
Lexical Analysis 

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these
materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved.

Source
code

Front
End

Errors

Machine
code

Back
End

IR

The Front End

The purpose of the front end is to deal with the input language
• Perform a membership test: code ∈ source language?
• Is the program well-formed (semantically) ?
• Build an IR version of the code for the rest of the compiler

The front end deals with form (syntax) & meaning (semantics)

The Front End

Why separate the scanner and the parser?
• Scanner classifies words
• Parser constructs grammatical derivations
• Parsing is harder and slower

Separation simplifies the implementation
• Scanners are simple
• Scanner leads to a faster, smaller parser

token is a pair
<part of speech, lexeme >

stream of
characters Scanner

IR +
annotationsParser

Errors

stream of
tokens

microsyntax syntax

Scanner is only pass
that touches every
character of the input.

Our setting: the Front End

Implementation Strategy

Source
code Scanner

IR
Parser

Errors

tokens

Scanning Parsing

Specify Syntax regular expressions context-free
grammars

Implement
Recognizer

deterministic finite
automaton

push-down
automaton

Perform Work Actions on transitions in automaton

Relates to the words of the vocabulary of a language, (as opposed to
grammar, i.e., correct construction of sentences).

Lexical Analyzer, a.k.a. lexer, scanner or tokenizer, splits the input
program, seen as a stream of characters, into a sequence of tokens.

Tokens are the words of the (programming) language, e.g., keywords,
numbers, comments, parenthesis, semicolon.

Tokens are classes of concrete input (called lexeme).

Lexical Analysis

Example

•Lexical analysis is the very first phase in the compiler designing, the only one

 that analyses the entire code

• A lexeme is a sequence of characters that are included in the source program

according to the matching pattern of a token

• Lexical analyzer helps to identify token into the symbol table

• A character sequence which is not possible to scan into any valid token is a

 lexical error

 

Lexical analysis

• By hand - Identify lexemes in input and return tokens

• Automatically - Lexical-Analyser generator: it compiles the patterns

that specify the lexemes into a code (the lexical analyser).

Lexical analysis decides whether the individual tokens are well formed, this
can be expressed by a regular language.

Constructing a Lexical Analyser

Why study automatic scanner construction?

• Avoid writing scanners by hand

Scanner
Generator

specifications

Scanner
source code parts of speech & words

Specifications written as
“regular expressions”

Represent
words as

indices into a
global table

tables or
code

design time

compile
time

In practice, many scanners are
hand coded. Even if you build a
hand-coded scanner, it is useful
to write down the specification
and the automaton.

Automatic Scanner Construction

The syntax of a programming language can be expressed by a
regular grammar
Example
The following grammar generates all the legal identifier

S-> aT|…|zT|AT|…|ZT
T-> ε|0T|…|9T|S

that can be more neatly be expressed using a regular expressions !

(a|…|z|A|…|Z) (a|…|z|A|…|Z|0|….|9)

The syntax can be expressed by a regular grammar

*

Examples of Regular Expressions

Identifiers:
Letter → (a|b|c| … |z|A|B|C| … |Z)
Digit → (0|1|2| … |9)

Identifier → Letter (Letter | Digit)*

Numbers:
Integer → (+|-|ε) (0| (1|2|3| … |9)(Digit *))

Decimal → Integer . Digit *

Real → (Integer | Decimal) E (+|-|ε) Digit *

Complex → (Real , Real)

Numbers can get much more complicated!

underlining indicates a
letter in the input
stream

shorthand
for

(a|b|c| … |z|A|B|C| … |Z) ((a|b|c| … |z|A|B|C| … |Z) | (0|1|2| … |9))*

Consider the problem of recognizing ILOC register names

Register → r (0|1|2| … | 9) (0|1|2| … | 9)*

• Allows registers of arbitrary number
• Requires at least one digit

RE corresponds to a recognizer (or DFA)

Transitions on other inputs go to an error state, se

S0 S2 S1

r

(0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for Register

Example

DFA operation
• Start in state S0 & make transitions on each input character

So,
• r17 takes it through s0, s1, s2 and accepts

• r takes it through s0, s1 and fails

• a takes it straight to se

Example (continued)

S0 S2 S1

r

(0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for Register

Example

δ r
0,1,2,3,4,
5,6,7,8,9

All
others

s0 s1 se se

s1 se s2 se

s2 se s2 se

se se se se

Char ← next character
State ← s0

while (Char ≠ EOF)
 State ← δ(State,Char)
 Char ← next character

if (State is a final state)
 then report success
 else report failure

Skeleton recognizer Table encoding the RE
O(1) cost per character (or per transition)

S0 S2 S1

r

(0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for RegisterTo be useful, the recognizer must be converted into code

Example

We can add “actions” to each transition

δ
α r

0,1,2,3,4,5,6
,7,8,9

All
others

s0 s1

start
se

error
se

error

s1 se

error
s2

add
se

error

s2 se

error
s2

add
se

error

se se
error

se

error
se

error

Char ← next character
State ← s0

while (Char ≠ EOF)
 Next ← δ(State,Char)
 Act ← α(State,Char)
 perform action Act
 State ← Next
 Char ← next character

if (State is a final state)
 then report success
 else report failure

Skeleton recognizer
Typical action is to capture the lexeme

S0 S2 S1

r

(0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for RegisterTable encoding RE

r Digit Digit* allows arbitrary numbers
• Accepts r00000
• Accepts r99999

What if we want to limit it to r0 through r31 ?

We need a tighter regular expression
Register → r ((0|1|2) (Digit | ε) | (4|5|6|7|8|9) | (3|30|31))

Produces a more complex DFA

• DFA has more states
• DFA has same cost per transition
• DFA has same basic implementation

What if we need a tighter specification?

More states implies a larger table.
The larger table might have
mattered when computers had 128
KB or 640 KB of RAM. Today, when a
cell phone has megabytes and a
laptop has gigabytes, the concern
seems outdated.

Tighter register specification (continued)

The DFA for
Register → r ((0|1|2) (Digit | ε) | (4|5|6|7|8|9) | (3|30|31))

• Accepts a more constrained set of register names
• Same set of actions, more states

S0 S5 S1

r

S4

S3

S6

S2

0,1,2

3 0,1

4,5,6,7,8,9

(0|1|2| … 9)

δ r 0,1 2 3 4-9
All

others

s0 s1 se se se se se

s1 se s2 s2 s5 s4 se

s2 se s3 s3 s3 s3 se

s3 se se se se se se

s4 se se se se se se

s5 se s6 se se se se

s6 se se se se se se

se se se se se se se

This table runs
in the same
skeleton
recognizer

S0 S5 S1

r

S4

S3

S6

S2

0,1,2

3 0,1

4,5,6,7,8,9

(0|1|2| … 9)

Tighter register specification

Tighter register specification
S0 S5 S1

r

S4

S3

S6

S2

0,1,2

3 0,1

4,5,6,7,8,9

(0|1|2| … 9)

 State
Action

r 0,1 2 3 4,5,6
7,8,9

other

0 1
start

e e e e e

1 e 2
add

2
add

5
add

4
add

e

2 e 3
add

3
add

3
add

3
add

e
exit

3,4,6 e e e e e e
exit

5 e 6
add

e e e e
exit

e e e e e e e

Automating Scanner Construction
To convert a specification into code:
1 Write down the RE for the input language
1 Build a ε-NFA collecting all the NFA for the RE
2 Build a NFA corresponding to the ε-NFA
3 Build the DFA that simulates the NFA
4 Systematically minimise the DFA
5 Turn it into code

Scanner generators
• Lex and Flex work along these lines
• Algorithms are well-known and well-understood
• Key issue is interface to parser
• You could build one in a weekend!

The overall construction: RE-> ε-NFA->NFA->DFA->minimized DFA

How we transform a DFA into code?

• Table driven scanners

• Direct code scanners

• Hand-coded scanners

all will simulate the DFA!

Implementing Scanners

• They repeatedly read the next character in the input and simulate
the corresponding DFA transition

• This process stops when there are not outgoing transition from
the state s with the input character

• If s is an accepting state the scanner recognises the word and its
syntactic category

• If s is a nonaccepting state the scanner must determine whether
or not it passes a final state at some point,

• If yes it should roll back its internal state and its input stream
and report success

• If not it should report the failure

The actions that the different implementations have in common

• Table driven scanners

• Direct code scanners

• Hand-coded scanners

All constant cost per character (with different constants) plus the cost of
rollback

Differs from the way they implement the transition table and simulate the
operations of the DFA

The differences between the different approaches

• Table(s) + Skeleton Scanner
— So far, we have used a simplified skeleton

• In practice, the skeleton is more complex
— Character classification for table compression
— Building the lexeme
— Recognizing subexpressions

→ Practice is to combine all the REs into one DFA
→ Must recognize individual words without hitting EOF

state ← s0 ;

while (state ≠ serror) do
 char ← NextChar() // read next character
 state ← δ(state,char); // take the transition

rs0 sf
0 … 9

0 … 9

Table-Driven Scanners

Character Classification
• Group together characters by their actions in the DFA

— Combine identical columns in the transition table, δ
— Indexing δ by class shrinks the table

state ← s0 ;

while (state ≠ serror) do
 char ← NextChar() // read next character
 cat ← CharCat(char) // classify character
 state ← δ(state,cat) // take the transition

Table-Driven Scanners

Building the Lexeme
• Scanner produces syntactic category (part of speech)

— Most applications want the lexeme (word), too

• This problem is trivial
— Save the characters

state ← s0

lexeme ← empty string

while (state ≠serror) do
 char ← NextChar() // read next character
 lexeme ← lexeme + char // concatenate onto lexeme
 cat ← CharCat(char) // classify character
 state ← δ(state,cat) // take the transition

Table-Driven Scanners

Recognising subexpressions : RollBack

• A stack is used to track all the traversed states

lexeme ← empty string

while (state ≠serror) do
 char ← NextChar() // read next character
 lexeme ← lexeme + char // concatenate onto lexeme
 push (state); //remember all traversed states
 cat ← CharCat(char) // classify character
 state ← δ(state,cat)
while (state ≠sA) do //RollBack
 state ← pop();
 truncate lexeme;
 Rollback();
 end

Table-Driven Scanners

Choosing a Category from an Ambiguous RE
• We want a DFA, so we combine all the REs into one

— Some strings may fit RE for more than 1 syntactic category
→ Keywords versus general identifiers

— Scanner must choose a category for ambiguous final states
→ Classic answer: specify priority by order of REs (return 1st)

Identifiers:

Letter → (a|b|c| … |z|A|B|C| … |Z)

Digit → (0|1|2| … |9)

Identifier → Letter (Letter | Digit)*

Keywords:
key → if |…. example: ife

A table driven scanner for register names

initialization

scanning loop

roll-back

final-section

final states

For each character, the table driven scanner performs two table lookups, one in CharCat
and the other in δ: to improve efficiency

Direct-Coded scanner

If end of state test is complex (e.g., many cases),

 scanner generator should consider other schemes

• Binary search

Building Scanners

The point
• All this technology lets us automate scanner construction
• Implementer writes down the regular expressions
• Scanner generator builds NFA, DFA, minimal DFA, and then writes

out the (table-driven or direct-coded) code
• This reliably produces fast, robust scanners

For most modern language features, this works
• You should think twice before introducing a feature that defeats a

DFA-based scanner
• The ones we’ve seen (e.g., insignificant blanks, non-reserved

keywords) have not proven particularly useful or long lasting

Of course, not
everything fits
into a regular
language …

What About Hand-Coded Scanners?

Many (most?) modern compilers use hand-coded scanners
• Starting from a DFA simplifies design & understanding

→ Can use old assembly tricks
→ Combine similar states

• Scanners are fun to write
— Compact, comprehensible, easy to debug

