q. q \sqsubseteq m \Rightarrow q = m$
unique	not necessarily unique
minimal	not necessarily least can be least

Reverse order

TH. (P, \sqsubseteq) PO implies (P, \supseteq) PO

 (P,\sqsubseteq) PO $Q\subseteq P$ greatest element: least element of Q w.r.t. (P,\supseteq) top element: \top greatest element of P (if it exists) becomes \bot maximal element: minimal element of Q w.r.t. (P,\supseteq)

Upper bound

$$(P,\sqsubseteq) \quad {\rm PO} \qquad Q \subseteq P \qquad u \in P$$

$$Q \subseteq P$$

$$u \in P$$

u is an upper bound of Q if $\forall q \in Q$. $q \sqsubseteq u$

(all the elements of Q are smaller than u)

Q may have many upper bounds

Least upper bound

- (P,\sqsubseteq) PO $Q\subseteq P$ $p\in P$
- p is the least upper bound (lub) of Q if
- 1. It is an upper bound of $Q \qquad \forall q \in Q. \quad q \sqsubseteq p$
- 2. it is smaller than any other upper bound of \mathcal{Q}

$$\forall u \in P. \quad (\forall q \in Q. q \sqsubseteq u) \Rightarrow p \sqsubseteq u$$

we write p = lub Q

intuitively, it is the least element that represents all of ${\cal Q}$

 ${\it p}$ not necessarily an element of ${\it Q}$

Upper bounds of $\{a,b\}$? $\{f,h,i,\top\}$

lub? f

Upper bounds of $\{b,c\}$? $\{h,i,\top\}$

lub? no lub!

$$(\mathbb{N},\leq)$$
 $Q\subseteq\mathbb{N}$ lub?

if Q finite $lub \ Q = \max Q$ otherwise no lub

$$(\wp(S),\subseteq)$$
 $Q\subseteq\wp(S)$

$$Q \subseteq \wp(S)$$

lub?

$$lub \ Q = \bigcup_{T \in Q} T$$

$$lub \{\{a\}, \{b\}\} = \{a, b\}$$

Complete partial orders (CPO)

Completeness: the idea

D a domain a way to compare elements $x\sqsubseteq y$ x is a (less precise) approximation of yx and y are consistent, but y is more accurate than x $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \cdots \sqsubseteq x_n \sqsubseteq \cdots$ (n+1)th approximation third approximation second approximation

does any sequence of approximations tend to some limit?

first approximation

Chain

$$(P,\sqsubseteq)$$
 PO

$$\{d_i\}_{i\in\mathbb{N}}$$
 is a chain if $\forall i\in\mathbb{N}.\ d_i\sqsubseteq d_{i+1}$

$$d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \cdots \sqsubseteq d_n \sqsubseteq \cdots$$

any chain is an infinite list

finite chain: there are only finitely many distinct elements

$$\exists k \in \mathbb{N}. \ \forall i \geq k. \ d_i = d_{i+1}$$

or equivalently

$$\exists k \in \mathbb{N}. \ \forall i \geq k. \ d_i = d_k$$

Example

$$(\mathbb{N},\leq)$$

$$0 \le 2 \le 4 \le \cdots \le 2n \le \cdots$$
 is an infinite chain

$$0 \le 1 \le 3 \le 3 \le 5 \le \cdots \le 5 \le \cdots$$
 is a finite chain

any chain has infinite length

Limit of a chain

 (P,\sqsubseteq) PO $\{d_i\}_{i\in\mathbb{N}}$ a chain

we denote by $\bigsqcup_{i\in\mathbb{N}}d_i$ the lub of $\{d_i\}_{i\in\mathbb{N}}$ if it exists

and call it the limit of the chain

Limit illustrated

Example

$$(\mathbb{N}, \leq)$$

$$0 \le 2 \le 4 \le \cdots \le 2n \le \cdots$$
 has no lub (empty set of upper bounds)

$$0 \le 1 \le 3 \le 3 \le 5 \le \cdots \le 5 \le \cdots$$
 has lub 5 (which upper bounds?)

Lemma on finite chains

Lemma (any finite chain has a limit)

$$(P,\sqsubseteq)$$
 PO $\{d_i\}_{i\in\mathbb{N}}$ a finite chain $\Rightarrow \bigsqcup_{i\in\mathbb{N}} d_i$ exists

Complete partial order

 (P,\sqsubseteq) PO P is complete if each chain has a limit (lub)

TH. Any finite chain has a limit (the last element in the sequence)

If P has only finite chains it is complete

If P is finite it is complete

Any discrete order is complete

Any flat order is complete

Example

 (\mathbb{N}, \leq) is not complete (it is enough to exhibit a chain with no limit)

$$0 \le 2 \le 4 \le \cdots \le 2n \le \cdots$$
 has no lub (empty set of u.b.)

$$(\mathbb{N}\cup\{\infty\},\leq)$$

any infinite chain has limit ∞ (set of u.b. $\{\infty\}$)

$$(\wp(S),\subseteq)$$

complete?

$$\{S_i\}_{i\in\mathbb{N}}$$

$$\bigsqcup_{i\in\mathbb{N}} S_i = \bigcup_{i\in\mathbb{N}} S_i = \{x \mid \exists k \in \mathbb{N}. x \in S_k\}$$

$$(\mathbb{N} \cup \{\infty_1, \infty_2\}, \leq)$$
 complete?

any infinite chain has no limit (set of u.b. $\{\infty_1,\infty_2\}$)

Partial functions

Partial functions

$$D=(A
ightharpoonup B)=\mathbf{Pf}(A,B)=\{f:A
ightharpoonup B\}$$
 partial functions $f\sqsubseteq g$ if $f(a)$ is defined, $g(a)$ is defined and $g(a)=f(a)$ but $g(a)$ can be defined when $f(a)$ is not

if we see partial functions as relations

$$\{(x, f(x)) \mid f(x) \neq \bot\} \subseteq A \times B$$

 $f \sqsubseteq g$ means essentially $f \subseteq g$

 $\mathbf{Pf}(\mathbb{N},\mathbb{N})$

```
f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ \bot & \text{otherwise} \end{cases}
f = \{ (0,0), (2,1), 
                 (4,2),
                   (6,3),
                  (2k, k),
...
```

 $\mathbf{Pf}(\mathbb{N},\mathbb{N})$

$$g(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ 2 \cdot n & \text{otherwise} \end{cases}$$

```
g = \{ (0,0), (1,2), (2,1), (3,6), (4,2), (5,10), (6,3), (7,14), \dots 
(2k,k), (1+2k,2+4k), \dots
```

 $\mathbf{Pf}(\mathbb{N},\mathbb{N})$

$$g(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ 2 \cdot n & \text{otherwise} \end{cases} \qquad f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ \bot & \text{otherwise} \end{cases}$$

$$g = \{ (0,0), (1,2), \qquad f = \{ (0,0), \\ (2,1), (3,6), \qquad (2,1), \\ (4,2), (5,10), \qquad f \sqsubseteq g? \qquad (4,2), \\ (6,3), (7,14), \qquad g \sqsubseteq f? \qquad (6,3), \\ \dots \qquad (2k,k), (1+2k,2+4k), \qquad (2k,k), \\ \dots \qquad \} \qquad \dots \end{cases}$$

```
\mathbf{Pf}(\mathbb{N},\mathbb{N})
\emptyset \sqsubseteq \{ (0,0) \} \sqsubseteq \{ (0,0), \sqsubseteq \dots \}
(1,1) \}
```

```
\mathbf{Pf}(\mathbb{N},\mathbb{N})
\emptyset \sqsubseteq \{ (0,0) \} \sqsubseteq \{ (0,0), \sqsubseteq \{ (0,0), \sqsubseteq \dots \}
(1,1) \} \qquad (1,1), \qquad (2,2) \}
```

```
\mathbf{Pf}(\mathbb{N},\mathbb{N})
```

$$\emptyset \sqsubseteq \{ (0,0) \} \sqsubseteq \{ (0,0), \sqsubseteq \{ (0,0), \sqsubseteq \{ (0,0), \sqsubseteq \dots (1,1) \}$$
 $(1,1), (1,1), (2,2) \}$ $(2,2), (3,3) \}$

```
\mathbf{Pf}(\mathbb{N},\mathbb{N})
```

```
\emptyset \sqsubseteq \{ (0,0) \} \sqsubseteq \{ (0,0), \sqsubseteq \dots (1,1) \}  (1,1), (1,1), (1,1), (2,2), (2,2), (3,3) \}  (3,3), (4,4) \}
```

```
\mathbf{Pf}(\mathbb{N},\mathbb{N})
\emptyset \sqsubseteq \{ (0,1) \} \sqsubseteq \{ (0,1), \sqsubseteq \{ (0,1), \sqsubseteq \dots \\ (1,1) \} \qquad (1,1), \\ (2,2) \}
```

```
\mathbf{Pf}(\mathbb{N}, \mathbb{N})
\emptyset \sqsubseteq \{ (0,1) \} \sqsubseteq \{ (0,1), \sqsubseteq \{ (0,1), \sqsubseteq \{ (0,1), \sqsubseteq \dots (1,1) \} 
(1,1) \}
(1,1), (2,2) \}
(3,6) \}
```

Pf is complete?

$$\mathbf{Pf}(A,B)=\{f:A\rightharpoonup B\}$$
 partial functions

 $(\mathbf{Pf}(A,B),\sqsubseteq)$ is a PO with bottom what is bottom? the is it complete?

the empty relation (the function always undefined)

yes!

Given a chain $\{f_i\}_{i\in\mathbb{N}}$ let us consider $\bigcup_{i\in\mathbb{N}}f_i\subseteq A imes B$

$$\bigcup_{i\in\mathbb{N}} f_i \in \mathbf{Pf}(A,B)$$

pictorially

is the limit in Q?

$$\mathbf{Pf}(\mathbb{N}, \mathbb{N}) \qquad \stackrel{f_0 \emptyset}{\subseteq} \qquad \begin{cases} (0,1) \} \ f_1 \\ \subseteq \ \{(0,1), (1,1) \} \end{cases} f_2 \\ \subseteq \ \{(0,1), (1,1), (2,2) \} f_3 \\ \subseteq \ \{(0,1), (1,1), (2,2), (3,6) \} \end{cases} \\ \subseteq \ \{(0,1), (1,1), (2,2), (3,6), (4,24) \} f_5 \\ \subseteq \cdots$$

 $\bigcup_{i\in\mathbb{N}}f_i$ is (maybe) the factorial function

note: the limit of partial functions can be a total function

Monotone functions

Monotone function

$$(D,\sqsubseteq_D)$$
 po (E,\sqsubseteq_E) po $f:D o E$

$$f$$
 is monotone if $\forall d_1, d_2 \in D.$ $d_1 \sqsubseteq_D d_2 \Rightarrow f(d_1) \sqsubseteq_E f(d_2)$

Monotone = Order preserving

$$\{d_i\}_{i\in\mathbb{N}}$$
 a chain in D $\}$ \Rightarrow $\{f(d_i)\}_{i\in\mathbb{N}}$ a chain in E

When D=E we say $f:D\to D$ is a function on D

Monotonicity illustrated

$$f(n) = n + 1 \qquad (\mathbb{N} \cup \{\infty\}, \leq)$$

$$\infty \qquad \qquad \infty$$

$$\cdots \qquad \qquad monotone$$

$$1 \qquad \qquad 1$$

$$2 \qquad \qquad 1$$

$$1 \qquad \qquad 1$$

$$(\mathbb{N} \cup \{\infty\}, \leq) \qquad \qquad f(n) = 2 \cdot n \qquad (\mathbb{N} \cup \{\infty\}, \leq)$$

$$\infty \qquad \qquad \infty$$

$$\cdots \qquad \qquad monotone? \qquad \qquad \vdots$$

$$2 \qquad \qquad \downarrow$$

$$1 \qquad \qquad \downarrow$$

$$0 \qquad \qquad \downarrow$$

$$(\mathbb{N} \cup \{\infty\}, \leq) \qquad \qquad f(n) = n/2 \qquad \qquad (\mathbb{N} \cup \{\infty\}, \leq)$$

$$\infty \qquad \qquad \infty$$

$$\cdots \qquad \cdots \qquad \cdots$$

$$0 \qquad \cdots \qquad \cdots$$

$$0 \qquad \cdots \qquad \cdots$$

$$(\mathbb{N}\cup\{\infty\},\leq)$$

$$f(n) = n \% 2$$

$$f(\infty) = \infty$$

 $(\mathbb{N}\cup\{\infty\},\leq)$

$$\bot \sqsubseteq 1$$

$$f(\bot) = 0 \not\sqsubseteq 1 = f(1)$$

Composition

TH. Any composition of monotone function is monotone

Continuous functions

Continuous function

Continuous = limit preserving

Continuity Illustrated

Lemma

$$\begin{array}{ll} (D,\sqsubseteq_D) \ \, \displaystyle \mbox{ `CPO} \\ \mbox{ no infinite chains } & f:D\to E \\ (E,\sqsubseteq_E) \ \, \mbox{ PO} & \mbox{ monotone } \end{array} \Rightarrow \begin{array}{ll} f \\ \mbox{ continuous } \end{array}$$

$$f(n) = n + 1 \qquad (\mathbb{N} \cup \{\infty\}, \leq)$$

$$\infty \qquad \qquad \infty$$

$$\cdots \qquad \qquad \cdots$$

$$3 \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(\mathbb{N}\cup\{\infty\},\leq)$$

monotone function, not continuous

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{N} \\ 1 & \text{if } x = \infty \end{cases}$$

Composition

TH. Any composition of continuous function is continuous

$$\begin{array}{ll} (D,\sqsubseteq_D) \ \textit{CPO} \\ (E,\sqsubseteq_E) \ \textit{CPO} \\ (F,\sqsubseteq_F) \ \textit{CPO} \end{array} \begin{array}{ll} f:D \to E & \text{continuous} \\ g:E \to F & \text{continuous} \end{array} \Rightarrow \begin{array}{ll} h = g \circ f:D \to F \\ \text{continuous} \end{array}$$

Kleene's fixpoint theorem

Repeated application

$$f:D\to D$$

$$f^{0}(d) \stackrel{\triangle}{=} d$$
$$f^{n+1}(d) \stackrel{\triangle}{=} f(f^{n}(d))$$

$$f^{n}(d) = \overbrace{f(\cdots (f(d)) \cdots)}^{n \text{ times}}$$
$$f^{n}: D \to D$$

Lemma

$$(D,\sqsubseteq) \quad \mathrm{PO}_{\perp} \qquad f:D\to D \quad \text{monotone} \qquad \Rightarrow \quad \begin{array}{l} \{f^n(\bot)\}_{n\in\mathbb{N}} \\ \text{is a chain} \end{array}$$

Towards Kleene's theo.

when (D,\sqsubseteq) is a CPO_{\perp}

then $\{f^n(\bot)\}_{n\in\mathbb{N}}$ is a chain

it must have a limit

 $\{f^n(d)\}_{n\in\mathbb{N}}$ not necessarily a chain!

Kleene's fix point theorem states that if f is continuous, then the limit of the above chain is the least fixpoint of f

Pre-fixpoints

$$(D,\sqsubseteq)$$
 PO $f:D o D$ monotone

$$fixpoint \qquad p \in D \qquad f(p) = p$$

$$\mathsf{pre-fixpoint}\ p \in D \qquad f(p) \sqsubseteq p$$

Clearly any fixpoint is also a pre-fixpoint

Tarsky's theorem

Kleene's theorem

$$(D,\sqsubseteq)$$
 CPO_{\perp} $f:D o D$ continuous

let
$$fix(f) \triangleq \coprod_{n \in \mathbb{N}} f^n(\bot)$$

1. fix(f) is a fix point of f

$$f(fix(f)) = fix(f)$$

2. fix(f) is the least pre-fixpoint of

$$\forall d \in D. \ f(d) \sqsubseteq d \Rightarrow fix(f) \sqsubseteq d$$

if d is a pre-fixpoint then $f\!(x(f))$ is smaller than d

Kleene's theorem

$$n = 2 \cdot n$$

$$(\mathbb{N} \cup \{\infty\}, \leq) \qquad \perp = 0$$

$$\perp = 0$$

$$CPO_{\perp}$$

$$f(n) = 2 \cdot n$$

$$f(\infty) = \infty$$

monotone? ok continuous? ok

$$f^0(0) = 0$$

$$f^1(0) = f(0) = 2 \cdot 0 = 0$$

fixpoint reached!

$$n = n + 1$$

$$(\mathbb{N} \cup \{\infty\}, \leq) \qquad \bot = 0$$

$$\perp = 0$$

 CPO_{\perp}

$$f(n) = n + 1$$

$$f(\infty) = \infty$$

monotone? ok continuous? ok

$$f^{0}(0) = 0$$

$$f^{1}(0) = f(0) = 0 + 1 = 1$$

$$f^{2}(0) = f(f^{1}(0)) = f(1) = 1 + 1 = 2$$

$$f^{3}(0) = f(f^{2}(0)) = f(2) = 2 + 1 = 3$$

$$\bigsqcup_{n \in \mathbb{N}} f^{n}(0) = \bigsqcup_{n \in \mathbb{N}} n = \infty \quad \text{fixpoint}$$

$$X = X \cap \{1\}$$

$$(\wp(\mathbb{N}),\subseteq)$$

$$\perp = \emptyset$$

 CPO_{\perp}

$$f(X) = X \cap \{1\}$$

monotone? ok continuous? ok

$$f^{0}(\emptyset) = \emptyset$$

$$f^{1}(\emptyset) = f(\emptyset) = \emptyset \cap \{1\} = \emptyset$$

fixpoint reached!

$$X = \mathbb{N} \setminus X$$

$$(\wp(\mathbb{N}),\subseteq)$$

$$\perp = \emptyset$$

 CPO_{\perp}

$$f(X) = \mathbb{N} \setminus X$$

monotone? NO

the larger X the smaller f(X)

$$\begin{split} f^0(\emptyset) &= \emptyset \\ f^1(\emptyset) &= f(\emptyset) = \mathbb{N} \setminus \emptyset = \mathbb{N} \\ f^2(\emptyset) &= f(f^1(\emptyset)) = f(\mathbb{N}) = \mathbb{N} \setminus \mathbb{N} = \emptyset \end{split}$$

not a chain!

$$X = X \cup \{1\}$$

$$(\wp(\mathbb{N}),\subseteq)$$

$$\perp = \emptyset$$

$$\mathrm{CPO}_{\perp}$$

$$f(X) = X \cup \{1\}$$

monotone? ok continuous? ok

$$\begin{split} f^0(\emptyset) &= \emptyset \\ f^1(\emptyset) &= f(\emptyset) = \emptyset \cup \{1\} = \{1\} \\ f^2(\emptyset) &= f(f^1(\emptyset)) = f(\{1\}) = \{1\} \cup \{1\} = \{1\} \end{split}$$

fixpoint reached!