LR(1) Parsers

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Faculty from other educational institutions may use these materials for nonprofit educational purposes, provided this copyright notice is preserved.

Building LR(1) Tables

How do we build the parse tables for an LR(1) grammar?

- Encode actions & transitions into the ACTION & GOTO tables
- If construction succeeds, the grammar is LR(1)
 - "Succeeds" means defines each table entry uniquely

The Big Picture

- Model the state of the parser with "LR(1) items"
- The states will be set of LR(1) items
- Use two functions goto(s, X) and closure(s)
 - goto() tells which state you reach
 - closure() adds information to round out a state
- Build up the states (sets of LR(1) items) and transitions
- Use this information to fill in the ACTION and GOTO tables

s is a state X is T or NT

fixed-point algorithm

LR(1) Items

We represent a valid configuration of an LR(1) parser with a data structure called an LR(1) item

An LR(1) item is a pair $[P, \delta]$, where P is a production $A \rightarrow \beta$ with a \cdot at some position in the rhs δ is a lookahead string of length ≤ 1 (word or EOF)

The · in an item indicates which portion of the righthandside of the production we have on the top of the stack

Meaning of an LR(1) Item

- $[A \rightarrow \cdot \beta \gamma, \underline{a}]$ means that the input seen so far is consistent with the use of
- $A \rightarrow \beta \gamma$ immediately after the symbol on top of the stack

"possibility"

- $[A \rightarrow \beta \cdot \gamma, \underline{a}]$ means that the input sees so far is consistent with the use of
- $A \rightarrow \beta \gamma$ at this point in the parse, <u>and</u> that the parser has already recognized β (that is, β is on top of the stack)

"partially complete"

 $[A \rightarrow \beta \gamma \cdot , \underline{a}]$ means that the parser has seen $\beta \gamma$, and that a lookahead symbol of \underline{a} is consistent with reducing to A

LR(1) Items

The production $A \rightarrow \beta$, where $\beta = B_1 B_2 B_3$ with lookahead \underline{a} , can give rise to 4 items

$$[A \rightarrow \cdot B_1 B_2 B_3,\underline{a}], [A \rightarrow B_1 \cdot B_2 B_3,\underline{a}], [A \rightarrow B_1 B_2 \cdot B_3,\underline{a}], \& [A \rightarrow B_1 B_2 B_3 \cdot ,\underline{a}]$$

The set of LR(1) items for a grammar is finite

What's the point of all these lookahead symbols?

- Carry them along to help choose the correct reduction
- Lookaheads are bookkeeping, unless item has at right end
 - Has no direct use in $[A \rightarrow \beta \cdot \gamma, \underline{a}]$
 - In $[A \rightarrow \beta \cdot ,\underline{a}]$, a lookahead of \underline{a} implies a reduction by $A \rightarrow \beta$
 - For a parser state modeled with items { $[A \rightarrow \beta \cdot ,\underline{a}], [B \rightarrow \gamma \cdot \delta,\underline{b}]$ }, lookahead of $\underline{a} \rightarrow \text{reduce to } A$; lookahead in FIRST(δ) \rightarrow shift
- ⇒ Limited right context is enough to pick the actions

LR(1) Table Construction

High-level overview

- For convenience, we will require that the grammar have an obvious & unique goal symbol one that does not appear on the rhs of any production.
- 1 Build the canonical collection of sets of LR(1) Items
 - a Start with an appropriate initial state, s_0
 - $(S' \rightarrow S, BOF]$, along with any equivalent items
 - Derive equivalent items as closure(s_0)
 - b Repeatedly compute, for each s_k , and each symbol X, goto(s_k ,X)
 - If the set is not already in the collection, add it
 - Record all the transitions created by goto()

This eventually reaches a fixed point

Computing Closures

Closure(s) adds all the items implied by the items already in s

- Item $[A \rightarrow \beta \bullet C \delta,\underline{a}]$ in s implies $[C \rightarrow \bullet \tau,x]$ for each production with C on the lhs, and each $x \in FIRST(\delta\underline{a})$
- Since $\beta C \delta$ is valid, any way to derive $\beta C \delta$ is valid, too

The algorithm

```
Closure(s)
while (s is still changing)
\forall \text{ items } [A \to \beta \cdot C \delta, \underline{a}] \in s
\forall \text{ productions } C \to \tau \in P
\forall \underline{x} \in \text{FIRST}(\delta \underline{a}) \text{ // } \delta \text{ might be } \epsilon
\text{if } [C \to \cdot \tau, \underline{x}] \notin s
\text{then } s \leftarrow s \cup \{ [C \to \cdot \tau, \underline{x}] \}
```

- Classic fixed-point method
- Halts because s ⊂ ITEMS
- Closure "fills out" a state

Lookaheads are generated here

0 Goal → SheepNoise 1 SheepNoise → SheepNoise baa 2 | baa

Example From SheepNoise

Initial step builds the item [Goal \rightarrow ·SheepNoise,EOF] and takes its closure()

Closure([Goal→·SheepNoise, <u>EOF</u>])

#	Item	Derived from
1	$[Goal \rightarrow \bullet SheepNoise, EOF]$	Original item
2	[SheepNoise $\rightarrow \bullet$ SheepNoise baa, EOF]	1, δ <u>α</u> is <u>EOF</u>
3	[SheepNoise → • baa, EOF]	1, δ <u>α</u> is <u>EOF</u>
4	[SheepNoise \rightarrow • SheepNoise baa, baa]	2,δ <u>a</u> is <u>baa</u>
5	[SheepNoise → • baa, baa]	2,δ <u>a</u> is <u>baa</u>

stop! 4 $\delta \alpha$ is baa baa

```
S<sub>0</sub> (the first state) is

{ [Goal→• SheepNoise, <u>EOF</u>], [SheepNoise→• SheepNoise <u>baa, EOF</u>],
    [SheepNoise→• <u>baa, EOF</u>], [SheepNoise→• SheepNoise <u>baa, baa</u>],
    [SheepNoise→• <u>baa, baa</u>]}
```

Computing Gotos

Goto(s,x) computes the state that the parser would reach if it recognized an x while in state s

- Goto({ [$A \rightarrow \beta \bullet X \delta, \underline{a}$]}, X) produces [$A \rightarrow \beta X \bullet \delta, \underline{a}$] (obviously)
- It finds all such items & uses closure() to fill out the state

The algorithm

```
Goto(s, X)

new \leftarrow \emptyset

\forall items [A \rightarrow \beta \cdot X \delta, \underline{a}] \in s

new \leftarrow new \cup \{[A \rightarrow \beta X \cdot \delta, \underline{a}]\}

return closure(new)
```

- Not a fixed-point method!
- Straightforward computation
- Uses closure()

0 Goal → SheepNoise 1 SheepNoise → SheepNoise baa 2 | baa

Example from SheepNoise

```
S<sub>0</sub> is { [Goal→• SheepNoise, <u>EOF</u>], [SheepNoise→• SheepNoise <u>baa, EOF</u>], [SheepNoise→• <u>baa, EOF</u>], [SheepNoise→• SheepNoise <u>baa, baa</u>], [SheepNoise→• <u>baa, baa</u>] }
```

 $Goto(S_0, \underline{baa})$

Loop produces

Item	Source
[SheepNoise \rightarrow baa •, EOF]	Item 3 in s_0
[SheepNoise $\rightarrow \underline{baa} \bullet$, \underline{baa}]	Item 5 in s_0

• Closure adds nothing since • is at end of rhs in each item

Building the Canonical Collection: The algorithm

```
s_0 \leftarrow closure([S' \rightarrow cS, EOF])
S \leftarrow \{s_0\}
k \leftarrow 1
while (S is still changing)
  \forall s_i \in S \text{ and } \forall x \in (T \cup NT)
         t \leftarrow goto(s_i,x)
         if t \notin S then
              name t as s_k
              S \leftarrow S \cup \{s_k\}
              record s_i \rightarrow s_k on x
             k \leftarrow k + 1
         else
             t is s_m \in S
            record s_i \rightarrow s_m on x
```

Start from s_0 = closure([$S' \rightarrow \cdot S, EOF$])

Repeatedly construct new states, until all are found

- Fixed-point computation
- Loop adds to S
- $S \subseteq 2^{\text{ITEMS}}$, so S is finite

```
0 Goal → SheepNoise

1 SheepNoise → SheepNoise baa

2 | baa
```

Starts with S_0

```
S<sub>0</sub>: { [Goal→·SheepNoise, <u>EOF</u>], [SheepNoise→·SheepNoise <u>baa</u>, <u>EOF</u>], [SheepNoise→·<u>baa</u>, <u>EOF</u>], [SheepNoise→·SheepNoise <u>baa</u>, <u>baa</u>], [SheepNoise→·<u>baa</u>, <u>baa</u>]}
```

Iteration 1 computes

```
S<sub>1</sub> = Goto(S<sub>0</sub>, SheepNoise) =
{ [Goal→ SheepNoise •, <u>EOF</u>], [SheepNoise→ SheepNoise • <u>baa</u>, <u>EOF</u>],
    [SheepNoise→ SheepNoise • <u>baa</u>, <u>baa</u>] }
No more for closure!
```

```
S_2 = Goto(S_0, \underline{baa}) = \{ [SheepNoise \rightarrow \underline{baa} \cdot, \underline{EOF}], [SheepNoise \rightarrow \underline{baa} \cdot, \underline{baa}] \}
```

No more for closure!

Iteration 2 computes

```
S_3 = Goto(S_1, \underline{baa}) = \{ [SheepNoise \rightarrow SheepNoise \underline{baa} \cdot, \underline{EOF}], [SheepNoise \rightarrow SheepNoise \underline{baa} \cdot, \underline{baa}] \}
```

No more for closure!

0 Goal → SheepNoise 1 SheepNoise → SheepNoise baa 2 | baa

```
S_0: \{ [Goal \rightarrow \cdot SheepNoise, EOF], [SheepNoise \rightarrow \cdot SheepNoise baa, EOF], \}
        [SheepNoise→·baa, EOF], [SheepNoise→·SheepNoise baa, baa],
        [SheepNoise→ · baa, baa]}
S_1 = Goto(S_0, SheepNoise) =
    { [Goal→ SheepNoise •, <u>EOF]</u>, [SheepNoise→ SheepNoise • <u>baa</u>, <u>EOF]</u>,
        [SheepNoise → SheepNoise · baa, baa]}
S_2 = Goto(S_0, \underline{baa}) = \{ [SheepNoise \rightarrow \underline{baa}, \underline{EOF}], \}
                 [SheepNoise→ baa ·, baa]}
S_3 = Goto(S_1, \underline{baa}) = \{ [SheepNoise \rightarrow SheepNoise \underline{baa}, \underline{EOF}], \}
                               [SheepNoise → SheepNoise baa ·, baa]}
```

Filling in the ACTION and GOTO Tables

```
x is the state number
The algorithm
    \forall set S_x \in S
        \forall item i \in S_x
            if i is [A \rightarrow \beta \bullet \underline{a} \delta, \underline{b}] and goto(S_x,\underline{a}) = S_k, \underline{a} \in T
then ACTION[x,\underline{a}] \leftarrow "shift k"
            else if i is [S' \rightarrow S \bullet, EOF]
                                                                                                     have Goal \Rightarrow accept
                   then ACTION[x, EOF] \leftarrow "accept"
        「 else if i is [A→β•<u>,α]</u> ←
                     then ACTION[x,\underline{a}] \leftarrow "reduce A \rightarrow \beta"
                                                                                                         • at end \Rightarrow reduce
        \forall n \in NT
           if goto(S_x, n) = S_k
                then GOTO[x,n] \leftarrow k
```

se

Goal \rightarrow SheepNoise

SheepNoise -

 \rightarrow SheepNoise baa

<u>baa</u>

```
S_0: { [Goal \rightarrow · SheepNoise, <u>EOF</u>], [SheepNoise \rightarrow · SheepNoise <u>baa</u>, <u>EOF</u>],
       [SheepNoise→ • baa, EOF], [SheepNoise → • SheepNoise baa, baa],
       [SheepNoise→ · baa, baa]}
                                                    • before T \Rightarrow shift(k)
S_1 = Goto(S_0, SheepNoise) =
    { [Goal → SheepNoise ·, EOF], [SheepNoise → SheepNoise · baa, EOF],
       [SheepNoise → SheepNoise · <u>baa</u>, <u>baa</u>]}
                                                                           so, ACTION[s_0, baa] is
                                                                           "shift S_2" (case 1)
S_2 = Goto(S_0, \underline{baa}) = \{ [SheepNoise \rightarrow \underline{baa} \cdot, \underline{EOF}],
                                                                             (items define same entry)
                    [SheepNoise → baa ·, baa]}
S_3 = Goto(S_1, \underline{baa}) = \{ [SheepNoise \rightarrow SheepNoise \underline{baa} \cdot, \underline{EOF}], \}
                              [SheepNoise → SheepNoise baa ·, baa]}
```

```
O Goal → SheepNoise
O SheepNoise → SheepNoise baa
O SheepNoise baa
O SheepNoise baa
O SheepNoise baa
```

```
S_0: \{ [Goal \rightarrow \cdot SheepNoise, EOF], [SheepNoise \rightarrow \cdot SheepNoise baa, EOF], \}
        [SheepNoise → · baa, EOF], [SheepNoise → · SheepNoise baa, baa],
        [SheepNoise → · baa, baa]}
S_1 = Goto(S_0, SheepNoise) =
     { [Goal → SheepNoise ·, EOF], [SheepNoise → SheepNoise · baa, EOF],
        [SheepNoise → SheepNoise · baa, baa] }
S_2 = Goto(S_0, \underline{baa}) = \{ [SheepNoise \rightarrow \underline{baa} \cdot, \underline{EOF}],
                     [SheepNoise → baa ·, baa]}
                                                                                  so, ACTION[S_1, baa] is
                                                                                   "shift S_3" (case 1)
S_3 = Goto(S_1, \underline{baa}) = \{ [SheepNoise \rightarrow SheepNoise \underline{baa} \cdot, \underline{EOF}],
                              [5heepNoise→ SheepNoise <u>baa</u> ·, <u>baa]</u>}
```

```
0 Goal → SheepNoise

1 SheepNoise → SheepNoise baa

2 | baa
```

```
S_0: { [Goal \rightarrow · SheepNoise, EOF], [SheepNoise \rightarrow · SheepNoise \underline{baa}, EOF],
       [SheepNoise → · baa, EOF], [SheepNoise → · SheepNoise baa, baa],
       [SheepNoise→ · baa, baa]}
S_1 = Goto(S_0, SheepNoise) =
    { [Goal \rightarrow SheepNoise \cdot, EOF], {SheepNoise \rightarrow SheepNoise \cdot baa, EOF],
       [SheepNoise → SheepNoise · baa, baa]}
                                                                          so, ACTION[S<sub>1</sub>,EOF]
                                                                          is "accept" (case 2)
S_2 = Goto(S_0, \underline{baa}) = \{ [SheepNoise \rightarrow \underline{baa} \cdot, \underline{EOF}],
                    [SheepNoise→ baa ·, baa]}
S_3 = Goto(S_1, \underline{baa}) = \{ [SheepNoise \rightarrow SheepNoise \underline{baa} \cdot, \underline{EOF}], \}
                               [SheepNoise → SheepNoise baa ·, baa]}
```

```
0 Goal → SheepNoise
1 SheepNoise → SheepNoise baa
2 | baa
```

```
S_0: { [Goal \rightarrow · SheepNoise, EOF], [SheepNoise \rightarrow · SheepNoise baa, EOF],
       [SheepNoise → · baa, EOF], [SheepNoise → · SheepNoise baa, baa],
       [SheepNoise→ · baa, baa]}
S_1 = Goto(S_0, SheepNoise) =
    { [Goal \rightarrow SheepNoise \cdot, EOF], [SheepNoise \rightarrow SheepNoise \cdot baa, EOF],
       [SheepNoise → SheepNoise · baa, baa]}
                                                                   so, ACTION[S2,EOF] is
                                                                   "reduce 2" (case 3)
S_2 = Goto(S_0, \underline{baa}) = \{ [SheepNoise \rightarrow \underline{baa} \cdot, \underline{EOF}] \}
                   [SheepNoise→ <u>baa</u> ·, <u>baa</u>]}
                                                             ACTION[S2,baa] is
S_3 = Goto(S_1, \underline{baa}) = \{ [SheepNoise \rightarrow SheepNoise] "reduce 2" (case 3) \}
                             [SheepNoise → SheepNoise baa ·, baa]}
```

```
0 Goal → SheepNoise
1 SheepNoise → SheepNoise baa
2 | baa
```

```
S_0: \{ [Goal \rightarrow \cdot SheepNoise, EOF], [SheepNoise \rightarrow \cdot SheepNoise baa, EOF], \}
        [SheepNoise → · baa, EOF], [SheepNoise → · SheepNoise baa, baa],
        [SheepNoise → · baa, baa]}
S_1 = Goto(S_0, SheepNoise) =
 ACTION[S_3, EOF] is
                                  EOF], [SheepNoise → SheepNoise · baa, EOF],
 "reduce 1" (case 3)
                                 Noise · <u>baa</u>, <u>baa</u>]}
S_2 = Goto(S_0 \setminus \underline{baa}) = \{ [SheepNoise \rightarrow \underline{baa} \cdot, \underline{EOF}],
                    [SheepNoise→ <u>baa</u> ·, <u>baa</u>]}
S_3 = Goto(S_1, baa) = \{ [SheepNoise \rightarrow SheepNoise baa \cdot, EOF], \}
                              [SheepNoise → SheepNoise baa ·, baa]}
                                                                                ACTION[S_3, baa] is
                                                                                 "reduce 1", as well
```

The GOTO Table records Goto transitions on NTs

```
S_0: { [Goal \rightarrow · SheepNoise, <u>EOF</u>], [SheepNoise \rightarrow · SheepNoise <u>baa</u>, <u>EOF</u>],
        [SheepNoise → · baa, EOF], [SheepNoise → · SheepNoise baa, baa],
        [SheepNoise→ · baa, baa]}
                                                                         Puts s_1 in GOTO[s_0, SheepNoise]
s_1 = Goto(S_0, SheepNoise) =
    { [Goal → SheepNoise ·, EOF], [SheepNoise → SheepNoise · baa, EOF],
        [SheepNoise → SheepNoise · baa, baa]}
                                                                                   Based on T, not NT and
s_2 = Goto(S_0, \underline{baa}) = \{ [SheepNoise \rightarrow \underline{baa} \cdot, \underline{EOF}],
                                                                                   written into the
                     [SheepNoise→ baa ·, baa]}
                                                                                   ACTION table
S_3 = Goto(S_1, \underline{baa}) = \{ [SheepNoise \rightarrow SheepNoise \underline{baa} \cdot, \underline{EOF}], \}
                              <mark>[Sh</mark>eepNoise→ SheepNoise <u>baa</u>・, <u>baa]</u>}
```

Only 1 transition in the entire GOTO table

Remember, we recorded these so we don't need to recompute them.

0	Goal	\rightarrow	SheepNoise
1	SheepNoise	\rightarrow	SheepNoise <u>baa</u>
2		-	<u>baa</u>

ACTION & GOTO Tables

Here are the tables for the augmented left-recursive SheepNoise grammar

The tables

ACTION TABLE			
State	EOF	<u>baa</u>	
0	_	shift 2	
1	accept	shift 3	
2	reduce 2	reduce 2	
3	reduce 1	reduce 1	

GOTO TABLE		
State	SheepNoise	
0	1	
1	0	
2	0	
3	0	

Note that this is the left-recursive SheepNoise; the book shows the right-recursive version.

What can go wrong?

What if set s contains $[A \rightarrow \beta \cdot \underline{a}\gamma, \underline{b}]$ and $[B \rightarrow \beta \cdot \underline{a}]$?

- First item generates "shift", second generates "reduce"
- Both define ACTION[s,a] cannot do both actions
- This is a fundamental ambiguity, called a shift/reduce error
- Modify the grammar to eliminate it (if-then-else)
- Shifting will often resolve it correctly

What if set s contains $[A \rightarrow \gamma^{\bullet}, \underline{a}]$ and $[B \rightarrow \gamma^{\bullet}, \underline{a}]$?

- Each generates "reduce", but with a different production
- Both define ACTION[s,a] cannot do both reductions
- This is a fundamental ambiguity, called a reduce/reduce conflict
- Modify the grammar to eliminate it

In either case, the grammar is not LR(1)

LR(k) versus LL(k)

Finding Reductions

 $LR(k) \Rightarrow Each reduction in the parse is detectable with$

- → the complete left context,
- → the reducible phrase, itself, and
- → the k terminal symbols to its right

generalizations of LR(1) and LL(1) to longer lookaheads

 $LL(k) \Rightarrow$ Parser must select the reduction based on

- → The complete left context
- → The next k terminals

Thus, LR(k) examines more context

Non-LL Grammars

$$\begin{array}{cccc}
0 & B & \rightarrow & R \\
1 & | & (B) \\
2 & R & \rightarrow & E = E \\
3 & E & \rightarrow & \underline{a} \\
4 & | & \underline{b} \\
5 & | & (E + E)
\end{array}$$

Example from D.E Knuth, "Top-Down Syntactic Analysis," Acta Informatica, 1:2 (1971), pages 79-110

This grammar is actually LR(0)

Example from Lewis, Rosenkrantz, & Stearns book, "Compiler Design Theory," (1976), Figure 13.1

Summary

	Advantages	Disadvantages
Top-down Recursive descent, LL(1)	Fast Good locality Simplicity Good error detection	Hand-coded High maintenance Right associativity
LR(1)	Fast Deterministic langs. Automatable Left associativity	Large working sets Poor error messages Large table sizes

Exercise

Consider the following grammar:

- a. Construct the canonical collection of sets of LR(1) items for this grammar.
- **b.** Derive the Action and Goto tables.
- **c.** Is the grammar LR(1)?