
Dataflow Analyses

Code Optimization in Compilers

Control flow graph

• Program commands are encoded by nodes in a control flow
graph

• If a command S may be directly followed by a command T
then the control flow graph must include a direct arc from
the node encoding S to the node encoding T

 [input n;]1  

[m:= 1;]2  
 [while n>1 do]3

[m:= m * n;]4  

 [n:= n - 1;]5  

[output m;]6

input n;

m:= 1;

n>1;
m:= m*n;

n:= n-1;
output m;

1

2

3
4

5

6

Example

We will see data-flow analyses:
-Liveness analysis
- Reaching definitions analysis
-Available Expressions analysis

Data-Flow analyses

Liveness or Live Variables Analysis

• We need to translate the source program in the
intermediate representation IR that can use a large
(potentially unbounded) number of registers.

• but the program will be executed by a processor with
a (finite and) small number of registers

• Two variables a and b can be stored in the same
register when it turns out that a and b are never
simultaneously “used”

IR: Three Address Code

Three-address instruction has at most three operands
and is typically a combination of an assignment and a
binary operator.
For example: t1 := t2 + t3.

The name derives from the use of three operands in
these statements even though instructions with fewer
operands may occur.

 8

IR: Three Address Code example

a:= 0;

b:= a+1;

1

2

c:= c+b;
3

a:= b*2;
4

a<N;
5

return c;
6

a = 0;
do {
 b = a+1;  
 c += b;
 a = b*2;
}
while (a<N);
return c;

We want to know if a and b are
simultaneously used.

Example

Live Variables Analysis
• A compiler needs to analyze programs in IR in order to

find out which variables are simultaneously used

• A variable X is live at the exit of a command C if X stores
a value which will be actually used in the future, that is,
X will be used as R-value with no previous use as L-value

• A variable X which is not live at the exit of C is also
called dead (this information can be used for dead code
elimination)

• This is an undecidable property

b:= a+1;

a:= 0;
1

2

c:= c+b;
3

a:= b*2;
4

a<N;
5

return c;
6

Back to the example

• A variable X is live when it stores a value
which will be later used with no prior
assignment to X

• The “last” use of the variable b as r-value is in
command 4

• The variable b is used in command 4: it is
therefore live along the arc 3 → 4

• Command 3 does not assign b, hence b is live
along 2 → 3

• Command 2 assigns b. This means that the
value of b along 1 → 2 will not be used later

• Thus, the “live range” of b turns out to be: {2
→ 3, 3 → 4}

a:= 0;

b:= a+1;

1

2

c:= c+b;
3

a:= b*2;
4

a<N;
5

return c;
6

Live variables

•a is live along 4 � 5 and 5 � 2

• a is live along 1 → 2
• a is not live along 2 → 3 and 3 → 4

• Even if the variable a stores a value in node
3, this value will not be later used, since
node 4 assigns a new value to the variable
a.

a:= 0;

b:= a+1;

1

2

c:= c+b;
3

a:= b*2;
4

a<N;
5

return c;
6

• c is live along all the arcs
• By the way: liveness analysis can be

exploited to deduce that if c is a
local variable then c will be used with
no prior initialization (this
information can be used by compilers
to raise a warning message)

More on live variables

a:= 0;

b:= a+1;

1

2

c:= c+b;
3

a:= b*2;
4

a<N;
5

return c;
6 6

a:= 0;

b:= a+1;

1

2

c:= c+b;
3

a:= b*2;
4

a<N;
5

return c;

➔ Two registers are enough: variables a and b will be
never simultaneously live along the same arc

ab:= 0;

ab:= ab+1;

1

2

c:= c+ab;
3

ab:= ab*2;
4

ab<N;
5

return c;
6

Variables a and b will be
never simultaneously live
along the same arc. Hence,
instead of using two distinct
variables a and b we can
correctly employ a single
variable ab

a:= 0;

b:= a+1;

1

2

c:= c+b;
3

a:= b*2;
4

a<N;
5

return c;
6

We need a way to compute live variables

• A CFG has outgoing edges (out-edges) that lead to
successor nodes, and ingoing edges (in-edges) that
originate from predecessor nodes.

• pre[n] and post[n] denote, respectively, the
predecessor and successor nodes of some node n.

• As an example, in this CFG:
— 2 and 6 are successors of node 5 because

5 → 6 and 5 → 2 are the out-edges of 5
— 1 and 5 predecessor 2 since

 5 → 2 and 1 → 2 are the in-edges of 2
— pre[2]={1,5}; post[5]={2,6}.

a:= 0;

b:= a+1;

1

2

c:= c+b;
3

a:= b*2;
4

a<N;
5

return c;
6

• An assignment to some variable (a use of the
variable as L-value) is called a definition of the
variable

• A use of some variable as R-value in a command is
called a use of this variable

• def[n] denotes the set of variables that are
defined in the node n

• use[n] denotes the set of variables that are used
in the node n

• As an example, in this CFG:
• def[3]={c}, def[5]=
• use[3]={b,c}, use[5]={a}

Notation

;
<latexit sha1_base64="XyJA1P140YrPYWC/Se2PL5fLl4Q=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BFvBU0nqQY9FLx4r2A9IQ9lsJ+3S3STsToQQ+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8IBFco+N8W6WNza3tnfJuZW//4PCoenzS1XGqGHRYLGLVD6gGwSPoIEcB/UQBlYGAXjC9m/u9J1Cax9EjZgn4ko4jHnJG0UhefQAywUwD1ofVmtNwFrDXiVuQGinQHla/BqOYpRIiZIJq7blOgn5OFXImYFYZpBoSyqZ0DJ6hEZWg/Xxx8sy+MMrIDmNlKkJ7of6eyKnUOpOB6ZQUJ3rVm4v/eV6K4Y2f8yhJESK2XBSmwsbYnv9vj7gChiIzhDLFza02m1BFGZqUKiYEd/XlddJtNtyrRvOhWWvdFnGUyRk5J5fEJdekRe5Jm3QIIzF5Jq/kzULrxXq3PpatJauYOSV/YH3+APXUkQk=</latexit>

a:= 0;

b:= a+1;

1

2

c:= c+b;
3

a:= b*2;
4

a<N;
5

return c;
6

Formalization

• Of the property: A variable x is live along an arc
e�f if there exists a real execution path P from the
node e to some node n such that:
—e�f is the first arc of such path P
—x use[n]
—for any node n'≠e and n'≠n in the path P,

x∉def[n’]

• A variable x is live-out in some node n if x is live
along some (i.e., at least one) out-edge of n

• A variable x is live-in in some node n if x is live
along any in-edge of n

2
<latexit sha1_base64="X9aYZzXzh4ElmLweYFpCgAFGqJs=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGLiAQlcyN6yBxv29i67cyaE8BtsLDTG1h9k579xgSsUfMkkL+/NZGZemEph0HW/ncLG5tb2TnG3tLd/cHhUPj5pmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3dxvP3FtRKIecZLyIKZDJSLBKFrJr/aEqvbLFbfmLkDWiZeTCuRo9stfvUHCspgrZJIa0/XcFIMp1SiY5LNSLzM8pWxMh7xrqaIxN8F0ceyMXFhlQKJE21JIFurviSmNjZnEoe2MKY7MqjcX//O6GUY3wVSoNEOu2HJRlEmCCZl/TgZCc4ZyYgllWthbCRtRTRnafEo2BG/15XXSqte8q1r9oV5p3OZxFOEMzuESPLiGBtxDE3xgIOAZXuHNUc6L8+58LFsLTj5zCn/gfP4ABiCOKQ==</latexit>

As an example, in this CFG:

a is live along 1 � 2, 4 � 5 and 5 � 2

b is live along 2 � 3, 3 � 4

c is live along any arc

a is live-in in node 2, while it is not live-out in node 2

a is live-out in node 5

a:= 0;

b:= a+1;

1

2

c:= c+b;
3

a:= b*2;
4

a<N;
5

return c;
6

Example

Computing Liveness

Let us define the following notation:

in[n] is the set of variables that the static analysis
determines to be live-in at node n

out[n] is the set of variables that the static analysis
determines to be live-out at node n

y:= x+z+2;
n

in[n] ⊇ use[n]

Computing Liveness

 Liveness information: the sets in[n] and out[n] is computed
as an over-approximation in the following way

1. If a variable x use[n] then x is live-in in node n.  
In other terms, if a node n uses a variable x as R-value then
this variable x is live along each arc that enters into n.

2
<latexit sha1_base64="X9aYZzXzh4ElmLweYFpCgAFGqJs=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGLiAQlcyN6yBxv29i67cyaE8BtsLDTG1h9k579xgSsUfMkkL+/NZGZemEph0HW/ncLG5tb2TnG3tLd/cHhUPj5pmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3dxvP3FtRKIecZLyIKZDJSLBKFrJr/aEqvbLFbfmLkDWiZeTCuRo9stfvUHCspgrZJIa0/XcFIMp1SiY5LNSLzM8pWxMh7xrqaIxN8F0ceyMXFhlQKJE21JIFurviSmNjZnEoe2MKY7MqjcX//O6GUY3wVSoNEOu2HJRlEmCCZl/TgZCc4ZyYgllWthbCRtRTRnafEo2BG/15XXSqte8q1r9oV5p3OZxFOEMzuESPLiGBtxDE3xgIOAZXuHNUc6L8+58LFsLTj5zCn/gfP4ABiCOKQ==</latexit>

 n node of the CFG

y:= w+z*2; n

in[n] ⊇ out[n] - def[n]

Computing Liveness

2. If a variable x is live-out in a node n and x ∉ def[n] then the
variable x is also live-in in this node n.  
If a variable x is live for some arc that leaves a node n and x is
not assigned in n then x is live for all the arcs that enter in n

y:= x+z*2;
m

n2n1

out[n1] ⊇ U{in[m] | m ∈ post[n1]}
out[n2] ⊇ U{in[m] | m ∈ post[n2]}

Computing Liveness

3. If a variable x is live-in in a node m then x is live-out for all the
nodes n such that m∈post[n].

 This is clearly correct by definition.

Dataflow Equations

 The previous three rules of liveness analysis can be
thus formalized by two equations for each node n:

1. in[n] = use[n] U (out[n] - def[n]) (rules 1 and 2)

2. out[n] = U{in[m] | m ∈ post[n]} (rule 3)

This definition of liveness analysis in[n] and out[n] is correct:
 If x is concretely live-in (live-out) in some node n then the
static analysis will detect that x in[n] (x out[n]):

in[n] ⊇ live-in[n]
out[n] ⊇ live-out[n]

In other terms, no actually live variable is neglected by liveness
analysis.

2
<latexit sha1_base64="X9aYZzXzh4ElmLweYFpCgAFGqJs=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGLiAQlcyN6yBxv29i67cyaE8BtsLDTG1h9k579xgSsUfMkkL+/NZGZemEph0HW/ncLG5tb2TnG3tLd/cHhUPj5pmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3dxvP3FtRKIecZLyIKZDJSLBKFrJr/aEqvbLFbfmLkDWiZeTCuRo9stfvUHCspgrZJIa0/XcFIMp1SiY5LNSLzM8pWxMh7xrqaIxN8F0ceyMXFhlQKJE21JIFurviSmNjZnEoe2MKY7MqjcX//O6GUY3wVSoNEOu2HJRlEmCCZl/TgZCc4ZyYgllWthbCRtRTRnafEo2BG/15XXSqte8q1r9oV5p3OZxFOEMzuESPLiGBtxDE3xgIOAZXuHNUc6L8+58LFsLTj5zCn/gfP4ABiCOKQ==</latexit>

Correctness of Liveness

2
<latexit sha1_base64="X9aYZzXzh4ElmLweYFpCgAFGqJs=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGLiAQlcyN6yBxv29i67cyaE8BtsLDTG1h9k579xgSsUfMkkL+/NZGZemEph0HW/ncLG5tb2TnG3tLd/cHhUPj5pmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3dxvP3FtRKIecZLyIKZDJSLBKFrJr/aEqvbLFbfmLkDWiZeTCuRo9stfvUHCspgrZJIa0/XcFIMp1SiY5LNSLzM8pWxMh7xrqaIxN8F0ceyMXFhlQKJE21JIFurviSmNjZnEoe2MKY7MqjcX//O6GUY3wVSoNEOu2HJRlEmCCZl/TgZCc4ZyYgllWthbCRtRTRnafEo2BG/15XXSqte8q1r9oV5p3OZxFOEMzuESPLiGBtxDE3xgIOAZXuHNUc6L8+58LFsLTj5zCn/gfP4ABiCOKQ==</latexit>

Correctness in Dragon Book

Liveness analysis is approximate:

 it assumes that each path of the CFG is a feasible path
while this hypothesis is obviously not true

Computing Liveness

Liveness analysis is approximate: it assumes that each path
of the CFG actually is a feasible path while this hypothesis
is obviously not true.

a:=b*b;

c:=a+b;

c>=b
3

return c return a

The analysis determines that a is live-in in
5, and therefore a is live-out in 3.
However, no real execution path from 3 to
5 exists (because b+b*b<b is always false)
so that a is not really live when exiting 3!

1

2

4 5

Computing Liveness

 1. in[n] = use[n] U (out[n] - def[n])

 2. out[n] = U {in[m] | m ∈ post[n]}

Correctness tells us that in[n] ⊇ live-in[n] and out[n] ⊇ live-
out[n]

But we need a way to compute Live variable analysis

How can we compute a solution to 1 and 2?

How can we compute a solution to 1 and 2?

We need to compute a least fix point

• but how can we be sure that such fix-points exist?
It depends on the domain and on the function!

1. in[n] = use[n] U (out[n] - def[n])
2. out[n] = U {in[m] | m ∈ post[n]}

