Linguaggi formali



Let's start from the beginning

- A program is written in a programming language

- Every programming language (as every language in general) needs
to obey its own rules

* We need to formally define languages...



Reference books

Intoduction to Automata Theory, Languages, And Computation.
Hopcroft, Motwani, Ullman

Fondamenti dell'Informatica. Linguaggi formali, calcolabilita' e complessita'.
Dovier, Giacobazzi
Bollati Boringhieri



Strings

* An alphabet is a finite set of symbols

» Examples

2,={a,b,c,d, .. z} the set of letters in Italian
2, = {0, 1}: the set of binary digits

25 ={(,)}: the set of open and closed brackets

A string over alphabet X is a finite sequence of symbols in Z.
- Examples
abfbz is a string over £1={q, b, c, d, ..., z}

11011 is a string over 22 = {0, 1} The empty string is a string having

)O(Q) is a string over X3 = {(, )} no symbol, denoted by e.



S’rr'ings

The length of a string x is the number of symbols
contained in the string x, denoted by |x]|.

» Examples
abfbz|=5

110010|=6
NOWO1=7
e|=0




Strings

The concatenation of two strings x and y is a string xy,

i.e., X is followed by y.

it is an associative operation that admits the neutral element ¢

s is a substring of x if there exist stringsy and z

such that x = ysz.

In particular,

Example:
the prefixes of abc are : ¢, a, ab, abc

when x = sz (substring with y=¢), s is called a prefix of x;
when x = ys (substring with z=¢), s is called a suffix of x;
e is a prefix and a suffix of € and of all strings




Power of an alphabet

We need to denote the set of all strings over % of a given length
5 denotes the strings of length n whose symbols are in =

If £=(0,1}

2 = (o)

s x:= {01

s - {000111,10)

53 - {000,001,010,011, 100,101,110 111}

+ _ vyl 2 3 4 _ 1
St=2lus?usPuy u..._Uoz S = e Ust
+ 1>

> = {01,00,01,11,10,000,001,010,011,100,101,110,111...}



Languages

A language is a set of strings over an alphabet:

L € >* is a language over =

Examples

L, = The set of all strings over Z, that contain the substring "fool”

L, = The set of all strings over X, that are divisible by 7
={7,14,21, .}

L, . The set of all strings over X ;where every (is followed by 2

occurrences of )

={.)).)0). .}



Other examEIes of Languages

L, = The set of binary numbers whose value is prime
{10,11,101,111,1011,1101, ..}

Ly = The set of legal English words over the English alphabet

L, . The set of legal C programs over the strings of characters



Languages

The following are operations on sets and hence also on languages.
Union: AU B
Intersection: An B

Difference: A\ B (A -BwhenBCA)

Complement: A = Z* - A where Z* is the set of all strings on
alphabet Z.

Concatenation: AB ={ab | ac A, b € B}

Example: {0, 1}{1, 2} = {01, 02, 11, 12}



Kleene Clousure

0. @)
Kleene closure: A* = U A"
i=0

* Notation: AT = U A’
i=1



More example of Languages

Examples:
*The set of strings with n1's followed by n O's
{e, 01,0011, 000111, . . }

*The set of strings with an equal nhumber of O'sand 1's
{¢,01, 10, 0011, 0101, 1001, . . .}

* The empty language @
* The language {¢} consisting of the empty string only

Remember @ - {&}



Problems

* Does the string w belong to the language L?

Example: 11101 e L,?

We want to define a procedure to decide it!

We can try to generate all words belonging to L,

We can try to recognise when a word belongs to L,



Generating a language: Grammars

Starting from a particular initial symbol, using the rewriting rules
of the productions,
we generate the set of strings belonging to the language



Grammars I

We define a Grammar 6=(=, N, S, P) where :

» 2 is the alphabet, a set of symbols (called terminals)
N is the set of nonterminals

+ 5€ N is the starting symbol

‘P is the set of productions, each of the form

U—-V
where UE(Z u NY and VE (= u N)* .



Grammars IT

G=(%,N, S, P)

A string w& Z is generated by G if there is
a derivation of w using P, starting from the starting symbol S.

G= ({a}, {S}, S, P) S —>¢
S —a
S —aS

A language generated by grammar G is denoted L(G) and it is the set of
strings derived using G.



Grammar Example

We want to describe L1 the language of strings with an even number of
I's

L1 can be generated by a grammar ({0,1} {S,T},S,P) with P equal to

S —¢
S —-0S
S—1T
T—0T
T— 1S

A string belongs to L1 iff it can be generated by the grammar



Grammar Example

Does the string 01010 belong to L1?
We need to find a derivation

S —-¢|0s|1T
T—-0T]|1sS



Recognising a language: Automata

+ A finite state automaton is finite state machine with an input of
discrete values.

* The state machine consumes the input and possibly moves to a
different state.

» The system may be in a state among a finite set of possible states.
Being in a state allows him to keep track of previous history.

input: bbaa




Back to our Problems

* Does the string w belong to the language L?
We have two ways to answer this question
* Which is the computational complexity necessary to answer

to the previous question ?

It depends on the complexity of the language!l



Grammars and Languages

Restrictions on productions give different types of grammars :

*Regular (type 3)
*Context-free (type 2)

» Context-sensitive (type 1)
* Phrase-structure (type O)

U—V
where Ue (Z u N)+ and Ve (Z u N)*.

For context-free, e.g., UeN
No restrictions for phrase-structure

A language is of type i iff it admits a grammar of type i (which describes it)



P: decidable in polynomial time
PSPACE: decidable in polynomial space (at least as hard as NP-complete)

. U: undecidable
Complexity of Languages Problems

Regular Context Context Unrestricted
Free Sensitive
Grammar  Grammar Grammar  ©rammar
Type O
Type 3 Type 2 Type 1
Is WEL(6)? P P PSPACE U
Is L(G) empty? P P U V)

Is L(G1)= L(62)? PSPACE U U U



Regular languages

All the following ways to represent regular languages are equivalent:
» Regular grammars (RG, type 3)
- Deterministic finite automata (DFA)

* Non-deterministic finite automata (NFA)

- Non-deterministic finite automata with € ftransitions (-NFA)

» Regular expressions (RE)



Regular Grammars

A Right (or, analogously, Left) Grammar is a generative
grammar, where

» every production has the form A->aB| a

- only for the starting symbol S, we can have S— ¢

every non terminal symbol B is always preceded by a terminal one.

Example

G=({a,b}, {S,B},S,P) where productions P are:
S->aS|aB
B->bB|b
aaabb € L(G)
S

L(G)={a"b""| h,m>0}



Deterministic Finite Automata

The states of a switch:

Push

~Q_&

Push

An automaton recognising the keyword then:

OO



Deterministic Finite Automata

A deterministic finite automaton (DFA) (Q, 2, 0 qo.F)
Q@ a finite set of states
> a finite set Z of symbols

d:Qx Z->Q a transition function that takes as argument a state and a symbol
and returns one state

qo the starting state

FC Q@ the set of final or accepting states



Deterministic Finite Automata

How to represent a DFA? With a transition table

0 1
O D -> indicates the starting state
(B * indicates the final states
*q1 q1 | q1
q2 q2 | q1

This defines the following ftransition diagram

1 0



Deterministic Finite Automata

When does an automaton accept a word?
It reads a word and accept it if it stops in an accepting state

here Q: {QOa d1, 42,43, 44, Q5} F:{Q4}
Only the word then is accepted



How DFA processes Strings

We build an automaton that accepts string containing the substring
01

>={0,1}
L={x01ly| x,ycZ}

We get

—A

1

0 B

C
0

*xD

O Q O Qf|o
O O W W+~



Ex‘rending the transition function to Strings

We define the transitive closure of ()

SIQXZ*HQ

_—

AN

A string x is accepted by M=(Q, %, & ,qo,F) iff &(qo,x) € F

L(M) = {x € %*8(qo, x) € F}



Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) allows more than one
transition on the same input symbol.

Formally, a NFA is defined as (Q, =, & ,qo, F) where the only
difference is the transition function

5:QxZ->p(Q) atransition function that takes as argument

a state and a symbol and
0
0
0
—( qo '
1

returns a set of states




Ex’rending the transition function to Strings

We define the transitive closure of &

-
—_—

AN

A string x is accepted by M=(Q, =, & ,qo,F) iff §(qo,z) N F # 1
L(M) = {z € £*[8(qo, z) N F # 0}

NFAs do not expand the class of language that can be accepted !



Example

0 1 NFA
— qo| {90} {do,q1}

ar | {g1} {do, d2} w

* q2 | {d1,492} | {90,41,492} 1
)
0

L= {z €{0,1}" | x contains at least 2 occurrences of 1}

F={q2}

1
0,1

q1 | gi :Q2
xd2 | d2 | 92

o | 0 o__ 0,1
1 1

—3 do | 9o | q1 _>
DFA




Different characterisation of Regular Languages

There are different ways to characterise a regular language

e Regular grammars

e Deterministic Finite Automata

* Non Deterministic Finite Automata

* Epsilon Non deterministic Finite Automata
* Regqular expression



Roadmap: equivalence between NFA and RG

DFA NFA «— RG

- e-NFA



From Regular Grammars to NFA

Theorem 1.
For each right grammar RG (or left grammar LG), there is a non
deterministic finite automaton NFA such that L(RG)=L(NFA).

Construction Algorithm

For a given right grammar RG=(~, N, S, P) there is a corresponding
NFA=(N U{F}, =, 8,5, F') where F is a newly added state and
if F'={F}U{S}if S-> ¢ belongs to P, F'= {F}, otherwise.

The transition function & is defined by the following rules.
1) For any A->a belonging to P, withain X, set 6(A,a) = F
2) For any A-> aB belonging to P, withain Z and B in N, set 3(A,a)=B



Example

G6=({a,b}, {S,B},S,P) where productions P are:
S->aS|aB
B->bB|b L(G)={ a"b™ | nm>0}



From NFA fo Regular Grammars

Theorem 2
For each nondet finite automaton NFA, there is one right grammar RG (or
left grammar LG) where L(RG)=L(NFA).

For a given finite automata NFA= (Q, 2, 0 , qo,F), a corresponding right

grammar RG=(Z,Q, qo’, P) can be constructed using the following steps
1) for any 6(A,a)=B add A—aB to P,
2) if B belongs to F add also A—a to P;

If qo belongs to F then add g-> qo | € to P and qo'=q else qo'=qo.



Example

0 1 NFA

— qo | {qo} {do, q1}
ar | {g1} {do, d2}
*x qd2 | {1,492} | {do,d1, 92}

{z== {0,1}" | & cor x contains at least 2 occurrences of 1}



RoadmaE: eguivalence between DFA and NFA

trivial |
DFA < " NFA «—, RG

RE E-NFA



From a NFA to a DFA

The NFA are usually easier to "program".
For each NFA N there is a DFA D, such that L (D) =L (N),.

This involves a subset construction.

Given an
NFA N =

we will build a (QN,2, 0N, q0, FN)
DFA D =

such that (@p,>,0p,q0, Fp)

L(D)=L(N)



From NFA to a DFA

QD — @(QN)a

Note that not all these state are necessary, most of them will be
unreachable.

VP € P(QnN) : op(P,a) =,cpon(p,a)

Fp={PeP(@Qn)|PNF#0}



Example

NFA

AN

/ﬁ
~
1
0

0 1
do | {do} {do, q1}
ar | {di} {do, q2}
*x q2 | {91,492} | {90, 41,492}

0,1

Consider all the subsets P(Qn)

Which ones are final?

{do} {a1} (d2)

{do,aq1}  {do,qz2}| [{d1,42}

{d0, 41,492}




Example

NFA

0 1
do | {do} {do, q1}
a1 | {a1} {do, 92}
*x 42 [ 1d1,492} | {do,d1,4d2}

P(QN) 0

{do} {q1} (d2)

{do,q1}  {do,qz2}| [{d1,42}

{90, 41,92}




Example

NFA
0 1
do | {do} {do, q1}
qar | {ai} {do, q2}
*xd2 | {a1,4d2} | {do0,d1, 92}
PQy) o
(@} o) [a2)
{do, a1} |{do,q2}| [{d1,4d2}

{90, 41,92}

0 1
- 0 iy Ny
: {do) ({q0) ) | (ao,qr)




Example

NFA
0 1
do | {90} {do0,q1}
ar | {a1} {do, 92}
*xd2 | {a1,4d2} | {do0,d1, 92}
P(QnN)
o
e
(@} (@} [az)
{do,d1}  |{do, a2} | |{d1,d2}

{90, 41,92}

0 1

o 0 0 ]
) {qo} Aget {ge+aqq)
—q {dq1} ({a1)} ) | (ao,q2)




Example

NFA
0 1
do | {90} {do, q1}

ar | {di} {do, q2}
*xd2 | {a1,4d2} | {do0,d1, 92}

0 1
PQ@Nn) o T ] d
4} {qo} {do} {do, q1}
gl ay faad [ {ge.qo}
taok  fan) Qa2 g (o (a1,92) [(@o.a1,02)

{do,q1}  {do,qz2}| [{d1,42}

{90, 41,92}




Example

NFA
0 1
do | {do} {do, q1}
qir | {a1} {do, q2}
x4d2|| ta1,4dz2} | {do,d1,d2}
0 1
0 S 0 0 0
o 4 {qo} {do~ {do, d1 N\,
ol }/ 7y I — IR T Aai} | [ a0, a2}
do R {d2) {a1,92) éﬂo, q1,d2)
— ) a3 | {ao,a1) | {go,a1) [{do,a1,92D
{do, a1} |{do,q2}| [{d1,4d2}

{90, 41,92}




Example

NFA
0 1
do | {do} {do, q1}
ar | {di} {do, q2}
*q, | {d1,d2} | {do,d1,42)
0 1
o 0 0 0
) {do} {do N {do, a1\,
- L] I 7)) {a1} {a0, 92 \
{do} a1} o az2j % .q} {a2} Adr,q2}] | tdo, a1, a2}
a5 | {ao,q} {do. a1y [({do,d1,42))
{do,a1} {dao,qz2}] [{q1, 92} - %xq {do, a2} \{qo’q“qB) @O’q“@

{90, 41,92}




Example

NFA
0 1
do | {do} {do, q1}
ar | {di} {do, q2}
* d2 | {d1,492} | {do, 91,92}
0 1
o - B 0 0 0
////\ e {qo} {do} {do, q1}
T - ———q] {dq1} {d1)< {do, A2k
{go} tar} a2 a5 {2} Adr, a2\ | {do,d1, q2),
43| {g0,q1) ( {do, a1 }g)} ( {do,d1, qz}/\
{q . q } {q . q 1 {q . q } ,\\\‘* qzll {q0> qZ} w.q0> q1,d {qO) d1, Q2}
o = = xdi | {ar,q2) | {dai,q2) [d@o, a1, 92D

{90, 41,92}




Example

NFA
0 1
do | {do} {do, q1}
qar | {ai} {do, 92}
* d2 | {1,492} | {90,471, 92}
0 1
o 0 0 0
Y < {do} Ado} {do, d1 1\
e —— T R T'T) /{ai~ | {ao,a2 |
WGol Aaul A2l wTqr | faa) | JAdnda2) | fo.dn, A
43| {ao, a1} {do, a1} \ |[{g0, 491,92
{do,q1} [ao,q2)| [{a1,q23)  *9a| {do,d2} |[{do,d1,92} |{do,d1,42)
- %xds | {q1,42} {d1,92}) |\{do,d1,9>
///*CIé {do, d1,42} |{do, a1, d2D|{do, a1, d2D

{do, a1, d2)—




Example

NFA
0 1
do | {do} {do, q1}
q1 | {41} {do, q2}
* d2 | {q1,92} | {do0,d1, 92}
0 1
0 I 0 0 0
— E— {qo0} {do} {do,d1}
T = {q1} {q1} {do, q2}
Woj  lavk {2 *x g (ay) {a1,92) [{90,91,92)
a3 {do,a1} {do,d1} | {do,q1,42}
(q0,q1} [qo,a21] [{ar, g2t *-94| {do,d2; |{do,d1,d2} | {do,d1,92)
% 45 | {91,492} {d1,92} | {do,q1,4d2}
%96 | {do,d1,42} | {do,d1,4d2} | {do, d1,d2}
{do, g1, a2} —

DFA

do

qdo

qs

q1

q1

qd4

qz

ds

de

qs

qs3

de

q4

Jde

de

ds

ds

de

* % % ¥

de

de

de




Example

DFA

do

do

qas

q1

q1

da

ds

de

qas

qs

de

qda

de

de

ds

ds

de

* % *

de

de

de

DFA with
unreachable states



Example

do

qs3

d1

qd4

ds

Jde

qs

de

de

de

ds

de

de

Jde

DFA with
unreachable states

minimum DFA

0 0 0,1
(oL@ —



The €-NFA: NFA with eEsilon transitions

- Extension of finite automaton.

- The new feature: we allow transition on € , the
empty string.

+ An NFA that is allowed to make transition
spontanously , without receiving any input symbol.

* As in the case of NFA w.r.t. DFA this new feature
does not expand the class of language that can be
accepted.



Definition of &-NFA

A NFA whose transition function can always choose epsilon
as input symbol

0:Qx (XU {e}) = p(Q)




Definition of &€-clousure for extending & tfo Strings

We need to define the €-closure that

applied to a state gives all the states reachable with
&-transitions

e-closure(P) = U e-closure(p)
peP

a €
_—

e-closure(q)={q} e-closure(q’)={q’,q"}



The extension of & to Strings

A

O0: Q xX* — p(Q)

{ 5(q,e) = e-closure(q)

5(q,wa) = Upeﬁ(q,w) e-closure(6(p, a)) 5(q, a)

/S(qa Cl) — Upeg(q,g) E—Closure(é(p, Cl)) — {q/> q//}



L={z|IneNz=0"Vvz=1"V z=(01)" }

Example OO

€-NFA NFA DFA




RoadmaE: eguivalence between NFA and £-NFA

DFA D NF:A<—> RG

triviall

W

RE E-NFA



From €-NFA to NFA

For each €-NFA E there is a NFA N, such that L (E) = L (N).
Given an
€-NFA E =
we will build a (Q,%,08,q0, FE)
NFA N =
such that (Q,>,0N,q0, Fn)
L (E)=L (N)



From E&-NFA to NFA

Sn(q,a) = dg(q, a)

Fg otherwise can be reached
with an epsilon
transition
from the initial
state)

Frny = { FpU{q} if e-closure(qo) N Fr # 0 (if a final state



Example

0 1
{q1, 94} | {q2}

- gr | {a1) 0
0 {2}

{da} 0
0 {q3}




Example

( go)| {a1, a4} | {a2}

i | {ai) 0
a2 0 {dq2}
qs | {da} 0
da 0 {Q3}




Example

0

o | {q1,94) | {a2}
(ai) dar) | 0
ey 0 {dq2}

qs | {qa4} 0

qd4 0 {d3}




Example

R N ¢
qo | {d1, 494} | {47}

{q1} 0
(g2} 0 {d2}
us’|  {qa) 0




Example

(0)

do | {a71704) | {az2}

q1 | {a1} 0
2 0 {dq2}
{( g3)] {qa) 0
ks 0 {q3}




S

o (M)

9o | 141,94} | (3]
q1 | {91} 0

0 0 {qz}
gz | {a4) 0

(& 0 | {qs}




NFA
0 1
do | {d1,94} | {q2}
ar | {a1) 0
q2 0 {q2}
qs | {da} 0
da4 0 {q3}




Operations on languages: recap.

Union: AUB
Intersectiont An B
Difference: A\ B
Complement: A= 2% - A

Concatenation: AB={ab | a€A, b € B}

® @)
Kleene Clousure: A" = U A’
i=0



Regular' ExEr'essions

A regular expression denotes a set of strings.

Given a finite alphabet Z, the following constants are defined as regular
expressions:

@ denoting the empty seft,
e denoting the set {c},
a in Z denoting the set containing only the character {a}

If rands are reqular expression denoting the sets R and S, then,

(r+s),(rs) and r* denotes the set R U S, RS and R*, respectively.

L(r) indicates the language denoted by r


https://en.wikipedia.org/wiki/Alphabet_(computer_science)

Examples

(0" + 1% + (01)).

L={z|3IneNzg=0"Vz=1"V z=(01)" }

a|b* denotes

{e,"a","b", "bb", "bbb", ...}

(a|b)* denotes

all the strings formed with "a" and "b"

e ab*(c|e) denotes

the set of strings starting with "a", then zero or more "b"s
and finally optionally a *c"

(0[(1(01*0)*1))*

denotes the set of binary numbers that are multiples of 3



RoadmaE

DFA «—> NFA «——, RG

RE &-NFA



Turning a DFA into a RE

Theorem 3
For each DFA D, there is a regular expression r such that L(D)=L(r).

Construction:
Eliminates states of the automaton and replaces the edges with regular
expressions that includes the behavior of the eliminated states.
Eventually we get down to the situation with just a start and final node,

and this is easy to express as a RE



State Elimination Note: g and p may be the same statel

Consider the figure below, which shows a generic state s about to be
eliminated. The labels on all edges are regular expressions.

To remove s, we must make labels from each q; to p; up to p,, that include
the paths we coHIId have made through s.

O

ka+QkS >X<Pm

! 1 R, +Q,;S*P,
q; " Py
% S R, tQ,S*P,
R, ,+Q,S*P
R, 1 TQS*P,
e
Ry



DFA to RE via State Elimination

Starting with intermediate states and then moving to accepting
states, apply the state elimination process to produce an
equivalent automaton with regular expression labels on the
edges.

The result will be some (one or more than one) state
automaton with a start state and accepting state.



DFA to RE State Elimination (2)

If the two states are different, we will have an automaton
that looks like the following:

R U
S
Start ——* Q@
T

We can describe this automaton as: (R+SU*T)*SU*



DFA to RE State Elimination (3)

If the start state is also an accepting state, then we must also
perform a state elimination from the original automaton that
gets rid of every state but the start state. This leaves the

following: R
[
Start —’

We can describe this automaton as simply R*,



DFA to RE State Elimination (4)

If there are n accepting states, we must repeat the above steps for
each accepting states to get n different regular expressions, R , R,,

.. R . For each repeat we turn any other accepting state to non-

accepting. The desired reqular expression for the automaton is
then the union of each of the n regular expressions: RUR,.. UR,



DFA->RE Example

* Convert the following o a RE

0 0,1
1 1
Start —
0

e First convert the edges to RE's:

0 0+1
1 1
Start —
0



DFA > RE Example (2)

e we want to eliminate State 1:

0 0+1

A
SN O

0

Start

* obtaining:

0+10 0+1

Note edge from 323

11
Start ———

Answer: (0+10)*11(0+1)*




Third Example

e Automata that accepts even number of 1's

0 0 0
Start —— @ : 2

e Eliminate state 2:

0
10*1
Start ——




Third Example (2)

* Two accepting states, turn off state 3 first

0+10*1

This is just 0*; can ignore going to state 3
since we would “die”

0 0+10%1

A
10%1 @

Start



Second Example (3)

e Turn off state 1 second:
0+10%1

-V

This is just 0*10%1(0+10%1)*

0 0+10%1
m Combine from previous slide to get

0* + 0*10%1(0+10%1)*
Start ————




RoadmaE

DFA . > I\AlFA «—» RG

RE » &-NFA



Converting a RE to an Automata

* We can convert a RE to an e-NFA
— Inductive construction
— Start with a simple basis, use that to build more
complex parts of the NFA



RE to e-NFA

e Basis:

—a

—&






RE to e-NFA Example

* Convert R= (ab+a)* to an NFA
—  We proceed in stages, starting from simple elements and
working our way up

. — 0
) — 0
> =0



RE to e-NFA Example (2)

B @C} C}b | Q@
OO
(ab+a)*




Esembpio: from RE to &-NFA

L={z|3neNaz=0"Vvae=1"V z=(01)" }

E-NFA




What have we shown?

* Regqular expressions, finite state automata and regular grammars
are really different ways of expressing the same thing.

* TInsome cases you may find it easier to start with one and move
to the other
— E.g., the language of an even number of one's is typically
easier to design as a NFA or DFA and then convert it to a
RE



Not all Ianguages are r'egular!

» L={ a"b" | n e Nat }



Pumping Lemma

Given L an infinite regular language then there exists an integer k such

that for any string > € L.|z| > k it is possible to split z info 3

substrings
z = uwvw with |uv| < k,|v] > 0 such that Vi € N, uv'w € L
0 k
- : M } w i vzel
~ €L
\'/ \' \'/ eL




Nega‘ring the PL

The PL gives a necessary condition, that can be used to prove that a
language is not reqular!

If Vk € N dz € L.|z| > k for all possible splitting
z = wvw with |uv| < k,|v| > 0 3i € N such that wv'w € L

then L is not a regular language!



Esempio

« L={ anb" | n € Nat }, consider k N

« Let z = akbk

zel, |v|=i,

X: : : luv| > k




Esempio

» L={ a"b" | n e Nat }, consider ke N
- Let z = akbk

zel, |v|=i,

i: — : ! alibl el

v2 i+0




ProEerTx of Regular' languages

The regular languages are closed with respect to the union,
concatenation and Kleene closure.

The complement of a regular language is always regular.
* The regular language are closed under intersection

Decision Properties:
Approximately all the properties are decidable in case of finite
automaton.

(i) Emptiness

(ii) Non-emptiness
(iii) Finiteness

(iv) Infiniteness
(v) Membership


https://www.geeksforgeeks.org/decidable-and-undecidable-problems-in-theory-of-computation/

DFA Minimization

® Some states can be redundant:
— The following DFA accepts (a|b)+
— State sl is not necessary

a

O,




DFA Minimization

® The task of DFA Minimization is to automatically
transform a given DFA into a state-minimized DFA

Several algorithms and variants are known



DFA Minimization Algor'i’rhm
e Recall that a DFA M=(Q, Z, 9, q,, F)

e Two states p and q are distinct if
p in F and g not in F or vice versa, or
for some a in Z, 8(p, a) and 8(q, a) are distinct

® Using this inductive definition, we can calculate which states
are distinct



DFA Minimization Algori’rhm

® Create lower-triangular table DISTINCT, initially blank

® For every pair of states (p,9):
If pis final and q is not, or vice versa
DISTINCT(pgq)=¢

® Loop until no change for an iteration:
For every pair of states (p,q) and each symbol a
If DISTINCT(p,q) is blank and
DISTINCT( d(p,a), 6(q,a) ) is not blank
= DISTINCT(p,g)=a

® Combine all states that are not distinct



Very Simple Example

sO |s1 |s2

sO
s

S2




Very Simple Example

sO
s1 |€ .
s2 | [ 3

sO |s1 |s2

Label pairs with € where one is a final state and the other is not



Very Simple Example

sO

s

S2

sO

s

S2

Main loop (no changes occur)

DISTINCT(p,q) is blank and

DISTINCT( d(p,a), 8(q,a) ) is not blank
= DISTINCT(pg)=a

a




Very Simple Example

sO
s1 |g

s2 |€

sO |s1 |s2

DISTINCT(s1, s2) is empty, so s1 and s2 are equivalent states



Very Simple Example

s,
| |

Merge s1 and s2




More ComEIex ExamEIe



More ComEIex ExamEIe

® Check for pairs with one state final and one

alblec|ld]|e]|t

09




More Complex Example

e First iteration of main loop:

b

CQ_:)'l

dl[1]1

e ||lO]0]0][O0 ,

f |le |€|€|€|c€ ¢

o|le|€|€|€|E€ S

h L1110 [|€|c6€ fllefe]€]e€]¢
gllere=te|€ | €

alble|dlel|f|g h el e
al|blc|dle|f|g




More ComEIex ExamEIe

® Second iteration of main loop:

I N LY ] [

—|lm || o

gy e N Nyl e

HIE=1ELN Ks

e

M| M| O =] =

M| N | | |

e =

O™ ™

a

b

09




More Complex Example

® Third iteration makes no changes
— Blank cells are equivalent pairs of states

4.—
b
c | 1]1
d[1]1 K
e (|O[0O]0O]O0O
f (e |€e|€e|€]|e€ ¢
gcflle|€e|€e|€|E€
hi1|1T]|1T[]1T]0|€e]e
alblc|dlje]|f]|g




More ComEIex ExamEIe

e Combine equivalent states for minimized DFA:



Conclusion

® DFA Minimization is a fairly understandable process, and is
useful in several areas

Regular expression matching implementation
Very similar algorithm is used for compiler
optimization to eliminate duplicate
computations

® The algorithm described is O(kn2)
John Hopcraft describes another more
complex algorithm that is O(k (n log n) )



Linguaggi Context Free



Context free Grammars

A Context free Grammar (£, N, S, P) is a generative grammar,
where

- every production has the form U — V

where U belongs to N and V belongs to (X u N) ¥

- only for the starting symbol S, we can have S— ¢



Example
G — {{E}) {Or) and) nOt) () )) O) 1}) E' P}

E — O

— ]

— (EorE)
— (E and E)
—

(not E)

m



Esempio

S— 0S1]¢

0™ :n > 0}



Example

S — €|0[1]0S0[1ST

l

z={xc{0,1}* |z = 2™}




Parse tree

Given a grammar (Z, N, S, P).
The parse tree is the graph representation of a derivation,
which can be defined in the following way:

+ every node has a label in £ U N U {g},

* the label of the root and of every internal node belongs to N,

 if a node is labeled with A and has m children labeled with X1,.

then the production A->X1..Xk belongs to P,
» if anode is labeled with € then is a leaf and is an only child,

+ Every leaf is labelled with a symbol in Z U {¢}.

., XK



Example

E — O[T|(E or Eot E).
(//Td\\)

an




Example

E — O[T((E or E){(E and E)|(not E).

(//jd\\)




Example

E — O[1/(E or E)|(E and E){(not E))

(// Td\\
(AA) ““ // 7\

(“not E




Example

E H@H(E or E)|(E and E)|(not E).

(“not E

41/1\\ //k



Example

E— O@(E or E)|(E and E)|(not E).

(“not E



Example

E H@H(E or E)|(E and E)|(not E).

\)

and

AN A

or ("not E )




Example

E — O/1/(E or E)|(E and E)|(not E).

| —

— ((0 or 1) and (not 0))

| — R

(“not)E [ )




Pushdown Automata I

The pushdown automaton are NDA with epsilon transitions
and the stack

S1 | S2 | S3 | ** - nastro- -+ input stream

= [a] =

Zi1 1 Z> 1 Zs | - pita--- stack Alphabet of stack symbols: R




Pushdown Automata IT

The PDA can only access to the information in a
first-in first-out way.

The stack head always scans the top symbol
It performs the following basic operations:
Push: add new symbols at the top of the stack

Pop: read and remove the top symbol
Empty: verify if the stack is empty



Formalization of Pushdown Automata
They can be represented by M = (Q, 2, R, §, q0,Z0, F) where
* R is the alphabet of stack symbols,

¢ 0:Q x (XU{e}) X R— pr(Q X R*) is the transition function

5(q,a,X) gives a finite set of pairs (p, )
7 =€ isaPopaction

« Z0 belonging to R is the starting symbol on the stack



Instantaneous Description

The evolution of the PDA is described by triples (q, w, v) where;

e g € () is the current state of the control unit
ow € 2" js the unread part of the input string

oy € R* is the current contents of the PDA stack

A move from one instantaneous description to another will be denoted by

(q0, aw, Zr) > (q1, w, yr) iff (ql,y) belongs to 8(q0,a,Z)



The Ianguage acceE‘red bx a Eushdown automaton

Two ways to define a language:

- with empty stack (in this case F is the empty set)
- with final states F

(M) = {x€ZX*:(do,x,Zo) =} (g,¢¢€),q €Q}
LF(M) — {X SIPI.- (qO>X>ZO) IHT\/{ (q>€>Y)>y S R*>q S F}




We will recognise the
string when the input and

E_Lem [ stack are empty!

L={zcz® z € {a,b}* },¥ = {a,b,c}

<{C|0,q]},{a,b,C},{Z,A,B},é,qO,Z,,®> APND
do a b C g1 a b C
L do,ZA | qo,ZB | qd1,¢ Z a1, Z | q1,Z
A A di, e | 91,2 | d1,Z2
B B ai,Z | d1,¢ | q1,Z




Remember:we will recognise the
string when the input and stack

EXGmE|€: abcba are empty!

do | € a b c qi a b c
VA do, ZA | do,ZB | di1,¢ Z a,Z | a1, 2
ai,e | d1,Z | q1,Z
B B a1,Z | qi,e | q1,Z
a bcba a b cba ab ¢ ba
T nastro T nastro T nastro
do = do do
I via I pia 1 pia
Z Z A Z BA
abc b a abcb a abcba
T nastro T nastro T nastro
a1 = a1 q
I via 1 pia 1 opia
B A A




Example

[ =
{ x| x € {a,b}* },2 = {a, b}

di, €

e Q=
do, q1}
e XY —{a,b}
e R={Z A B}
qdo a
b
yA
ar, do,AZ | qo,BZ
A )
do, AA | o, BA
di, €
B
q07AB quBB

di, ¢

di, €




Eguivalence of PDA's and CGG's

-

-

Grammar

PDA by
empty stack

PDA by

final state

~

J




Unfor‘runm‘elx...

not all languages are Context Free |



Pumping Lemma for CF

Given a context free language L there exists an integer k such

that for any string z € L.|z| > k it is possible to split z into 5
substrings

z = wvwzy with [vwz| < k, |vz| > 0 such that Vi € N, uv'wz'y € L
0 k

~HEEE SR AP S ! 1 vzel

L CF —




Nega‘ring the PL for CF

The PL for CF gives a necessary condition, that can be used to prove
that a language is not context freel

If Vke N dz e L‘Z‘ > k for all possible splitting
of the form

z = wvwxy with |vwz| < k,|vz| > 0 3 € N such that vv'wz'y € L

then L is not context freel



Example

» Let L={ anbrch | n e Nat }, consider ke N

* Let z = akbkck

2 A < zel, |v|=i, |x|=5)

Iul v IWI X [ y
1 1 ] | 1




Example

- Let L={ anbhcn | n e Nat }, consider k e N

* Let z = akbkck

& LA < zel, |v|=i, |x|=5j
_ul \" lWl X ] V4
; +

v " aabbbaabbb

V2 X2




Example

» Let L={ anbnc" | n e Nat }, consider ke N

- Let z = akbkck

ak bl( Ck —_ —
| : : o zeL, |v|=i, [x]|=
.U \" lWl X )’ :
¢ akb|<+ick+j eL
! — 4t } i -

i+j # 0



Example

» Let L={ anbnc" | n e Nat }, consider ke N

« Let z = akbkck

& — < zel, |v|=i, |x|=5j

Iul v IWI X [ y
1 1 ] | 1

L — i [vwx| > k




Example

 Let L={ anbnc" | n « Nat }, consider ke N

* Let z = akbkck

*ﬂl b - ; ZEL!
u v w o x y .
E i: —t V: i | |
il ' L | T ' |V|=|, |X|=]
— — |
' 4 ;o !

} v X

akbktick+ g
i+j # 0



Example

» Let L={ anbnc" | n e Nat }, consider ke N

- Let z = akbkck

ak bl( Ck —_ —
| : : o zeL, |v|=i, [x]|=
.U \" lWl X )’ :
—t— — : | i
‘ k+ipk+jek
——t— — : : “: | altibitick el

i+j # 0



Example

+ Let L={ anbncn | n e Nat }, consider k e N

* Let z = akbkck

& LA < zel, |v|=i, |x|=5j

lul v IWI X [ y
1 ] | 1

"

akbkck+i+] Q’L
itj*+0

[ i L 1 L1 1 1 |
) T T 1 T T 1 T 1




Example

« Let L={ anbhen | n e Nat }, consider k e N

* Let z = akbkck

k k k . .
T : > | - y zel, |v[=i, X[
!u lel X y N
; H—t———— X
v Akbkeitick el

i+j # 0



Example

- Let L={ anbncn | n e Nat }, consider ke N

* Let z = akbkck

& LA < zel, |v|=i, |x|=5j

u v w X y
1 L L L 1L 1
L] L] L] " LY

B . ak+itibkek gL
L 1 1 1 L' 'Y K
T T T T ™ 1 1

i+j # 0




Exercises: are these languages context free?

{0"15"|n > 0}
{0"1%*|n > 0 and k > 0}
{w € {0,1}| every prefix has more 0’s than 1’s}
fa*'t/cFli=jor j =k}
{a'V Pk #i+ 5}
{w e {a,b}"|w #£ vv}



ProEerTies of the CF languages

The CF languages are closed with respect to the union, concatenation
and Kleene closure.

The complement of CF language is not always CF.
» The CF language are not closed under intersection

Decision Properties:
Approximately all the properties are decidable in case of CF

(i) Emptiness

(ii) Non-emptiness
(iii) Finiteness

(iv) Infiniteness
(v) Membership


https://www.geeksforgeeks.org/decidable-and-undecidable-problems-in-theory-of-computation/

Context Sensitive Grammar

Productions of the form U — V such that |U| <=|V|

Example
S — aSBC|aBC bC — bc
CB — BC cC — cc
bB — bb aB — ab

latblct:1> 11



Complexity of Languages Problems

Isw L(6G)?

Is L(6G) empty?

Is L(61) L(62)?

Regular
6Grammar

Type 3
P

PSPACE

Context Context Unrestricted
Free Sensitive

Grammar Grammar  ©rammar

Type 2 Type 1 U2
P PSPACE U
P U U
U U U



Examples of Language Hierarchy

The expressive power:

regular c context-free c context-sensitive c phrase-structure
L1 = strings over {0, 1} with an even number of 1's is regular

n n
L2 ={a b | n2>0}is context-free, but not regular

L3 = {an b' cnl n>0 }is context-sensitive, but not context-

free



Relationships between Languages and Automata

A language is :

regular
context-free
context-sensitive
phrase-structure

iff accepted by

finite-state automata
pushdown automata
linear-bounded automata
Turing machine



Chomsky's Hierarch

Unristricted Grammar
Type-O >  (Recognized by
Turing Machine)

Context Sesitive
Grammar
(Accepted by Linear
Bound Automata)

\ 4

Type-1

v

Context Free Grammar
(Accepted by Push
Down Automata)

Type_3 »  Regular Grammar
( (Acceped By

Finite Automata)

Type-2




