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fixed-point algorithm,

s is a state 
X is T or NT 

Building LR(1) Tables

How do we build the parse tables for an LR(1) grammar? 

• Encode actions & transitions into the ACTION & GOTO tables 
• If construction succeeds, the grammar is LR(1) 

— “Succeeds” means defines each table entry uniquely 

The Big Picture 
• Model the state of the parser with “LR(1) items” 
• The states will be set of LR(1) items 
• Use two functions goto( s, X )  and closure( s ) 

— goto() tells which state you reach  
— closure() adds information to round out a state  

• Build up the states (sets of LR(1) items) and transitions 

• Use this information to fill in the ACTION and GOTO tables



LR(1) Items

We represent a valid configuration of an LR(1) parser with a 
data structure called an LR(1) item 

An LR(1) item is a pair [P, δ], where 
P is a production A→β with a • at some position in the rhs 
δ is a lookahead string of length ≤ 1         (word or EOF ) 

The • in an item indicates  which  portion of the 
righthandside of the production we have on  the top of the 
stack 



[A→•βγ,a] means that the input seen so far is consistent with the use of  

A →βγ immediately after the symbol on top of the stack  

  

[A →β•γ,a] means that the input sees so far is consistent with the use of  

A →βγ at this point in the parse, and that the parser has already 
recognized β (that is, β is on top of the stack) 

  

[A →βγ•,a] means that the parser has seen βγ, and that a lookahead symbol 
of a is consistent with reducing to A 

 

“possibility”

“partially complete”

“complete”

Meaning of an  LR(1) Item



LR(1) Items
The production A→β, where β = B1B2B3 with lookahead a,  
can give rise to 4 items 

[A→•B1B2B3,a], [A→B1•B2B3,a], [A→B1B2•B3,a], & [A→B1B2B3•,a]  

The set of LR(1) items for a grammar is finite 

What’s the point of all these lookahead symbols? 
• Carry them along to help choose the correct reduction 
• Lookaheads are bookkeeping, unless item has • at right end 

— Has no direct use in [A→β•γ,a] 
— In [A→β•,a], a lookahead of a implies a reduction by A →β 
— For a parser state modeled with items { [A→β•,a],[B→γ•δ,b] }, 
 lookahead of a ⇒ reduce to A; lookahead in FIRST(δ) ⇒ shift 

⇒  Limited right context is enough to pick the actions



High-level overview 
1 Build the canonical collection of sets of LR(1) Items  
      a   Start with an appropriate initial state, s0 

♦ [S’ →•S,EOF], along with any equivalent items 
♦ Derive equivalent items as closure( s0 ) 

b Repeatedly compute, for each sk, and each symbol X, goto(sk,X) 
♦ If the set is not already in the collection, add it 
♦ Record all the transitions created by goto( ) 

     This eventually reaches a fixed point 

2 Fill in the table from the collection of sets of LR(1) items

LR(1) Table Construction For convenience, we will require that 
the grammar have an obvious & unique 
goal symbol — one that does not appear 
on the rhs of any production.



Computing Closures
Closure(s)  adds all the items implied by the items already in s 
• Item [A→β•C δ,a] in s implies [C →•τ,x] for each production  
 with C on the lhs,  and each x ∈ FIRST(δa) 
• Since βC δ is valid, any way to derive βC δ is valid, too 

Closure( s ) 
  while ( s is still changing ) 
     ∀ items [A → β •C δ,a] ∈ s 
        ∀ productions C → τ  ∈ P 
          ∀ x  ∈ FIRST(δa)    // δ might be ε 
            if  [C → • τ,x] ∉ s 
                then s ← s ∪ { [C → • τ,x] }

• Classic fixed-point method 
• Halts because s ⊂ ITEMS 
• Closure “fills out” a state

Lookaheads are 
generated here

The algorithm



Example From SheepNoise
Initial step builds the item [Goal→•SheepNoise,EOF] 
and takes its closure( ) 

Closure( [Goal→•SheepNoise,EOF] ) 

   

S0 (the first state) is  
{ [Goal→ • SheepNoise,EOF], [SheepNoise→ • SheepNoise baa,EOF], 
   [SheepNoise→• baa,EOF], [SheepNoise→ • SheepNoise baa,baa],
   [SheepNoise→ • baa,baa] }

   4 
<latexit sha1_base64="b+cvZAIxa9oVswzdgosxPjADaBE=">AAACA3icbVBNS8NAEN3Ur1q/op7Ey2IreCpJEfRY9OKxgrWFJpTJZtsu3WzC7kYooXjxr3jxoCBe/RPe/Ddu2hy09cHA470ZZuYFCWdKO863VVpZXVvfKG9WtrZ3dvfs/YN7FaeS0DaJeSy7ASjKmaBtzTSn3URSiAJOO8H4Ovc7D1QqFos7PUmoH8FQsAEjoI3Ut49qXki5Bg94MoIaZgoHAHn17apTd2bAy8QtSBUVaPXtLy+MSRpRoQkHpXquk2g/A6kZ4XRa8VJFEyBjGNKeoQIiqvxs9sIUnxolxINYmhIaz9TfExlESk2iwHRGoEdq0cvF/7xeqgeXfsZEkmoqyHzRIOVYxzjPA4dMUqL5xBAgkplbMRmBBKJNahUTgrv48jLpNOrued11bxvV5lWRRxkdoxN0hlx0gZroBrVQGxH0iJ7RK3qznqwX6936mLeWrGLmEP2B9fkDKPSWcA==</latexit>

�↵ is baa baastop!



Computing Gotos

Goto(s,x) computes the state that the parser would reach  
if it recognized an x  while in state s 

• Goto( { [A→β•X δ,a] }, X ) produces [A→βX •δ,a]      (obviously) 

• It finds all such items & uses closure() to fill out the state 

Goto( s, X ) 
    new ←Ø 
     ∀ items [A→β•X δ,a] ∈ s 
        new ← new ∪ { [A→βX •δ,a] } 

     return closure(new)

•  Not a fixed-point method! 

•  Straightforward computation 

•  Uses closure ( )

The algorithm



Example from SheepNoise

S0  is { [Goal→ • SheepNoise,EOF], [SheepNoise→ • SheepNoise baa,EOF], 
        [SheepNoise→ • baa,EOF],  [SheepNoise→ • SheepNoise baa,baa],
        [SheepNoise→ • baa,baa] }

Goto( S0 , baa ) 

• Loop produces 

• Closure adds nothing since • is at end of rhs in each item 



Building the Canonical Collection : The algorithm

Start from s0 = closure( [S’→•S,EOF ] ) 

Repeatedly construct new states, until all 
are found 

s0 ←  closure ( [S’→ .cS,EOF] ) 
S  ←  { s0  } 
k  ←  1 

while ( S is still changing ) 
   ∀ sj ∈ S and ∀ x ∈ ( T ∪ NT ) 
         t ←  goto(sj,x) 
         if t ∉ S then 
       name t as sk  
       S ← S ∪ { sk } 
       record sj → sk on x 

         k ← k + 1 

         else  
      t is sm ∈ S 
            record sj → sm on x

• Fixed-point computation 
• Loop adds to S 
• S ⊆ 2ITEMS, so S is finite 



Example from SheepNoise

Starts with S0 
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 

   [SheepNoise→  • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
   [SheepNoise→ • baa, baa] }

Iteration 2 computes 
 S3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 

                                        [SheepNoise→ SheepNoise baa •, baa] } 

Iteration 1 computes 
S1  = Goto(S0 , SheepNoise) =  
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 

   [SheepNoise→ SheepNoise • baa, baa] } 

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],               
                  [SheepNoise→ baa •, baa] } 

No more for closure!

No more for closure!

No more for closure!



Example from SheepNoise

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 
   [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
   [SheepNoise→ • baa, baa] }

S1  = Goto(S0 , SheepNoise) =  
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 

   [SheepNoise→ SheepNoise • baa, baa] }

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],     
        [SheepNoise→ baa •, baa] } 

S3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 
                                      [SheepNoise→ SheepNoise baa •, baa] }



Filling in the ACTION and GOTO Tables

The algorithm 

∀ set Sx ∈ S  
    ∀ item i ∈ Sx 

       if  i is [A→β • aδ,b] and goto(Sx,a) = Sk , a ∈ T 
           then ACTION[x,a] ← “shift k” 
       else if  i is [S’→S •,EOF] 
             then ACTION[x ,EOF] ← “accept” 
       else if  i is [A→β •,a] 
              then ACTION[x,a] ← “reduce A→β” 
    ∀ n ∈ NT 
      if  goto(Sx ,n) = Sk 

          then GOTO[x,n] ← k

x is the state number

•  at end ⇒ reduce

have Goal ⇒ accept

•  before T ⇒ shift
case 1

case 2

case 3



Example from SheepNoise

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 
   [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
   [SheepNoise→ • baa, baa] }

S1  = Goto(S0 , SheepNoise) =  
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 

   [SheepNoise→ SheepNoise • baa, baa] } 

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],     
         [SheepNoise→ baa •, baa] } 

S3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 
                                      [SheepNoise→ SheepNoise baa •, baa] }

• before T ⇒ shift  k

so, ACTION[s0,baa] is 
“shift S2” (case 1) 

(items define same entry)



Example from SheepNoise

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 
   [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
   [SheepNoise→ • baa, baa] }

S1  = Goto(S0 , SheepNoise) =  
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 

   [SheepNoise→ SheepNoise • baa, baa] } 

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],     
         [SheepNoise→ baa •, baa] } 

S3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 
                                      [SheepNoise→ SheepNoise baa •, baa] }

so, ACTION[S1,baa] is 
“shift S3”  (case 1)



Example from SheepNoise

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 
   [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
   [SheepNoise→ • baa, baa] }

S1  = Goto(S0 , SheepNoise) =  
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 

   [SheepNoise→ SheepNoise • baa, baa] } 

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],     
         [SheepNoise→ baa •, baa] } 

S3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 

                                      [SheepNoise→ SheepNoise baa •, baa] }

so, ACTION[S1,EOF] 
is “accept ” (case 2)



Example from SheepNoise

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 
   [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
   [SheepNoise→ • baa, baa] }

S1  = Goto(S0 , SheepNoise) =  
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 

   [SheepNoise→ SheepNoise • baa, baa] } 

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],     
         [SheepNoise→ baa •, baa] } 

S3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 
                                      [SheepNoise→ SheepNoise baa •, baa] }

so, ACTION[S2,EOF] is 
“reduce  2”    (case 3)

ACTION[S2,baa] is 
“reduce  2 ”    (case  3)



Example from SheepNoise

S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 
   [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
   [SheepNoise→ • baa, baa] }

S1  = Goto(S0 , SheepNoise) =  
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 

   [SheepNoise→ SheepNoise • baa, baa] } 

S2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],     
         [SheepNoise→ baa •, baa] } 

S3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 
                                      [SheepNoise→ SheepNoise baa •, baa] }

ACTION[S3,EOF] is 
“reduce 1”   (case 3)

ACTION[S3,baa] is 
“reduce 1 ”, as well



Example from SheepNoise

s0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF], 
   [SheepNoise→ • baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
   [SheepNoise→ • baa, baa] }

s1  = Goto(S0 , SheepNoise) =  
 { [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF], 

   [SheepNoise→ SheepNoise • baa, baa] } 

s2  = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],     
         [SheepNoise→ baa •, baa] } 

s3  = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF], 
                                      [SheepNoise→ SheepNoise baa •, baa] }

The GOTO Table records Goto transitions on NTs

Only 1 transition in the entire GOTO table 
Remember, we recorded these so we don’t need to recompute them.

Based on T, not NT and 
written into the 
ACTION table

Puts s1 in GOTO[s0,SheepNoise]



Here are the tables for the augmented 
     left-recursive SheepNoise grammar 

The tables  

ACTION & GOTO Tables 

Note that this is 
the left-recursive 
SheepNoise; the 
book shows the 
right-recursive 
version.



What can go wrong?
What if set s contains [A→β•aγ,b] and [B→β•,a] ? 
• First item generates “shift”, second generates “reduce”  
• Both define ACTION[s,a] — cannot do both actions 
• This is a fundamental ambiguity, called a shift/reduce error 
• Modify the grammar to eliminate it                         (if-then-else) 
• Shifting will often resolve it correctly  

What if  set s contains [A→γ•, a] and [B→γ•, a] ? 
• Each generates “reduce”, but with a different production 
• Both define ACTION[s,a] — cannot do both reductions 
• This is a fundamental ambiguity, called a reduce/reduce conflict 
• Modify the grammar to eliminate it                

In  either case, the grammar is not LR(1)



LR(k ) versus LL(k )

Finding Reductions 

LR(k) ⇒ Each reduction in the parse is detectable with  
→ the complete left context, 
→ the reducible phrase, itself, and 
→ the k terminal symbols to its right 

LL(k) ⇒ Parser must select the reduction based on 
→ The complete left context 
→ The next k terminals 

Thus, LR(k) examines more context 

generalizations of 
LR(1) and LL(1) to 
longer lookaheads



Example from D.E Knuth, “Top-Down 
Syntactic Analysis,” Acta Informatica, 
1:2 (1971), pages 79-110

Example from Lewis, Rosenkrantz, & 
Stearns book, “Compiler Design 
Theory,” (1976), Figure 13.1

This grammar is actually LR(0)

Non-LL Grammars



Summary

Advantages 

Fast 

Good locality 

Simplicity 

Good error detection 

Fast  

Deterministic langs. 
Automatable 

Left associativity

Disadvantages 

Hand-coded 

High maintenance 

Right associativity 

Large working sets 
Poor error messages 

Large table sizes

Top-down 
Recursive 
descent, 

LL(1)

LR(1)



Exercise








