Computing an Array Address of an array A[low:high]

A[i]

-@A+(i-low)xsizeof(A[i])
In general: base(A) + (- low $) \times$ sizeof $(A[i])$

Depending on how A is declared, @A may be - an offset from the ARP,

- an offset from some global label, or - an arbitrary address.

The first two are compile time constants.

Computing an Array Address A[low:high]

A[i]

```
where w = sizeof(A[i])
```

- @A+(i-low)xw
- In general: base(A$)+(\mathrm{i}-$ low $) \times \mathrm{w}-2$, known at compile-time \Rightarrow use a shift for speed

If the compiler knows low it can fold the subtraction into @A

$$
A_{0}=@ A-(l o w * w)
$$

The false zero of A

The False Zero

$$
\mathrm{A}[2 . .7] \quad A_{0}=@ A-(l o w * w)
$$

@AO @A

computing $A[i]$ with A

loadI	$@ A$	$\Rightarrow r_{@ A}$
subI	$r_{i}, 2$	$\Rightarrow r_{1}$
lshiftI	$r_{1}, 2$	$\Rightarrow r_{2}$
loadA0	$r_{@ A}, r_{2}$	$\Rightarrow r_{v}$

loadI @ $\quad \Rightarrow r_{\text {@ }}$
subI $\quad r_{i}, 2 \quad \Rightarrow r_{1}$
loadA0 $\quad r_{@ A}, r_{2} \Rightarrow r_{v}$
computing $A[i]$ with $A O$
loadI @ $A_{0} \quad \Rightarrow r_{@ A_{0}}$
lshiftI $\quad r_{i}, 2 \quad \Rightarrow r_{1}$
$\operatorname{loadA0} \quad r_{@ A_{0}}, r_{1} \quad \Rightarrow r_{v}$

How does the compiler handle $A[i, j]$?

First, must agree on a storage scheme
Row-major order
Lay out as a sequence of consecutive rows
Rightmos \dagger subscript varies fastes \dagger
$A[1,1], A[1,2], A[1,3], A[2,1], A[2,2], A[2,3]$
Column-major order
Lay out as a sequence of columns
Leftmost subscript varies fastest
$A[1,1], A[2,1], A[1,2], A[2,2], A[1,3], A[2,3]$
Indirection vectors
Vector of pointers to pointers to ... to values
Takes much more space, trades indirection for arithmetic
Not amenable to analysis

Laying Out Arrays

The Concept

A | 1,1 | 1,2 | 1,3 | 1,4 |
| :--- | :--- | :--- | :--- |
| 2,1 | 2,2 | 2,3 | 2,4 |

These can have distinct \& different cache behavior

Row-major order

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline \text { A } 1 & 1,2 & 1,3 & 1,4 & 2,1 & 2,2 & 2,3 & 2,4 \\
\hline
\end{array}
$$

Column-major order

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline \text { A } & 1,1 & 2,1 & 1,2 & 2,2 & 1,3 & 2,3 & 1,4 \\
2,4 \\
\hline
\end{array}
$$

Indirection vectors

Computing an Array Address

- @A + (i-low) xw
- In general: $\operatorname{base}(A)+(i-l o w) \times w$

What about $A\left[i_{1}, i_{2}\right]$?

1.1	1,2	1,3	1,4
2,1	2,2	2,3	2,4

This stuff looks expensive! Lots of implicit +, -, x ops
Row-major order, two dimensions

$$
@ A+\left(\left(i_{1}-\operatorname{low}_{1}\right) \times\left(\operatorname{high}_{2}-\operatorname{low}_{2}+1\right)+i_{2}-\operatorname{low} 2\right) \times w
$$

$$
A[2,3] @ A+(2-1) \times 4+(3-1)
$$

Column-major order, two dimensions

$$
@ A+\left(\left(i_{2}-\operatorname{low}_{2}\right) \times\left(h_{i g h}-\operatorname{low}_{1}+1\right)+i_{1}-\operatorname{low}_{1}\right) \times w
$$

Indirection vectors, two dimensions

* $\left(A\left[i_{1}\right]\right)\left[i_{2}\right]$ - where $A\left[i_{1}\right]$ is, itself, a 1-d array reference

$$
\text { e.g., @A+(iin low }) \times w
$$

Optimizing Address Calculation for $A[i, j]$

In row-major order

$$
@ A+\left(i-l o w_{1}\right) \times\left(h i g h_{2}-\operatorname{low}_{2}+1\right) \times w+\left(j-\operatorname{low}_{2}\right) \times w
$$

Which can be factored into

$$
\begin{aligned}
& @ A+i \times\left(h i g h_{2}-\operatorname{low}_{2}+1\right) \times w+j \times w \\
& \quad-\left(\operatorname{low}_{1} \times\left(h i g h_{2}-\operatorname{low}_{2}+1\right) \times w\right)-\left(\operatorname{low}_{2} \times w\right)
\end{aligned}
$$

If low ${ }_{i}$, high ${ }_{i}$, and w are known, the last term is a constant
Define @ A_{0} as

$$
\text { @A - }\left(\operatorname{low}_{1} \times\left(\text { high }_{2}-\operatorname{low}_{2}+1\right) \times w-\operatorname{low}_{2} \times w\right.
$$

And len ${ }_{2}$ as $\left(\right.$ high $_{2}-$ low $_{2}+1$)

```
If @A is known, @A0
is a known constant.
```

Then, the address expression becomes

Array References

What about arrays as actual parameters?
Whole arrays, as call-by-reference parameters

- Need dimension information \Rightarrow build a dope vector
- Store the values in the calling sequence
- Pass the address of the dope vector in the parameter slot
- Generate complete address polynomial at each reference

Some improvement is possible

- Choose the address polynomial based on the false zero
- Pre-compute the fixed terms in prologue sequence

What about call-by-value?

- Most languages pass arrays by reference
- This is a language design issue

The Dope vector

```
program main;
    begin;
        declare x(1:100,1:10,2:50),
                y(1:10,1:10,15:35) f1oat;
            ca11 fee(x)
            cal1 fee(y);
    end main;
procedure fee(A)
    declare A(*,*,*) float;
    begin;
        declare x float;
            declare i, j, k fixed binary;
            x = A(i,j,k);
                false zeros!
```


At the Second Call

```
    end fee;
```


Range checking

A program that refers out-of-the-bound array elements is not well formed.

Some languages like Java requires out-of-the-bound accesses be detected and reported.

In other languages compilers have included mechanisms to detect and report out-of-the-bound accesses.

The easy way is to introduce is to introduce a runtime check that verifies that the index value falls in the array range

Expensive!! generate an out-of-bounds reference
Information on the bounds in the dope vector

Array Address Calculations

Array address calculations are a major source of overhead

- Scientific applications make extensive use of arrays and array-like structures
- Computational linear algebra, both dense \& sparse
- Non-scientific applications use arrays, too
- Representations of other data structures
\rightarrow Hash tables, adjacency matrices, tables, structures,

Array calculations tend iterate over arrays

- Loops execute more often than code outside loops
- Array address calculations inside loops make a huge difference in efficiency of many compiled applications

Reducing array address overhead has been a major focus of optimization since the 1950s.

Example: Array Address Calculations in a Loop

A, B are declared as conformable

$$
\begin{aligned}
& \text { DO } \mathrm{J}=1, \mathrm{~N} \\
& \begin{array}{l}
\text { A[I, J] }=A[I, J]+B[I, J] \quad
\end{array} \quad \text { In column-major order } \\
& \begin{array}{ll}
\text { END DO } & \text { @ } A_{0}+\left(j \times \text { len }_{1}+i\right) \times w \\
& \text { number of rows! }
\end{array}
\end{aligned}
$$

Naïve: Perform the address calculation twice

```
DO J \(=1, N\)
    \(R 1=@ A_{0}+\left(J \times{ }^{l} n_{1}+I\right) \times w\)
    \(R 2=@ B_{0}+\left(J \times\right.\) len \(\left._{1}+I\right) \times w\)
    \(M E M(R 1)=M E M(R 1)+M E M(R 2)\)
```

END DO

Example: Array Address Calculations in a Loop

DO $J=1, N$

$$
A[I, J]=A[I, J]+B[I, J]
$$

END DO

More sophisticated: Move common calculations out of loop

```
R1 = I xw
c= len }\times1\timesw ! Compile-time constan
R2 = @ A + R1
R3 = @ B + R1
DO J = 1,N
        a=J }\times
        R4 = R2 + a
        R5 = R3 + a
        MEM(R4) = MEM(R4) +MEM(R5)
END DO
```


Example: Array Address Calculations in a Loop

$D O J=1, N$
$A[I, J]=A[I, J]+B[I, J]$
END DO
Very sophisticated: Convert multiply to add

$$
\begin{aligned}
& R 1=I \times w \\
& c=\operatorname{len}_{1} \times w \quad \text { ! Compile-time constant } \\
& R 2=@ A_{0}+R 1 ; \\
& R 3=@ B_{0}+R 1 ; \\
& D O J=1, N \\
& R 2=R 2+c \\
& R 3=R 3+c \\
& \\
& M E M(R 2)=M E M(R 2)+M E M(R 3)
\end{aligned}
$$

END DO

Representing and Manipulating Strings

Character strings differ from scalars, arrays, \& structures

- Languages support can be different:
- In C most manipulations takes the form of calls to library routines
- Other languages provvide first-class mechanism to specify substrings or concatenate them
- Fundamental unit is a character
- Typical sizes are one or two bytes
- Target ISA may (or may not) support character-size operations

String operation can be costly

- Older CISC architectures provide extensive support for string manipulation
- Modern RISC architectures rely on compiler to code this complex operations using a set a of simpler operations

Representing and Manipulating Strings

Two common representations of string "a string"

- Explicit length field

Length field may take more space than terminator

- Null termination

- Language design issue

Representing and Manipulating Strings

Each representation as advantages and disadvantages

Operation	Explicit Length	Null Termination
Assignment	Straightforward	Straightforward
Checked Assignment	Checking is easy	Must count length
Length	O(1)	$O(n)$
Concatenation	Must copy data	Length + copy data

Unfortunately, null termination is almost considered normal

- Hangover from design of C
- Embedded in OS and API designs

Manipulating Strings

Single character assignment

$a[1]=b[2]$

- With character operations
- Compute address of rhs, load character
- Compute address of Ihs, store character
- With only word operations
(>1 char per word)
- Compute address of word containing rhs \& load it
- Move character to destination position within word
- Compute address of word containing Ihs \& load it
- Mask out current character \& mask in new character
- Store lhs word back into place

Manipulating Strings

Multiple character assignment
Two strategies

1. Wrap a loop around the single character code, or
2. Work up to a word-aligned case, repeat whole word moves, and handle any partial-word end case

With character operations
With only word operations

Manipulating Strings

Concatenation

- String concatenation is a length computation followed by a pair of whole-string assignments
- Touches every character
- There can be length problems!

Manipulating Strings

Length Computation

- Representation determines cost
- Length computation arises in other contexts
- Whole-string or substring assignment
- Checked assignment (buffer overflow)
- Concatenation
- Evaluating call-by-value actual parameter

Boolean \& Relational Values

How should the compiler represent them?

- Answer depends on the target machine

> Implementation of booleans, relational expressions \& control flow constructs varies widely with the ISA

Two classic approaches

- Numerical (explicit) representation
- Positional (implicit) representation

Best choice depends on both context and ISA
Some cases works better with the first
representation other ones with the second!

Boolean \& Relational Expressions

First, we need to recognize boolean \& relational expressions

Expr	\rightarrow	Expr \vee AndTerm	NumExpr	\rightarrow	NumExpr + Term
	1	AndTerm		1	NumExpr - Term
AndTerm	\rightarrow	AndTerm \wedge RelExpr		\|	Term
	1	RelExpr	Term	\rightarrow	Term \times Value
RelExpr	\rightarrow	RelExpr < NumExpr		1	Term \div Value
	1	RelExpr s NumExpr		\|	Value
	1	RelExpr $=$ NumExpr	Value	\rightarrow	\rightarrow Factor
	1	RelExpr \neq NumExpr		1	Factor
	1	RelExpr \geq NumExpr	Factor	\|	(Expr)
	1	RelExpr > NumExpr		1	number

Boolean \& Relational Values

Next, we need to represent the values
Numerical representation

- Assign numerical values to TRUE and FALSE
- Use hardware AND, OR, and NOT operations
- Use comparison to get a boolean from a relational

If the target machine supports boolean operations that compute the boolean result cmp_LTrx,ry-> r1 r1=True if $r \times<=r y, r 1=$ False otherwise

$$
\begin{aligned}
& x<y \quad \text { becomes cmp_LT } r_{x}, r_{y} \Rightarrow r_{1} \\
& \text { if }(x<y) \\
& \text { then stmt }{ }_{1} \text { becomes } \\
& \text { else stmt }{ }_{2}
\end{aligned}
$$

Boolean \& Relational Values

What if the target machine uses a condition code instead than boolean operations as cmp_LT?

```
cmp r1,r2 > cc sets cc with code for LT,LE,EQ,GE,GT,NE
```

- Must use a conditional branch to interpret result of compare

If the target machine computes a code result of the comparison and we need to store the result of the boolean operation

$\mathrm{x}<\mathrm{y}$ becomes		cmp	r_{x}, r_{y}	\Rightarrow	CC_{1}
cbr_LT cc I2,13 sets $P C=12$ if $C C=L T$ $P C=13$ otherwise		cbr_LT	CC_{1}	\rightarrow	$\mathrm{L}_{\mathrm{T}}, \mathrm{L}_{\mathrm{F}}$
	L_{T} :	loadl	1	\Rightarrow	r_{2}
		br		\rightarrow	L_{E}
	$L_{\text {F }}$:	loadl	0	\Rightarrow	r_{2}
	L_{E} :		er st	men	

Boolean \& Relational Values

The last example actually encoded result in $r 2$
If result is used to control an operation we may not need to write explicitly the result! Positional encoding!

	Straight Condition Codes		Boolean Comparisons	
Example	comp	$\mathrm{r}_{\mathrm{x}}, \mathrm{r}_{\mathrm{y}} \Rightarrow \mathrm{CC}_{1}$	cmp_LT	$r_{x}, r_{y} \Rightarrow r_{1}$
if $(x<y)$	cbr_LT	$\mathrm{CC}_{1} \rightarrow \mathrm{~L}_{1}, \mathrm{~L}_{2}$	cbr	$\rightarrow L_{1}, L_{2}$
then $\mathrm{a} \leftarrow \mathrm{c}+\mathrm{d}$	L_{1} : add	$r_{\mathrm{c}}, \mathrm{r}_{\mathrm{d}} \Rightarrow r_{\mathrm{a}}$	L_{1} : add	$\mathrm{r}_{\mathrm{c}}, \mathrm{r}_{\mathrm{d}} \Rightarrow \mathrm{r}_{\mathrm{a}}$
else $a \leftarrow e+f$	br	\rightarrow L $_{\text {OUT }}$	br	\rightarrow Lout
	L_{2} : add	$r_{\mathrm{e}}, \mathrm{r}_{\mathrm{f}} \Rightarrow r_{\mathrm{a}}$	L_{2} : add	$r_{\mathrm{e}}, \mathrm{r}_{\mathrm{f}} \Rightarrow r_{\mathrm{a}}$
	br	$\rightarrow \mathrm{L}_{\text {OUT }}$	br	$\rightarrow \mathrm{L}_{\text {OUT }}$
	Lout: nop		Lout: nop	

Boolean \& Relational Values

Other Architectural Variations

Conditional move \& predication both simplify this code

Example
if $(x<y)$
then $a \leftarrow c+d$
else $a \leftarrow e+f$

Conditional Move				Predicated Execution	
comp	r_{x}, r_{y}	$\Rightarrow C_{1}$	$c m p _L T$	r_{x}, r_{y}	

i2i_LT cc,r1,r2->r3 copy r1 in r3 if cc matches LT, copy r2 in r3 otherwise
(r 1)? add $\mathrm{r} 2, \mathrm{r} 3-\mathrm{r} 4$ the add operation executes if $r 1$ is true
Both versions avoid the branches
Both are shorter than cond'n codes or Boolean compare
Are they equivalent to the initial code? Not always!
Are they better? does code size matter? or execution time?

Boolean \& Relational Values

Consider the assignment $\mathrm{x} \leftarrow \mathrm{a}<\mathrm{b} \wedge \mathrm{c}<\mathrm{d}$

Here, Boolean compare produces much better code

Boolean \& Relational Values

Conditional move help here, too

comp	r_{a}, r_{b}	$\Rightarrow C_{1}$
i2i_LT	$C C_{1}, r_{T}, r_{F}$	$\Rightarrow r_{1}$
comp	r_{c}, r_{d}	$\Rightarrow C_{2}$
i2i_LT	$C C_{2}, r_{T}, r_{F}$	$\Rightarrow r_{2}$
and	r_{1}, r_{2}	$\Rightarrow r_{x}$

i2i_LT cc,r1,r2->r3 copy r1 in r3 if cc matches LT, copy r2 in r3 otherwise
Conditional move is worse than Boolean compare

The bottom line:
\Rightarrow Context \& hardware determine the appropriate choice

Control Flow

If-then-else

- Follow model for evaluating relationals \& booleans with branches

Branching versus predication

- Frequency of execution
- Uneven distribution \Rightarrow do what it takes to speed common case
- Amount of code in each case
- Unequal amounts means predication may waste issue slots
- Control flow inside the construct
- Any branching activity within the construct complicates the predicates and makes branches attractive

Short-circuit Evaluation

Optimize boolean expression evaluation (lazy evaluation)

- Once value is determined, skip rest of the evaluation if (x or y and z) then ...
- If x is true, need not evaluate y or z
\rightarrow Branch directly to the "then" clause
- On a PDP-11 or a VAX, short circuiting saved time
- Modern architectures may favor evaluating full expression
- Rising branch latencies make the short-circuit path expensive
- Conditional move and predication may make full path cheaper
- Past: compilers analyzed code to insert short circuits
- Future: compilers analyze code to prove legality of full path evaluation where language specifies short circuits

Control Flow

Loops

- Evaluate condition before loop (if needed)
- Evaluate condition after loop
- Branch back to the top (if needed)

while, for, do, \& until all fit this basic model

Implementing Loops

for ($\mathrm{i}=1 ; \mathrm{i}<100 ; 1$) \{ loop body \} next statement

Case (switch) Statements

1 Evaluate the controlling expression
2 Branch to the selected case
3 Execute the code for that case
4 Branch to the statement after the case

Parts 1, 3, \& 4 are well understood, part 2 is the key:
need an efficient method to locate the designated code
many compilers provvide several different search schemas each one can be better in some cases.

Case Statements

1 Evaluate the controlling expression
2 Branch to the selected case
3 Execute the code for that case
4 Branch to the statement after the case
Parts 1, 3, \& 4 are well understood, part 2 is the key

Strategies

- Linear search (nested if-then-else constructs)
- Build a table of case expressions \& binary search it
- Directly compute address (requires dense case set)

Linear Search

```
switch (el) {
    case 0: blocko;
        break:
    case 1: blockI;
        break;
    case 3: block3:
    break;
    default: blockd;
    break;
}
```

```
t
if (t. (t = 0)
    ther: Dlocko
    else if ( }\mp@subsup{t}{1}{}=1
    then block_
    else if (tl = 2)
        then block?
        else if (t, = 3)
            then block3
            else blockd
```

 Switch Statement
 Implementing as a Linear Search

Binary Search

```
switch (el) {
    case 0: block0
            break;
    case 15: \mp@subsup{\mathrm{ block}}{15}{}
            greak;
    case 23: block23
            break;
    case 99: block99
                break;
    default: blockd
                break;
l
```


Switch Statement

Value

0	Label
15	$L B_{0}$
23	$L B_{15}$
37	$L B_{31}$
41	$L B_{41}$
50	$L B_{50}$
68	$L B_{68}$
72	$L B_{72}$
83	$L B_{83}$
99	$L B_{99}$

Search Table

```
t
down \leftarrow0 // lower bound
up \leftarrow 10 // upper bound + 1
wnile (aown + 1 < un) {
    middle}\leftarrow(up+down) \div 2
        if (Value [middle] \leq t 
        then down }\leftarrow\mathrm{ middle
        else up }\leftarrow middl
}
if (Value [down] = th
    then jump to Label[down]
    else jump to LB
```

Code for Binary Search

Direct Address Computation

- requires dense case set

```
switch (eq) {
```


Jump Table

```
t
if (0> t or t
    then iump to LBd
    else
        t2 \leftarrow@Table + t + < <4
        t
        jump to t/3
```


Code for Address

Computation

Switch Statement

