How can we compute a solution to 1 and 2?

1. in[n]=use[n] VU (out[n] - def[n])
2. out[n]=U{in[m] | m € post[n]}

We need to compute a fix point
- but how can we be sure that such fix-points exist?
It depends on the domain and on the functionl!



1. in[n] = use[n] U (out[n] - def[n])
2. out[n]=U{in[m] | m € post[n]}

Which is our domain?

Our objects:

Given a node we need to compute the set in and the set out (sets of
variables)

* Let Vars be the finite set of variables that occur in the program P to
analyze. We consider all possible subsets: p(Vars)

Given a node we will need a set for in and a set for out: p(Vars)x p(Vars)

But we have N nodes, one for each node of the CFG so our domain will be

( P(Vars)x P(Vars)N N-tuples of pairs of subsets of Vars

The order : C2V
<int,outq,. .. ,in}v, out]l\, >C2N < int, outl, . .. ,in]lv, out}v > iff

in; Cin? and out] C out?



Example

Vars ={a,b} N=2.
<(7) (Vars)xP(Vars) 22, C% is a finite domain.

b:




Our domain

<(7D (Vars)xP(Vars) N, RSN
CPO with bottom?

It is a CPO because it is finite
bottom?



I. in[n]=use[n]V (out[n] - def[n])
Which is our function? 2. out[n] = U{in[m] | m € post[n]}

The map Live:
( (Vars)x P(Vars) N -> (7) (Var's)xP(Var's) N defined by

Live(<in;,outy,...iny,0uty>)=

<use[1]U(ou’r1-def[1]),U ing, ..., use[NJU (outy, -def[N]), U in.>

mepost[1] mepost|N]



Is it continuous?

The map Live:
( (Vars)x P(Vars) )N -> (P (Vars)xP(Vars) )N defined by

Live(<ing outy,...,ing,0uty>)=

<use[1]U(out,-def[1]), ing, ..., use[N]JU (outy, -def[N]), g in,>

mepost[1] mepost[N]|

IS continuous?

Yes! because it is monhotone on a finite domain



In conclusion

The map Live:

(7D(Vars)x P(Vars) N -> (P (Vars)xP(Vars) )N defined by

Live(<in,out,,...,iny,out\>)=

<use[1]U(out,-def[1]), U N, ..., use[N]U (out, -def[N]), U in_>

meEpost[1] meEpost|N|

is a monotonic (and therefore continuous) function on the finite CPO
P (vars)x P Y -
<«(/~ (Vars)x/~(Vars) )N, = > and therefore Live has

a least fixpoint



th a least fixEoin’r

* Live is a possible analysis,
in[n] 2 live-in[n] and out[n] 2 live-out[n]

i.e., if a variable x will be really live in a node n during some program
execution then x belongs to in[n] of all the fixpoints of the function Live

All fixpoints of the equation system is an over-approximation of really live
variables.

We want the least fixpoint ( more precise over approximations)



Conservative AEEroxima’rion

* How tfo interpret the output of this static analysis?
- Correctness tells us that:

in[n] 2 live-in[n] and out[n] 2 live-out[n]

If the variable x will be really live in some node n during some

program execution then x belongs to in[n] of all the fixpoints of the
function Live (least fixpoint)

- The converse does not hold: the analysis can tell us that x is in the
computed set out[n], but this does not imply that x will be necessarily
live in n during some program execution

- In liveness analysis "conservative approximation” means that the analysis may
erroneously derive that a variable is live, while the analysis is not allowed to
erroneously derive that a variable is "dead" (i.e., not live).

%if x €in[n] then x could be live at program point n.
%if x&in [n] then x is definitely dead at program point n.



for all n
in[n] :={} out[n]:={};
repeat
for all n (1 to 6)
in'[n] :=in[n]; out'[n]:=out[n];
in[n] := use[n] U (out[n] - def[n]);
out[n]:= U { in[m] | m € post[n]};

until (for all n: in'[n]=in[n] && out' [n]=out[n])

c:= c+b;

4 ,

a:= b*2;
a<N;

6

Live! Live2 Lives

in out (In out |In out
1 a a
2 a a bc ac bec
3 bc bc b bc b
4 b b b
5 é, a ac (ac ac
6 C C C

return c;




for all n
in[n]:=?; out[n]:=7?;
repeat
for all n (1 to 6)
in'[n] :=in[n]; out'[n]:=out[n];
in[n] := use[n] U (out[n] - def[n]);
out[n]:= U { in[m] | m € post[n]};
until (for all n: in'[n]=in[n] && out'[n]=out[n])

Lives Live4 Lived

1n out |in out [|In out

a 2 C C acC

ac bc lac bc lac begc

bc b bc b bc b

b a b ac bc ac

acC acC acC acC acC ac

c:= c+b;

4 ,

a.= b*2;
a<N;

6

AN DN DWW —

C C C

return c;




AN DN BR[N] —

Lived Live® Live’

In out [In out |[In out
C ac |c ac |c ac
ac bc |ac bc |ac bec
bc b bc bc |bc bec
bc ac |bc ac |bc ac
ac ac |ac ac |ac ac
C C C

The algorithm thus gives the following output:

out[1]={a,c}, out[2]={b,c}, out[3]={b,c}, out[4]={a,c},

out[5]={a,c}

In this case, the output of the analysis is precise

a:= 0;
2 /
b:= al+1,
3 |
c:= c+b;
a ]
a:= b*2;
a<N;

6

return c;




ImEr'ovemen’r

In this iterative computation, observe that we have to wait for the next
iteration in order to exploit the new information computed for in and out
onh the nodes.

By a suitable reordering of the nodes and by first computing out[n] and
then in[n], we are able to converge to the fixpoint in just 3 iteration
steps.

for all n
in[n] :=?; out[n]:=?;
repeat
for all n (6 to 1)
in'[n] :=in[n]; out'[n] :=out[n];
out[n]:= U { in[m] | m € post[n]};
in[n] := use[n] U (out[n] - def[n]);
until (for all n: in'[n]=in[n] && out'[n]=out[n])



for all n

in[n]:=?; out[n]:=7?;

repeat

for all n (6 to 1)

in'[n] :=in[n]; out'[n]:=out[n];
out[n]:
in[n]:
until (for all n:

DN | WU O\

U { in[m]

| m € post[n]};
use[n] U (out[n] - def[n]);

in'[n]=in[n] && out'[n]=out[n])

Live! Live2 Live3

out iIn |out In |out In
C C C

C ac |[ac ac l|ac ac

ac bc lac bc |ac bec

bc bc |bc bc |bc bec

bc ac |bc ac |bc ac

ac ¢ ac ¢ ac ¢




Backward Analxsis

As shown by the previous example, Live Variable
Analysis is a "backward” analysis. This means that
information propagates "backward” from terminal
nodes to initial nodes:

in[n] can be computed from out[n];

out[n] can be computed from in[m] for all the nodes m
that are successors of n.



Application:

i := 0; i = 0;
t3 := 0; t3 := 0,
while i <= n do de€ad variable while i <= n do
.. A, j = 0;
% — ;3. while j <= m do
B tl := t3 + j;
while ?_<_ m d?. temp := Base(A) + ti;
21 T t3B+ JEA) £l Cont (temp) := Cont(Base(B) + t1)
emp := base ; + Cont(Base(C) + t1);
Cont (temp) := Cont(Base(B) + t1) j 1= j+i
+ Cont(Base(C) + t1); od;
j = J%1 i = i+l
od; t3 := t3 + (m+1)
i = i+1, od

t3 := t3 + (m+1)
od



Reaching Definitions (Reaching Assignment) Analysis

One of the more useful data-flow analysis

dl : y :
d2 : x :

3

dl is a reaching definition for d2

dl : y := 3
d2 : y := 4
d3 : x :=y

dl is no longer a reaching definition for d3, because d2 kills its reach:
the value defined in d1 is no longer available and cannot reach d3

A definition d at point i reaches a point p if there is a path from the
point i o p such that d is not killed (redefined) along that path



Reaching definitions

This information is very useful
* The compiler can know whether x is a constant at point p

+ The debugger can tell whether is possible that x is an undefined
variable at point p



Reachinc_; definitions

Given a program point n, which definitions are actual - not
successively overwritten by a different assignment - when the
execution reaches n?

And when the execution leaves n?
A program point may clearly "generate” new definitions
A program point n may "kill" a definition:
if nis an assignment x:=exp then n kills all the assignments to the

variable x which are actual in input to n

We are thus interested in computing input and output reaching
definitions for any program point



The intuition: the factorial of n

2 \ Which are the points that are reached by
m:= 1 ;| thisdefinition of m?

Which is the actual 3 ‘

definition of n n>1; Which are the points that are reached by
here? Can n be V := m*n; |this definition of m?
initialised? 5 hich are the actual
T efinition of nand m ? Can
n-= n or m be initialised?

output m;

Which is the actual
definition of m here?
Can m be initialised?




Formalization of the reaching definition property

The property can be represented by sets of pairs:

{(x,p) | xeVars, p is a program point}<7(Vars x Points)

where (x,p) means that the variable x is assighed at
program point p

For each program point, this dataflow analysis computes a

set of such pairs

The meaning of a pair (x,p) in the set for a program point g
is that the assignment of x at point p is actual at point g

? is a special symbol that we add to Points and we use to
represent the fact that a variable x is not initialized.

The set 1 = {(x,?) | x&Vars} therefore denotes that all the
program variables are not initialized.



The domain for Reaching Definitions Analxsis

Vars is the (finite) set of variables occuring in the program P.
Let N be the number of nodes of the CFG of P.
Let Points={?,1,..N}.

<(7D (Vars x Poin’rs)xP(Var's x Points) )N, C2N>

- Example Vars={a,b} e N=2

<S={(a,?),(a,1),(b,7),(b,1)},5,5,5 >



SEecifica’rion

{(x,q9) |q&Points and {x}=def[q]} if {x}=def[p]

o killy[p] = [
0 it () =deflp]
{(x.p)} if {x}=def[p]

* genylpl= [
) if () =deflp]

As usual, def[p] = {x} when the command in the point p is an assignment
Xizexp



Kill and Gen

2 ‘ 1
m:= 1; 7

s L
n>1, 3
4
; 5
output m; .




Specification

» Reaching definitions analysis is
specified by equations:
[ {(x.?) | x © VARS}

if p is initial
RDentry(p): <

if p is not initial

RDexit(P) =
(RDentry(p) \ kl“RD[p] ) U genRD[p]

\U(RD.,,,..(q) Iq cpre[p]}

output m;

S| Bp




The solution of the previous system

Once again the solution for the equations in the previous system
requires the existence of a fix point

We can apply the Kleene theorem if we have

a) a continuous function on
b) a CPO with bottom



Point b

2N
«(P (vars x Points)x P(vars x Points) v, €5

is a CPO with bottom?

It is a CPO because it is finite
Bottom?



Point a: the function

The map Reach:

< (7) (Vars x Poinfs)xP(Var's x Points) )N-> <(7D (Vars x Poin'rs)xP(Var's x Points) )N
defined by

(assuming 1 is the only initial node)

RQGCh(<RDenTry1,RDexiT1,...,RDen’rryN, >):
<{(x.2) | xin VARS}, (RD_,¢ry1 \Killgp[1]) U gengy[1],

U{RD Imin pre[2]}, (RD pery2 \Killg[2]1) U gengg[2],

exit2

U{RD Im in pre[N]}, >

exitm



Point a

Reach(<RDentry, RDexit,,..RDentry,, >)=
<{(x,?) | xin VARS}, (RD,,., \Kill,;[1]1) U genyy[1],
U{RD |m in pre[2]} , (RD \kill ,;[2]) U gen,[2]

exit2 entry2

-----

U{RD__,... Iminpre[N]}, ( >
kil (1)={(a,?)}, geny(1)={(a,1)}
* Example kil (2)={(b.2)}, geng,(2)={(b.2)}

Reach(c((a2)) 0, 0.0 )=c(e 262 (a6 )0 DoV (eGP g

Reach(<{(a,?)(a,2)}{(a,2)}.{}, >)= a.=
{(a2)(b 2@ b 2N )b, > |
Note that Reach is monotonel rbi: a+t+l;

I
Since it is monotone on a finite domain then it is continuous



Why a least fix point

RD analysis is possible,

if an assignment x:za in some point q is really actual in entry
to some point p then

(X,Q) = RDen’rr'y(P)

The vice versa does not hold

All fixpoints of the above equation system is an over-approximation of
really reaching definitions.

Computing the least fixpoint gives a more precise over approximation



i en
First iteration: 2 * -
1 ¥
input n; 4 - -

5 [N

RD,,.. (D)= 1(n,?),(m,?)}
RD,,;.(1) = {(n,?),(m,?)}
RD.,.c.y(2)= 1(n,?),(M,?)}
RD,,;(2)={(n,?),(m,2)}
RD,,..,(3)={(n,?),(m,2)}
RD_,;.(3)=1(n,?),(m,2)}

RD,,..,(H)={(n,?),(m,2)}

RD,,;(4)={(n,?), (M,4)}

RD,....(5)= {(n,?),(m,4)}
RD, 4 (P) ={(x,?)| xin Vars},if p is initial RD_...(5)={(n,5),(m4)}
RD eniry(P) =U{RD,4(q) | q in pre[p]}, otherwise RD,,...(6)= {(n,?),(M,2)}

RD,,i+(P) = (RD sy (P) \ Killgp[P1) U gengy[p] RD,,;.(6)={(n,?),(m,2)}



Second iteration:

1
input n;
2
m:= 1;
| RD,.....(1)= {(n,2),(m,)} RD,_.. (1)={(n?),(m,?)}
33— RD,,..(1) = {(n,2),(m,?)} RD,, (1) = {(n,?),(m,?)}
n>1; 4 D, .y (2)= {(n,2),(m,)} RD,,. (2)={(n,?),(m,?)}
Vm: ~ D..:(2)=1(n,?),(m,2)}  RD_,.(2)={(n,?),(m,2)}
> Denery(3)={(n,?),(m,2)}  RD__., (3)={(n,?),(m,2),(n,5)(m,4)}
6 n.= D..::(3)={(n,?),(m,2)}  RD_,,.(3)={(n,?),(m,2),(n,5)(m,4)}

RD, ey (D)= {(n,?),(m,2)} RD,_.  (4)={(n,?),(m,2),(n,5)(m,4)}
RD,,;.(H={(n,?), (m4)} RD_, (H={(n,?),(n,5)(m4)}
RD, ., (P) ={(x?)| x in Vars}, if p is initial RD,,...(5)= {(n,?),(m4)} RD,__.. (5)={(n,?),(n,5)(m,4)}
Dertry(P) “URDor(@) | q in prelpD), otherwise gp_ (5)={(n,5),(m4)} D, (5)={(n,5)(m4)}
RD,,4(P) = (RD,p (P) \ Killgp[p1) U gengplp]l  RD, (6)={(n,?),(m,2)}  RD,,. (6)={(n,?),(m,2),(n,5)(m,4)}
RD,,..(6)= {(n,?),(m,2)} RD,,,.(6)={(n,?),(m,2),(n,5)(m,4)}

fix point!

output m;




RD analxsis

* RD analysis is forward and possible,
i.e., if an assignment x:=a in some point q is really actual in entry
to some point p then
(X.9)E RD 4y () (while the vice versa does not hold).

How can we use this?

-If the analysis tells us that a variable is undefined then it is
-Loop invariant code motions



Application:

Consider a loop where:

1. mis the entry point

2. an inner point n contains an

assignment x:=zexp

3. if for any variable y occurring

in exp (i.e. yevars(exp)) and for any program

point p, we have that
(Y.P)ERD ery(M) <= (¥.P)E RD ey (M)

then, the assignment x:=zexp can be correctly moved out as
preceding the entry point of the loop



AEEIica’rion:

Loop-invariant code motion

y:=3; z:
for(int
X =Y
a[i] =

}

1=0; 1<9; 1i++) {
+ z;
2*1 + X;

y:=3; z:=5;
X =y + z;
for(int i=0; 1i<9; i++) {

a[i]

= 2*1 + X;




Available ExEr'essions Analxsis

Let p be a program point. For each execution path ending in p,
we want track the expressions that have already been
evaluated and then not modified.

These are called available expressions



Example

X:=a+b;

y:=a*b;

while y>a+b 1

do (a:=a+l; x:= a+b;
x:=a+b;) 2

when the execution reaches 3, the expression a+b
is available, since it has been previously evaluated
(in point 1 for the first iteration of the while-loop
and in point 5 for the next iterations) and does
not need to be evaluated again in 3

- This analysis can be therefore used to avoid re-
evaluations of available expressions




The domain

Let E={ e | e is a sub-expressions/expression appearing in P}
Let N be the number of nodes of the CFG of P

<P ExPE)))N, <> is afinite domain



Kill ;e and Gen,¢

An expression e in E is killed in a program point p (e is in kill ,(p))

if a variable occurring in e is modified (i.e., it is defined by some assignment)
by the command in p.

kill ,e([x:=€'JP)= {e in E | x € vars(e)}

An expression e is generated in a program point p (e is in gen ,(p))

if e is evaluated in p and no variable occurring in e is modified in p.

genc([x:=eJp) ={e} if x ¢ vars(e),
gene([x:=elr) = () if x evars(e);
gen,-([el>e2]r) = expr({el, e2}) where expr(S) returns
the subset of S that are expressions



ExamEle

x:za+b; y:=a*b; while y>a+b do (a:za+l; x:za+b)
E = {a+b, a’b, a+1}

1
X:= a+b;
2
n Kille(n) genpe(n)
1 |Y {a+b}
2 | {a*b}
3 |Y {a+b}
4 |{atb, a*b,a+1} |Y
5 |& {a+b}




Specification

* Available expressions analysis is specified by the following
equations, for any program point p:

r

Z if p is initial

A Eem‘r‘y(p) = <

. N{AE_..(q) | q €pre[p]} otherwise

AEexiT(p): (AEen‘rr'y(p) \ k'”AE(p)) U genAE(p)



Point a and b to C‘EEIX Kleene Theorem

To find a solution to the previous equation system we need to apply
Kleene Theorem

b) (77 (E)xP(E) W, C*> is a finite domain therefore is a
CPO, moreover, it has a bottom element

a) Themap (P ExPE)N > (PEXPE))  defined by
(assuming 1 is the only initial node)
AE(<AEenTry11AEexiﬂI-"IAEen'rryN: >) -
<, (AEem,.yl \ kill ,c(1)) U gen,g(1),

NAE g | q in pre[2]}, (AEppy2 \ Kill4e(2)) U gen,g(2),

N{AE.irq | q in pre[NI]}, >



Point a
a) The map
AE(<AEenTry11AEexi1’1""lAEenTr'le >) =
<D, (AEgniry1 \ Kill ,e(1)) U gen,g(1),
NAE g |  in pre[2]}, (AE ppy2 \ Kill4e(2)) U gen,g(2),

N{AE.uiq | g in pre[NI}, >
is monotone on the finite domain

P &xPeE)y, <>

- Example

AE(x2,2,2,0,0,25 )=

<@ {a+b}, {}, {a*b}, {a*b}, >

AE(<2 {a+b}, {}, {a*b}, {a*b}, >)=

<@ {a+b}, {a+b}, {a+b,a*b}, {a+b,a*b}, >




Which fix point?

AE is a definite analysis:
if e €AE

the converse does not hold

entry(P) Then e is really available in entry to p

* Any fixpoint of the above equation system is an under-approximation
of really available expressions.

Between all fix points, we are thus interested in computing
the greatest fixpoint (the more precise approximation)

Also, observe that this is a forward analysis.



Computing the greatest fix Eoin’r Eertry

The starting point, for all n
(n)=AE,;;(n)={a+b,a*b,a+1}

x:za+b; y:=a*b; while y>a+b do (a:za+l; x:za+b)
E = {a+b, a*b, a+1}

N killae(n) genae(n)
1 | {a+b)

2 |@ {a*b}

3 |9 {a+b}

4 |{a+b, a*b,a+1}|D

5

%)

{a+bj}

AE ... (1)= O

entry(z) ={a + b}

entry

entry

entry(s) _{}

(3)={a+b,a*b} AE
(4)={a+b,a*b} AE_,.(4)={}
AE_ . .(5)={a+b}

exlt(1)={a+b}
..(2) ={at+b,a*b}
..(3)={a+b,a*b}

AE, ..., (p)=@ if p is initial
AEcry(P)= M{AE,,..(q) | g in pre[p] }

AE,.;.(p) = (AEentry(p) \ kill ,.e(p)) U gen,e(p)

1




Second iteration
AE,...,(p)=@ if pis initial
AE.nery(P)= M{AE,,;.(q) | g in pre[p] }
AE_...(p) = (AE,....(p) \ Kill,e(p)) U gen,e(p)

Previous iteration

n

/\Eentry(n)

/\Eexit(n)

%)

{a+b}

{a+b}

{a+b, a*b}

{a+b,a*b}

{a+b,a*b}

{a+b,a*b}

%)

N | | W | N |-

%)

{a+b}

ex1t( 1) AEentry

(3)= AE
(4)= AE
(5)= AE

ex1t entry

ex1t

entry

ex1t entry

(1) U {a+b}
()= AE,,..(2) U {a*b}
(3) U {a+b}
(4) - {a+b, a*b, a+1}
(5) U {a+b}

n o |AE,..,(n) AE,...(n)
1 % {a+b}

2 {a+b} {a+b, a*b}
3 {a+b} {a+b}

4 |{a+b} %)

5 |D {a+b}




Third iteration and Greatest Fixpoint
(p)=2 if pis initial

AE,...(p) = (AE,...,(p) \ Kill ;e(p)) U gen,e(p)

Previous iteration

entry

AE,...,(P)= M{AE,,;.(q) | q in pre[p] }

N |AE (D) AE,...(n)

1 %) {a+b}

2 {a+b} {a+b, a*b}

3 {a+Db} {a+b}

4  |{a+b} %)

5 |9 {a+b}
AE,,:.(1)= AE_,..,(1) U {a+b}
AE.,..(2)= AE,...,(2) U {a*b}
AE,,:.(3)= AE,,..,(3) U {a+b}
AE,,;.(9)= AE,..,(4) - {a+b, a*b, a+1}
AE.,.:.(5)= AE,,..,(5) U {a+b}

N |AE . (N) AE,;(N)
1 %) {a+b}

2 {a+b} {a+b, a*b}
3 {a+b} {a+b}

4  |{a+b} %)

5 |9 {a+b}




Result

x:=a+b; y:=a*b; while y>a+b do (a:za+1; x:za+b)

1
X:= a+b;
N |AE,.(N) AE () ,
1 |9 {a+b}
2 {a+b} {a+b, a*b}
3 {a+b} {a+b}
4  |{a+b} %
5 |< {a+b}




Application:

i:= 0;
while i <= n do
j = 0;
while j <= m do

first computation

Ali.jJ=BLi j1+CLij]

temp := Base(A) + ix(m+1) + j;

Cont (temp) :

:= Cont(Base(B) + i*(m+1) + j)
+ Cont(Base(C) t/i*(qfi) + 3);

j = j+1
od;
i := i+1
od

re-computations

tl =i * (m+1) + j;

temp := Base(A) + ti;

Cont (temp) := Cont (Base(B)+t1)
+ Cont (Base(C)+t1);



A Dataflow Analxsis Framework

The above dataflow analyses (Reaching Definitions,
Available Expressions, Live Variables) reveal many
similarities.

One major advantage of a unifying framework of
dataflow analysis lies in the design of a generic
analysis algorithm that can be instantiated in order to
compute different dataflow analyses.



Ca’raloc_que of Dataflow Analxses

Possible Analysis

Semantics C Analysis

Definite Analysis

Analysisc Semantics

Forward

in[n] outin]  |Reaching definitions Available
pre post expressions
Backward

out[n] in[n] Live variables Very busy
post pre

expressions




