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Intermediate Representations



• We are on the cusp of the art, science, & engineering of 
compilation 

• Scanning & parsing are applications of automata theory 
• Context-sensitive analysis, as covered in class, is mostly 

software engineering 
• The mid-section of the course will focus on issues where the 

compiler writer needs to choose among alternatives 
— The choices matter; they affect the quality of compiled code 
— There may be no “best answer” or “best practice” 

The fun begins at this point

Where In The Course Are We?



Intermediate Representations

• Front end - produces an intermediate representation (IR) 
• Middle end - transforms the IR into an equivalent IR that 

runs more efficiently 
• Back end - transforms the IR into native code 

• IR encodes the compiler’s knowledge of the program 
• Middle end usually consists of several passes
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Intermediate Representations

• Decisions in IR design affect the speed and efficiency  
     of the compiler 

• Some important IR properties 
— Ease of generation 
— Ease of manipulation 

• The importance of different properties varies between 
compilers 
— Selecting an appropriate IR for a compiler is critical 

• Three axes of choice: structural organisation, level of abstraction, 
naming discipline



Structural organisation
Three major categories 

• Structural 
— Graphically oriented 
— Heavily used in source-to-source translators 
— Tend to be large 

• Linear 
— Pseudo-code for an abstract machine 
— Level of abstraction varies 
— Simple, compact data structures 
— Easier to rearrange 

• Hybrid 
— Combination of graphs and linear code

Examples: 
Trees, DAGs 

Examples: 
3 address code 
Stack machine code 

Example: 
Control-flow graph 



AST with different level of abstraction



Level of Abstraction

• The level of detail exposed in an IR influences the 
profitability and feasibility of different optimizations. 

• Two different representations of an array reference:

subscript

A i j

loadI 1      => r1
sub   rj, r1 => r2
loadI 10     => r3
mult  r2, r3 => r4
sub   ri, r1 => r5
add   r4, r5 => r6
loadI @A     => r7
add   r7, r6 => r8
load  r8     => rAijHigh level AST: 

Good for memory  
disambiguation

Low level linear code: 
Good for further optimisation

array A[1…10,1…10] of 1 byte memorised in row-major order 



Directed Acyclic Graph

A directed acyclic graph (DAG) is an AST with a unique  
    node for each value 

• Makes sharing explicit 
• Encodes redundancy
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z ← x - 2 * y 
w ← x  /  2

With two copies of the same 
expression, the compiler might be 
able to arrange the code to 
evaluate it only once.



The third axis : naming

• The compiler must choose names for a variety of distinct values. 

• a-2*b          t1<-b 
                   t2<-2*t1 
                   t3<-a 
                   t4<-t3-t2         t1,t2,t3 and t4 are new names 

If every subexpression has a name the compiler can reuse the 
value of the subexpression 



Naming :Stack Machine Code

Originally used for stack-based computers, now Java 
• Example: 
  x - 2 * y  becomes 

Advantages 
• Compact form 
• Introduced names are implicit, not explicit 
• Simple to generate and execute code 

Useful where code is transmitted 
over slow communication links  (the net )

push x
push 2
push y
multiply
subtract

Implicit names take up 
no space, where explicit 
ones do!



Three Address Code

Several different representations of three address code 
• In general, three address code has statements of the form: 

   x ← y op z 
With 1 operator (op ) and, at most, 3 names (x, y, & z) 

Example: 
 z ← x - 2 * y becomes 

Advantages: 
• Resembles many real machines 
• Introduces a new set of names 
• Compact form

t ← 2 * y
z ← x - t



Three Address Code: Quadruples

Naïve representation of three address code 
• Table of k * 4 small integers 
• Simple record structure 
• Easy to reorder 
• Explicit names

load 1 y

loadi 2 2

mult 3 2 1

load 4 x

sub 5 4 3

load  r1, y
loadI r2, 2
mult  r3, r2, r1
load  r4, x
sub   r5, r4, r3

RISC assembly code Quadruples

The original FORTRAN 
compiler used “quads”



Three Address Code: Triples
• Index used as implicit name 
• 25% less space consumed than quads 
• Much harder to reorder 

Remember, for a long time, 640Kb was a lot of RAM 

• Major tradeoff between quads and triples is compactness versus ease of manipulation 
—In the past compile-time space was critical 
—Today, speed may be more important

(1) load y

(2) loadI 2

(3) mult (1) (2)

(4) load x

(5) sub (4) (3)

Implicit names occupy no space

load  r1, y
loadI r2, 2
mult  r3, r2, r1
load  r4, x
sub   r5, r4, r3



Two Address Code

• Allows statements of the form 
  x ← x op y 

Has 1 operator (op ) and, at most, 2 names (x and y) 

Example: 
      z ← x - 2 * y    becomes 

• Can be very compact 

Problems 
• Machines no longer rely on destructive operations 
• Difficult name space 

— Destructive operations make reuse hard 
— Good model for machines with destructive ops (PDP-11)

t1 ← 2
t2 ← load y
t2 ← t2 * t1
z  ← load x
z  ← z - t2



Control-flow Graph

Models the transfer of control in the procedure 
• Nodes in the graph are basic blocks 

— Can be represented with quads or any other linear 
representation 

• Edges in the graph represent control flow 

Example
if  (x = y)

a ← 2 
b ← 5

a ← 3 
b ← 4

c ← a * b



Static Single Assignment Form
• The main idea:  each name is defined exactly once  
• The name refers to the variable in some program point 
• Encodes  both control and value flow  
• Introduce φ-functions to make it work 

Strengths of SSA-form 
• each use refers to a single definition 
• (sometimes) faster algorithms

        Original 

x ← …
y ← …
while (x < k)
   x ← x + 1
   y ← y + x

SSA-form 

x0 ← …
y0 ← …
if (x0 >= k) goto next

loop: x1 ← φ(x0,x2)  
y1 ← φ(y0,y2)

       x2 ← x1 + 1 
       y2 ← y1 + x2

if (x2 < k) goto loop
next:     …            



Using Multiple Representations

• Repeatedly lower the level of the intermediate 
representation 
— Each intermediate representation is suited towards certain 

optimizations 

• Example: the Open64 compiler 
— WHIRL intermediate format 

→ Consists of 5 different IRs that are progressively more detailed and 
less abstract
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Memory Models
Two major models 
• Register-to-register model 

— Keep all values that can legally be stored in a register in registers 
— Ignore machine limitations on number of registers 
— Compiler back-end must insert loads and stores 

• Memory-to-memory model 
— Keep all values in memory 
— Only promote values to registers directly before they are used 
— Compiler back-end can remove loads and stores 

• Compilers for RISC machines usually use register-to-register 
— Easier to determine when registers are used

use  virtual 
registers!



The Rest of the Story…
Representing the code is only part of an IR 

The compiler must discover and store many distinct kinds of information 

For a variable it has to store its data type, storage class, the level of 
its declaring procedure, and a base and offset in memory 

For an array also the number of dimension and the upper and lower 
bounds of each dimension 

It often uses centralised information 
• Symbol table 
• Constant table 

It needs an efficient and expandable way to realise them!



Symbol Tables
Classic approach uses hashing because we need a constant-time expected lookup 
A two-table scheme 

— Sparse index to reduce chance of collisions 
— Dense table to hold actual data 

→ Easy to expand, to traverse, to read & write from/to files 
• Use chains in index to handle collisions

h(“foe”)

Collision occurs when 
h() returns a slot in 
the sparse index that 
is already full.

h(“fee”)

fie  | char *   | array  | …
fee | integer | scalar | …
fum | float    | scalar | …

NextSlot

Stack-like 
growth

Sparse index Dense table



Hash-less Symbol Tables

Classic approach to building a symbol table uses hashing 
• Some concern about worst-case behavior 

— Collisions in the hash function can lead to linear search 
— Some authors advocate “perfect” hash for keyword lookup

h(“foe”)

Collision occurs when 
h() returns a slot in 
the sparse index that 
is already full.

h(“fee”)

fie  | char *   | array  | …
fee | integer | scalar | …
fum | float    | scalar | …

NextSlot

Stack-like 
growth

Sparse index Dense table


