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Structure of a Compiler

A compiler is a lot of fast stuff followed by some hard problems 
— The hard stuff is mostly in code generation and optimization 
— For multicores, we need to manage parallelism & sharing 
— For unicore performance, allocation & scheduling are critical
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Structure of a Compiler

We assume the following model 

•  Selection can be  fairly simple (problem of the 1980s) 
•Allocation & scheduling are complex 
•Operation placement is not yet critical      
         we assumed a  unified register set  
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What about the IR ? 

• Low-level, RISC-like IR such as ILOC  
• Has “enough” registers 
• ILOC was designed for this stuff with:

• Branches, compares, & labels 
• Memory tags 
• Hierarchy of loads & stores 
• Provision for multiple ops/cycle



• The translation of the front end was obtained by considering the 
statements one of the time as they were encountered 

• This initial IR  contains general implementation strategies  that 
will work in any  surrounding context 

• At run time the code will be executed in a more constrained and 
predictable context  

• The optimizer analyses the IR form of the code to discover facts 
about the context and use them to rewrite (transform)  the code 
so that it will compute the same answer in a more efficient way  

Analysis & Optimization  
 



The Back End

The compiler back end traverses the IR form and emits the 
code for the target machine 

• It selects target-machine operations to implement each IR 
operation (Instruction selection)  

• It chooses an order in which the operations will execute 
efficiently (Instruction scheduling) 

• It will decide which values will reside in registers and which 
in memory (Register allocation)



Definitions
Instruction selection 
• Mapping IR into assembly code 
• Assumes a fixed storage mapping & code shape 
• Combining operations, using address modes (instr. reg+offset or reg to 

reg mode) 

Instruction scheduling 
• Reordering operations to hide latencies 
• Assumes a fixed program  (set of operations) 
• Changes demand for registers 

Register allocation 
• Deciding which values will reside in registers 
• Changes the storage mapping, may add false sharing 
• Concerns about placement of data & memory operations

These 3 problems 
are tightly coupled 

and need static 
analysis



Code  Shape          (Chapter 7)

Definition 
• The compiler must choose among many alternative ways to 

implement each construct on a given processor 
• Those choices have a strong and direct impact on the quality of 

the final produced  code 
• Code shape is the end product of many decisions  (big & small) 

Impact 
• Code shape has a strong impact on the behaviour of the compiled 

code and on the ability of the optimizer and back end to improve 
it    

• Code shape can encode important facts, or hide them



Code Shape
Example -- the case statement on a character value 
• Implement it as cascaded if-then-else statements 

— Cost depends on where your case actually occurs 
— O(256) 

• Implement it as a binary search 
— Need a dense set of conditions to search 
— Uniform (log 256) cost 

• Implement it as a jump table 
— Lookup address in a table & jump to it 
— We trade data space for speed 
— Uniform (constant) cost 

All these are legal (and reasonable) implementations of the switch 
statement 

Performance depends 
on order of cases!



Which implementation for switch?

The one that is the best for a particular switch statement  depends 
on  many factors such as: 

-The number of cases and their relative executions frequencies 
-The knowledge of the cost structure for branching on the 
processor 

Even when the compiler does not have enough information to 
choose it must choose an implementation strategy 

No amount of massaging or transforming will convert one into 
another



Code Shape: the ternary operation x+y+z

Several ways to implement x+y+z  

• What if the compiler knows that x is constant  2 and z is 3? 
The compiler should detect 2+3 evaluates and fold it into the code 

• What if y+z is evaluated earlier? 
The “best” shape for x+y+z depends on contextual knowledge 
— There may be several conflicting options

x + y + z x + y → t1 

t1+ z → t2

x + z → t1 

t1+ y → t2

y + z → t1 

t1+ x → t2
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Addition is commutative & 
associative for integers 



Code Shape

Why worry about code shape?  Can’t we just trust the 
optimizer and the back end? 

• Optimizer and back end approximate the answers to many 
hard problems 

• The compiler’s individual passes must run quickly 
• It often pays to encode useful information into the IR 

— Shape of an expression or a control structure 
— A value kept in a register rather than in memory  

• Deriving such information may be expensive, when possible 
• Recording it explicitly in the IR is often easier and cheaper



How to generate ILOC code

• The three-address form lets the compiler name the result of any 
operation and preserve it for later reuse 

• It uses always new register and leave to the allocator the duty of 
reduce them  

• To generate code for a trivial expression a+b the compiler emits 
code to ensure that the values of a and b are in registers  

• If a is stored in memory at offset       in the current Activation  
Record  (AR), the  code is 

@a
<latexit sha1_base64="qi6nE1AS4FVdI4xlrKx3OlprqUk=">AAACDXicbVC7TsMwFHXKq4RXgZHFokViqpIywFjBwlgk+pCaqHKcm9aq40S2g1RF/QEWfoWFAYRY2dn4G9w2A7Qc6UpH59xr33uClDOlHefbKq2tb2xulbftnd29/YPK4VFHJZmk0KYJT2QvIAo4E9DWTHPopRJIHHDoBuObmd99AKlYIu71JAU/JkPBIkaJNtKgUqt5AQyZyImUZDLNOedTbDeJ7YEIC7E2qFSdujMHXiVuQaqoQGtQ+fLChGYxCE05UarvOqn2zXOaUQ5T28sUpISOyRD6hgoSg/Lz+TVTfGaUEEeJNCU0nqu/J3ISKzWJA9MZEz1Sy95M/M/rZzq68nMm0kyDoIuPooxjneBZNDhkEqjmE0MIlczsiumISEK1CdA2IbjLJ6+STqPuXtQbd41q87qIo4xO0Ck6Ry66RE10i1qojSh6RM/oFb1ZT9aL9W59LFpLVjFzjP7A+vwBGN2bkA==</latexit>

loadI @a ) r1
loadA0 rarp, r1 ) ra

<latexit sha1_base64="oTKoPzB9USR084koirwQDmoMdGA="></latexit>



Generating Code for Expressions

The idea 
• Assume an AST as input and ILOC  
   as output 
• Use a postorder treewalk evaluator 

> Visits & evaluates children 
> Emits code for the op itself 
> Returns register with result 

• Bury complexity of addressing  
   names in routines that it calls 

> base(), offset() and val() 
• Works for simple expressions 
• Easily extended to other operators

expr(node) { 
   register result, t1, t2; 
   switch (type(node)) { 
         case ×,÷,+,− : 
              t1← expr(left child(node)); 
              t2← expr(right child(node)); 
              result ← NextRegister(); 
              emit (op(node), t1, t2, result); 
              break; 
         case IDENTIFIER: 
             t1← base(node); 
               t2 ← NextRegister(); 
              emit (loadI, offset(node), none, t2); 
              result ← NextRegister(); 
              emit (loadAO, t1, t2, result); 
              break; 
         case NUMBER: 
              result ← NextRegister(); 
              emit (loadI, val(node), none, result); 
              break; 
          } 
          return result; 
  }

the node of the AST



Generating Code for Expressions (a naive translation)

Example: 

Produces for register counter 0 :

+

x y

expr(node) { 
   register result, t1, t2; 
   switch (type(node)) { 
         case ×,÷,+,− : 
              t1← expr(left child(node)); 
              t2← expr(right child(node)); 
              result ← NextRegister(); 
              emit (op(node), t1, t2, result); 
              break; 
         case IDENTIFIER: 
              t1← base(node); 
               t2 ← NextRegister(); 
              emit (loadI, offset(node), none, t2); 
              result ← NextRegister(); 
              emit (loadAO, t1, t2, result); 
              break; 
         case NUMBER: 
              result ← NextRegister(); 
              emit (loadI, val(node), none, result); 
              break; 
          } 
          return result; 
  }

base(id) loads  the right pointer to  
 the AR where id is defined in register rarp

espr(“x”):  

NextRegister(): r1     loadI @x               -> r1  
NextRegister(): r2 loadA0     rarp, r1  -> r2 
espr(“y”):  
NextRegister(): r3  loadI @y               -> r3  

NextRegister(): r4  loadA0     rarp, r3  -> r4 
NextRegister() : r5 
Emit(add, r2,r4,r5) :  
                        add          r2, r4   -> r5



Generating Code for Expressions (a naive translation)

Produces for register counter 0 :

+

×x

yz
expr(node) { 
   register result, t1, t2; 
   switch (type(node)) { 
         case ×,÷,+,− : 
              t1← expr(left child(node)); 
              t2← expr(right child(node)); 
              result ← NextRegister(); 
              emit (op(node), t1, t2, result); 
              break; 
         case IDENTIFIER: 
               t1← base(node); 
               t2 ← NextRegister(); 
              emit (loadI, offset(node), none, t2); 
              result ← NextRegister(); 
              emit (loadAO, t1, t2, result); 
              break; 
         case NUMBER: 
              result ← NextRegister(); 
              emit (loadI, val(node), none, result); 
              break; 
          } 
          return result; 
  }

      espr(“x”):   
    NextRegister():r1,  loadI       @x       -> r1  
   NextRegister():r2   loadA0     rarp, r1 -> r2 

     espr(“z”):   

    NextRegister():r3  loadI       @z       -> r3  
   NextRegister():r4 loadA0    rarp, r3  -> r4 

     espr(“y”):   

   NextRegister():r5 loadI      @y        -> r5  
   NextRegister():r6 loadA0   rarp, r5   -> r6 

     NextRegister():r7 
    Emit(mul, r4,r6,r7) : 

         mult       r4,   r6  -> r7 
  NextRegister():r8 
    Emit(add, r2,r7,r8) : 

        add        r2,    r7 -> r8



Effects of code shape on  the demand of registers
• Code shape decisions encoded into the tree walk code generator 

have an effect on the demand of registers 

• The previous naive code uses 8 registers + 

• The register allocator (later in compilation) can reduce the 
demand for register to 3 +   rarp

<latexit sha1_base64="0CnDF0hJXWaX075C6LwUuKy9Ddg=">AAACFXicbVDLSsNAFJ34rPFVdelmsBVcSEnqQpdFNy4r2Ac0IUymt+3QySTMTIQS8hNu/BU3LhRxK7jzb5y2WWjrgQuHc+6dufeECWdKO863tbK6tr6xWdqyt3d29/bLB4dtFaeSQovGPJbdkCjgTEBLM82hm0ggUcihE45vpn7nAaRisbjXkwT8iAwFGzBKtJGC8nnVC2HIREakJJM845zn2MYyMEKSe57tgegXZjUoV5yaMwNeJm5BKqhAMyh/ef2YphEITTlRquc6ifbNc5pRDrntpQoSQsdkCD1DBYlA+dnsqhyfGqWPB7E0JTSeqb8nMhIpNYlC0xkRPVKL3lT8z+ulenDlZ0wkqQZB5x8NUo51jKcR4T6TQDWfGEKoZGZXTEdEEqpNkLYJwV08eZm06zX3ola/q1ca10UcJXSMTtAZctElaqBb1EQtRNEjekav6M16sl6sd+tj3rpiFTNH6A+szx+v+J8j</latexit>

rarp
<latexit sha1_base64="0CnDF0hJXWaX075C6LwUuKy9Ddg=">AAACFXicbVDLSsNAFJ34rPFVdelmsBVcSEnqQpdFNy4r2Ac0IUymt+3QySTMTIQS8hNu/BU3LhRxK7jzb5y2WWjrgQuHc+6dufeECWdKO863tbK6tr6xWdqyt3d29/bLB4dtFaeSQovGPJbdkCjgTEBLM82hm0ggUcihE45vpn7nAaRisbjXkwT8iAwFGzBKtJGC8nnVC2HIREakJJM845zn2MYyMEKSe57tgegXZjUoV5yaMwNeJm5BKqhAMyh/ef2YphEITTlRquc6ifbNc5pRDrntpQoSQsdkCD1DBYlA+dnsqhyfGqWPB7E0JTSeqb8nMhIpNYlC0xkRPVKL3lT8z+ulenDlZ0wkqQZB5x8NUo51jKcR4T6TQDWfGEKoZGZXTEdEEqpNkLYJwV08eZm06zX3ola/q1ca10UcJXSMTtAZctElaqBb1EQtRNEjekav6M16sl6sd+tj3rpiFTNH6A+szx+v+J8j</latexit>

                  loadI      @x       -> r1  
                  loadA0    rarp, r1  -> r1 

                  loadI      @z         -> r2  
                  loadA0    rarp, r2  -> r2 

                  loadI      @y         -> r3  
                  loadA0    rarp, r3  -> r3 

 mult       r2,    r3   -> r2 
 add        r1,    r2   -> r2



load @z ) r1
loadA0 rarp, r1 ) r2
load @y ) r3
loadA0 rarp, r3 ) r4
mult r2, r4 ) r5
load @x ) r6
loadA0 rarp, r6 ) r7
add r7, r5 ) r8

<latexit sha1_base64="zDnpkzNZEl0BwyYrhlnNqhoLtbg="></latexit>

load @z ) r1
loadA0 rarp, r1 ) r1
load @y ) r2
loadA0 rarp, r2 ) r2
mult r1, r2 ) r1
load @x ) r2
loadA0 rarp, r2 ) r2
add r2, r1 ) r1

<latexit sha1_base64="vsnMu19iZmlyPeJvvaZ6FB5cl8k="></latexit>

   after register allocation

The best solution: alternate  right and left children

evaluating z×y first

General rule: evaluate first the  
child that has more demand for registers 

Code shape!



Some observations

What if our IDENTIFIER is 

• already in a register? 

• in a global data area? 

• a parameter value? 

✴ call by value  
✴ call by reference



Extending the Simple Treewalk Algorithm

It assumes a single case for id, more cases for IDENTIFIER 
• What about values that reside in registers?   

— Modify the IDENTIFIER case 
• Already in a register ⇒ return the register name 
• Not in a register ⇒ load it as before, but record the fact 

— Choose names to avoid creating false dependences 
• What about  parameter values ? 

— Call-by-value ⇒ it can be handled as it was a local variable  as 
before  

— Call-by-reference ⇒ extra indirection 3 instructions. The value 
may not be kept in a register across an assignment (see next 
slide) 

• What about function calls in expressions? 
— Generate the calling sequence & load the return value 
— Severely limits compiler’s ability to reorder operations



Keeping values in registers

• In a register-to register memory model, the compiler tries to 
assigns many values as possible to virtual registers 

• Then the register allocator will map the set of virtual to physical 
registers inserting the spills 

• However, the compiler can keep  values in a register only for 
unambiguous value:  
a value that can be accessed with just one name is unambiguous



The problem with ambiguous values
• Consider a  and b ambiguous and the following code  

a := m+n; 
b := 13; 
c:= a+b; 

If a and b refers to the same location c gets value 26, 
otherwise c gets value m+n+13; 

The compiler cannot  keep a in a register during the assignment 
of b unless it proves that the set of location that the two name 
refer to are disjoint. This analysis can be expensive! 

sharing analysis !



Where do ambiguous values arise? 

Ambigous values may arise in several ways : 

• values stored in a pointer based variable 

• call by reference formal parameter  

• many compilers treat array element values as ambiguous because 
they can not tell if two references A[i,j] e A[n,m] refer  to the 
same location 

for safety the compiler has to consider 
that values as ambiguous



Extending the Simple Treewalk Algorithm

Adding other operators 
• Evaluate the operands, then perform the operation 
• Complex operations may turn into library calls (exp. and trig fun.) 
Mixed-type expressions 
• Insert conversion code as needed from conversion table 
• Most languages have symmetric & rational conversion tables

Typical 
Table for 
Addition

If the type cannot be inferred at compile time,  the compiler must insert code for run-time checks 
that test for illegal cases!



Extending the Simple Treewalk Algorithm

What about evaluation order? 
Can use commutativity & associativity to improve code for integers  
• For recognising that already computed that value   

a+b = b+a  
• For recognising that it can compute subexpressions  

a+b+d  and c+a+b  
(it does not if it evaluates the expressions in strict left right order!)  

It should not reorder floating point expressions! 

• The subset of reals represented on a computer does not 
preserve associativity 

a-b-c   the results may depend on the evaluation order!



Handling Assignment         (just another operator)

lhs ← rhs 

Strategy 
• Evaluate rhs to a value                                            (an rvalue) 
• Evaluate lhs to a location                                        (an lvalue) 

— lvalue is a register ⇒ move rhs 
— lvalue is an address ⇒ store rhs 

• If rvalue & lvalue have different types 
— Evaluate rvalue to its “natural” type 
— Convert that value to the type of *lvalue 

Unambiguous scalars go into registers 
Ambiguous scalars or aggregates go into memory



Handling Assignment

What if the compiler cannot determine the type of the rhs? 
• Issue is a property of the language & the specific program 
• For type-safety, compiler must insert a run-time check 

— Some languages & implementations ignore safety         (bad idea) 

• Add a tag  field to the data items to hold type information 
— Explicitly check tags at runtime 

Code for assignment becomes more complex
evaluate rhs
if type(lhs) ≠ rhs.tag
   then 
      convert rhs to type(lhs) or 
      signal a run-time error
lhs ← rhs

Choice between conversion & a 
runtime exception depends on 
details of language & type system 

Much more complex than static 
checking, plus costs occur at 
runtime rather than compile time



Handling Assignment
Compile-time type-checking 
• Goal is to eliminate the need for both tags & runtime checks  
• Determine, at compile time, the type of each subexpression 
• Use runtime check only if compiler cannot determine types 

Optimization strategy 
• If compiler knows the type, move the check to compile-time 
• Unless tags are needed for garbage collection, eliminate them 
• If check is needed, try to overlap it with other computation 

Can design the language so all checks are static



Handling Assignment when Reference (pointer) Counts is used  

Reference counting is an incremental strategy for implicit storage 
deallocation             (alternative to batch collectors called on demand) 

•Simple idea 
— Associate a count with each heap allocated object 
— Increment count when pointer is duplicated 
— Decrement count when pointer is destroyed 
— Free when count goes to zero 

•Advantages 
— Useful in real-time applications, user interfaces 
— Counts will be in cache 

Disadvantages 
— Freeing root node of a graph implies a lot of work & disruption 
— Cyclic structures pose a problem



Handling Assignment when Reference Counts is used
Implementing reference counts  
• Must adjust the count on each pointer assignment 
• Extra code on every counted (e.g., pointer) assignment  

Code for assignment becomes 

With extra functional units & large caches, the overhead may 
become either cheap or free …

evaluate rhs
lhs→count - -
lhs ← addr(rhs)
rhs→count + +
if (lhs→count = 0)
   free lhs



Code Generation for Expressions 
• Simple treewalk produces reasonable code 

— Execute most demanding subtree first 
— Can implement treewalk explicitly, with an Attributed grammar 

 or ad hoc Syntax directed translation … 

• Handle assignment as an operator 
— Insert conversions according to language-specific rules 
— If compile-time checking is impossible, check tags at runtime 
— Talked about how to handle  reference counting (an alternative 

to Garbage Collector)

Summary

Next computing Array access!


