Dataflow Analyses

Code Optimization in Compilers

- Semantic Preparation Cede
| Scanner =N Parser =N L naivzer for Code 1™ Genarator |1
Genaraton
RS ——

Control
t Flow Wiov:zmm :
Analysis

Correctness Above All!

If may seem obvious, but it bears repeating that optimization should not change the
correctness of the generated code. Transforming the code to something that runs faster
but incorrectly is of little value. It is expected that the unoptimized and optimized
variants give the same output for all inputs. This may not hold for an incorrectly
written program (e.g., one that uses an uninitialized variable).

Control flow graph

Program commands are encoded by nodes in a control flow
graph
If a command S may be directly followed by a command T

then the control flow graph must include a direct arc from
the node encoding S to the node encoding T

Example

[input n;]1
[m:=1;]2
[while n>1 do]3
[m:=m * n;]4
[n:=n - 1;]5

[output m;]°¢

6

output m;

Data-Flow analxses

We will see data-flow analyses:
-Liveness analysis

- Reaching definitions analysis
-Available Expressions analysis

Liveness or Live Variables Analysis

* We need to translate the source program in the
infermediate representation IR that can use a large

(potentially unbounded) number of registers.

* but the program will be executed by a processor with
a (finite and) small number of registers

* Two variables a and b can be stored in the same
register when it turns out that a and b are never
simultaneously “used”

IR: Three Address Code

Three-address instruction has at most three operands
and is typically a combination of an assignment and a
binary operator.

For example: 11 := 12 + 13.

The name derives from the use of three operands in
these statements even though instructions with fewer
operands may occur.

IR: Three Address Code example

Calculate one solution to the
[[quadratic equation]].
X = (-b + sqrt(b”2 - 4*a*c)) / (2*a)

tl := b * Db
t2 := 4 * a
t3 := t2 * ¢
t4 := tl1 - t3
t5 := sqgrt(t4)
té := 0 - Db
t7 := t5 + té6
t8 := 2 * a
t9 := t7 / t8
X := t9

b = a+l;

c += b;

a = b*2;
}
while (a<N);
return c;

We want to know if a and b are
simultaneously used.

a<N;

: |

return c;

Live Variables Analxsis

- A compiler needs to analyze programs in IR in order to
find out which variables are simultaneously used

- A variable X is live at the exit of a command C if X stores
a value which will be actually used in the future, that is,
X will be used as R-value with no previous use as L-value

+ A variable X which is not live at the exit of C is also
called dead (this information can be used for dead code
elimination)

» This is an undecidable property

Back to the example

- A variable X is live when it stores a value a:= 0;
which will be later used with no prior
assignment to X

- The "“last" use of the variable b as r-value is in
command 4

* The variable b is used in command 4: it is
therefore live along the arc 3 — 4

+ Command 3 does not assign b, hence b is live
along 2 — 3

+ Command 2 assigns b. This means that the
value of b along 1 — 2 will not be used later

* Thus, the "live range” of b turns out to be: {2
—>3,3—4) return c;

Live variables

-aislivealong4 - 5and 5 — 2

-aislivealongl — 2

* ais not live along 2 —- 3 and 3 — 4

- Even if the variable a stores a value in node
3, this value will not be later used, since
node 4 assigns a new value to the variable
a.

return c;

More on live variables

* cis live along all the arcs

* By the way: liveness analysis can be
exploited to deduce that if cisa

local variable then c will be used with .

no prior initialization (this

information can be used by compilers #

to raise a warning message)

; |

1
a+l;
,]

c+b;

|

a:= b*2:

s ||

a<N;

o
I

return c;

e |

return c;

return c;

- Two registers are enough: variables a and b will be
never simultaneously live along the same arc

Variables a and b will be
never simultaneously live
along the same arc. Hence,
instead of using two distinct
variables a and b we can
correctly employ a single
variable ab

ab<N;

: |

return c;

We need a way to compute live variables

* A CFG has outgoing edges (out-edges) that lead to ;| |
successor nodes, and ingoing edges (in-edges) that |5.= q.
originate from predecessor nodes.

2
b:= a+l;
* pre[n] and post[n] denote, respectively, the ;
predecessor and successor nodes of some node n.
c:= c+b;
* As an example, in this CFG: 4a = D*2 -
— 2 and 6 are successors of node 5 because i ’
5 — 6 and 5 — 2 are the out-edges of 5 >
— 1and 5 predecessor 2 since a<N;
5 —2and 1 — 2 are the in-edges of 2 6

— pre[2]={15}; post[5]={2,6}. return c;

Notation

* An assighment to some variable (a use of the

variable as L-value) is called a definition of the
variable a:= 0;
- A use of some variable as R-value in a command is 2
called a use of this variable b:= a+l;
3
+ def[n] denotes the set of variables that are c:= ctb;
defined in the node n 4
a:= b¥*2;
* use[n] denotes the set of variables that are used 5
in the node n a<N;
- As an example, in this CFG: 6
- def[3]={c}, def[51=0) return c;

- use[3]={b,c}, use[5]={a}

Formalization

» Of the property: A variable x is live along an arc

e—f if there exists a real execution path P from the 1
node e to some node n such that: a:= 0;
—e—f is the first arc of such path P 2
— x €use[n] b:= a+l;
— for any node n'ze and n'zn in the path P, 3
xgdef[n'] c:= c+b;
4
* A variable x is live-out in some node n if x is live a:= b*2;
along some (i.e., at least one) out-edge of n 5
a<N;

- A variable x is live-in in some node n if x is live 6
along any in-edge of n return c;

Example

As an example, in this CFG:
aislivealongl - 2,4 —-5and5 — 2
bislivealong2 — 3,3 -4
c is live along any arc
a is live-in in node 2, while it is not live-out in node 2

a is live-out in node 5 .

:= 0;

a+l;

c+b;

b*2;

a<N;

return c;

Computing Liveness

Let us define the following notation:

in[n] is the set of variables that the static analysis
determines to be live-in at node n

out[n] is the set of variables that the static analysis
determines to be live-out at node n

ComEuTing Liveness n node of the CFG

%v—-

Liveness information: the sets in[n] and out[n] is computed
as an over-approximation in the following way

1. If avariable xcuse[n]then x is live-in in node n.
In other terms, if a node n uses a variable x as R-value then
this variable x is live along each arc that enters into n.

N/

y:= x+z+2;

In[n] 2 use[n]

Computing Liveness

2. If avariable x is live-out in a node n and x & def[n] then the
variable x is also live-in in this node n.
If a variable x is live for some arc that leaves a node n and x is
not assigned in n then x is live for all the arcs that enter inn

N/

y:= wtz*2;

VAN

in[n] 2 out[n] - def[n]

ComEuTing Liveness

3. If avariable x is live-in in a node m then x is live-out for all the
nodes n such that m&post[n].

This is clearly correct by definition.

n,

n,

/ /N

y:= x+z*2;

m

out[n,] 2 U{in[m] | m € post[n,]}
out[n,] 2 u{in[m] | m € post[n,]}

Dataflow Egua’rions

The previous three rules of liveness analysis can be
thus formalized by two equations for each node n:

1. in[n] = use[n] U (out[n] - def[n]) (rules1and 2)

2.out[n] = U{in[m] | m € post[n]} (rule 3)

Correctness of Liveness

This definition of liveness analysis in[n] and out[n] is correct:
If x is concretely live-in (live-out) in some node n then the
static analysis will detect that x €in[n] (x€ out[n]):

in[n] 2 live-in[n]
out[n] 2 live-out[n]

In other terms, no actually live variable is neglected by liveness
analysis.

Correctness in Dr'agon Book

Why the Available-Expressions Algorithm Works

We need to explain why starting all OUT’s except that for the entry block
with U, the set of all expressions, leads to a conservative solution to the
data-flow equations; that is, all expressions found to be available really
are available. First, because intersection is the meet operation in this
data-flow schema, any reason that an expression x + y is found not to be
available at a point will propagate forward in the flow graph, along all
possible paths, until + y is recomputed and becomes available again.
Second, there are only two reasons x + y could be unavailable:

1. @ +y is killed in block B because x or y is defined without a subse-
quent computation of x +y. In this case, the first time we apply the
transfer function fg, « 4+ y will be removed from ouUT[B].

2. x + y is never computed along some path. Since 2 + y is never in
OUT[ENTRY], and it is never generated along the path in question,
we can show by induction on the length of the path that x + y is
eventually removed from IN’s and OUT’s along that path.

Thus, after changes subside, the solution provided by the iterative algo-
rithm of Fig. 9.20 will include only truly available expressions.

ComEuTing Liveness

Liveness analysis is approximate:

it assumes that each path of the CFG is a feasible path
while this hypothesis is obviously not true

ComEuTing Liveness

Liveness analysis is approximate: it assumes that each path
of the CFG actually is a feasible path while this hypothesis
is obviously not true.

1

The analysis determines that a is live-in in

a:=b7b; 5, and therefore a is live-out in 3.

Z:-=a+b- However, no real execution path from 3 to
: : 5 exists (because b+b*b<b is always false)
3c>=b so that a is not really live when exiting 3!

N

Fl:eturn c| |return a

How can we compute a solution to 1 and 2?

1. in[n] = use[n] U (out[n] - def[n])
2. out[n]= U {in[m] | m € post[n]}

Correctness tells us that in[n] 2 live-in[n] and out[n] 2 live-
out[n]

But we need a way to compute Live variable analysis

How can we compute a solution to 1 and 2?

1. in[n]=use[n] VU (out[n] - def[n])
2. out[n]= U {in[m] | m € post[n]}

We need to compute a least fix point
* but how can we be sure that such fix-points exist?
It depends on the domain and on the function!

The fix point in this case

* Let Vars be the finite set of variables that occur in the program P to
analyze. Let N be the number of nodes of the CFG of P.

Thus, the map Live:
(P(Vars)x P(Vars) N -> (7) (Vars)xP(Vars))N defined by

Live(<in,,outy,...,ing,out >)=

<use[1]U(out,-def[1]),) in,,,, use[NJU (outy -defiN]), |J in_>

méepost[1] mepost[N]|

is a monotonic (and therefore continuous) function on the finite lattice
<(7D (Vars)xP(Vars) N, §2]yand therefore Live has

a least fixpoint

The fix point THEORY

POSET (Partially ordered set, PO)
(P,C) CCPxP

reflexive Vp e P. pEp
antisymmetry Vp,q€ P. pLg AN qLp = p=gq

transitive Vp,ggreP. pCqg N qEr = pCr

[
P=9" means that p is less than (or equal to0) g

PEq means PC g A p#q

Total Order
APO (P,C) istotal iff

Vp,ge P. pEq V qEp

A PO where every two elements are comparable

Examples

PO? Total?
(N, <)
Yes Yes
3

Hasse diagram notation
5 (omit: reflexive arcs,
transitive arcs)

Examples

(0(S), C) PO? Total?
Yes |S|<2
{a,b,c}
TN
{a,b} {a,c} {b, c}

PavaY

{a} {b} {c}

~

0

Examples

PO? Total?

N, =
() Yes No

Examples
(NU {1}, {(L;n) [neN})

PO? Total?
Yes No

PO with bottom

A PO (P,C) that has a least element e, i.e,

Vpe PelCp

e is often indicates as _|

Examples

PO with | ?

Yes

(N, <)

Examples

(0(S), C) PO with L ?

Yes
{a,b,c}
/////]I\\\\\\
{a,b} {a,c} {b, c}

| > >

e} b ¢y

~N

0

Examples

PO with _L_ ?
(Nv :)
No

Examples
(NU {1}, {(L;n) [neN})

PO with L ?
Yes

Lattice

A special structure arises when every pair of elements
in a poset has a least upper bound (lub) and aa

greatest lower (glb) /.e\v
f. \ / |

C e

Lattice Definition

A lattice is a PO in which every pair of elements
has both a lub and a glb

)

O\
NS

Examples

Lattice ?

Yes

(N, <)

Examples

(0(S), C) Lattice ?
Yes
{a,b,c}
{a,b} {a,c} {b, c}

| > >

e} b ¢y

~N

0

Examples

(N, =) Lattice ?
No

Examples

(NU{L}{(L;n) |neN})

Lattice ?
No

Example

e Ts this alattice?

* No, because the pair {b,c} e
does not have a least upper
bound

Example

e What if we modified it as shown here
i

f

* Yes, because for any pair,
there isalub & a glb

Ascending chains

e A sequence (|).cy of elements in a partial order L is an
ascending chain if

n=m= |<I_

e A sequence (I,),y converges if and only if

InEN:VneEN:ng=sn= | =I

n

e A partial order (L <) satisfes the ascending chain condition
(ACC) iff each ascending chains converges.

Example

e ThePO (N,C) does not satisfy the ascending chain
condition,

00O

012
> 10

O

)
> 4

O

O

Example

(N U{oo}, E)

satisfies the ACC condition

ComEIeTe Partial Order

A poset (P, C) is called a complete partial order (CPO)
if and only if any of its chains has a lub

If (P, c) has a bottom element and any of its chains
has a lub then (P, C)is called a
complete partial order (CPO) with bottom

* (N, <) has bottom O but is not complete:
the chain0<1<2<---<n<-- has no upper bound in N.

* (N, 2) is a CPO but has no bottom.

Example

(N U{oo}, E)

iIs CPO with bottom

Some comEIeTe PO

If (P,c) has only finite chains it is complete

If (P,c) is finite thenit is complete

CPO with bottom

(9(5),)

{a,b,c}
/////]I\\\\\\
{a,b} {a,c} {b, c}

| > >

e} b ¢y

~N

0

CPO without bottom

(Nv :)

CPO with bottom

(NU{L}{(L;n) |neN})

Eguivalen‘r Definitions of ComEIeTe Lattices

A lattice L is called a complete lattice if every subset
S of L admits alubinL. I

A lattice L is called a complete lattice if every subset
S of L admits aglbinL.

A lattice L is called a complete lattice if every subset
S of L admits aglbandalubinlL.

The idea: assume we just have lui

L-

gb(Y)= lub({le L | YI'eY:I<I?)

{2,3}

{3}

ExamEIe

L= N U {oc} o 00
total order on N U {c}
lub = max 0
glb = min 26
< ©5
This is a complete lattice o4
03
Q2

ExamEIe of comEleTe lattice

L= NU{T,L}
YVhneN: 1<n «T

This is a complete lattice, with infinite elements

Lattices and ACC

e TfLisalattice with a bottom element and ACC, thenlL isa
complete lattice

e TfLl isa finite lattice then it satisfies the ACC and therefore it
also is complete.

Monotone functions on partial orders

Let (P<p) and (Q,=q) be PO.
A function ¢ from P to Q is monotone iff

P1 <p p2= P(p1) =q ¢(p2)

b d $4(a) * ¢, is not monotone
/\/D %(Pl(d)
a C @1(D)=04(C)

@,(b)= ,(d)
¢,(C) * ,is monotone

P,(a)

Mono‘ronici’rx

: a chain
+ (by monotonicity)

a chain T """"""""""""""""""""""" T

- -
.....
-

Continuity
 Given two partial orders (P,=p) and (Q,=q), a functoin ¢ from P to
Q is continuous if for every chain Sin P

@(lub(S)) = lub{ ¢(x) | xES }

- if f is monotone onan ACC lattice then f is continuous

Continuous function

€N i€N
. | | f(ds)
: 1€N

b =TT *f(dg)

dl > f(dl)

Fixpoints
e Consider a monotone function f: (P,<;) — (P,<;) on a partial order P

* Anelement x of P is a fixpoint of f if f(x)=x

* The set of fixpoints of f is a subset of P called Fix(f):

Fix(f) ={ xeP | f(x)=x}

fF~ d
/\ : Fix(f)={b,c}

Least and greatest Fixpoints

Consider a monotone function f: (P,<;) — (P,<;) on a partial order P
» a point x € Fix(f) is a minimal fix point if for all y € Fix(f), x <vy.
If the minimal fix point exists and it is unique call it a least fix point

and it is indicated as |fp(f)

+ a point x € Fix(f) is a maximal fix point if for all y € Fix(f), y =< x.

If the maximal fix point exists and it is unique call it a greatest fix point

/\ = Ifp(F)=(c)
@ O gfp(f)={d}

7,

a

and it is indicated as gfp(f)

Example of Fixpoints

I<N
f(I)= I N{1,2} Ifp? gfp?

f(I)=N\I Ifp? gfp?

f(I)= TU{1,2} Ifp? gfp?

FixEoinT on ComEIeTe Lattices

* Consider a monotone function f:L—L on a complete lattice L.

e Tarski Theorem:
Let L be a complete lattice. If f:L—L is monotone then
Ifp(f) =glb{leL | f()<I}
gfp(f)=lub{ 1Ll | I<f()}

FixEoinTs on ComEIe‘re Lattices

{lel | () A1}
gfp(f) =

Fix(f) ={ 1 €L | f{)=1}

Ifp(f) =glb{leL|f(l)=<I}

Function monotone on comEIe’re lattice

e Let f be a monotone function: (P,<,) — (P,=;) on a complete lattice
P.
Let a=[] o f (1)

~ If aFix(f) then a= Ifp(f)

Fixpoints on Complete Lattices

prefixpoints
{NeL|f) <1}

pr(f£ =qglb {l€L|[f(l)=I}

Kleene Theorem

Kleene Theorem
If f is continuous on a complete CPO with bottom then the least
fixpoint of f exists and it is equal fo a

recall that

- if f is monotone onan ACC lattice then f is continuous

Fixpoints on CPO with bottom when f is continuous

fp(f) =M /" (T)

Ifp(f) = L, /™ (L)

Back to our examEIe

1. in[n]=use[n] VU (out[n] - def[n])
2. out[n]= U {in[m] | m € post[n]}

We need to compute a fix point
* but how can we be sure that such fix-points exist?

We can apply the fix point theory results |
We need to check that we have

a) a continuous function on Kleene's Theorem
b) a CPO with bottom

Point b first

Vars is the (finite) set of variables occuring in the program P.
Let N be the number of nodes of the CFG of P.

<(7D (Vars)xP(Vars) N, S5 is a finite domain. . 1
- Example Vars={a,b} e N=2 a:=0 .

|
{a, b}{a,b}{a, b}{a'a b} b:= a+l;
o o o I

{a{a) {a}Hal) {aPHa}{at3(O) {afb}) {a)f0h) {a})B{b}
S s

/

{a}@p—Wa})y M@J@\@Zﬁ){?{b]@@@ LRIy

\\@(b@ /

Point b

<(7D (Vars)xP(Vars) N, RN
CPO with bottom?

Yes!| Because it is finite

Point a
The map Live:
((Vars)x P(Var's) N -> (7) (Var's)xP(Var's) N defined by

Live(<ing,outy,...,ing,outy>)=

<use[1]U(out-def[1]), U in, ..., use[NJU (outy, -def[N]), U in,>

Point a

The map Live:
((Vars)x P(Var‘s) N -> (77 (Vars)xP(Var's))N defined by

Live(<ing,outy,...iny,0uty>)=

<use[1]U(out;-def[1]), | ing, ..., use[N]u (outy, -def[N]), L in,>

méepost[1] mepost[N]|

IS continuous?

Yes! because it is monotone on a finite domain

th a least fixpoint

* Live is a possible analysis,
in[n] 2 live-in[n] and out[n] 2 live-out[n]

i.e., if a variable x will be really live in a node n during some program
execution then x belongs to in[n] of all the fixpoints of the function Live

All fixpoints of the equation system is an over-approximation of really live
variables.

We want the least fixpoint (more precise over approximations)

Conservative AEEroximaTion

 How tfo interpret the output of this static analysis?
- Correctness tells us that:

in[n] 2 live-in[n] and out[n] 2 live-out[n]

If the variable x will be really live in some node n during some
program execution then x belongs to in[n] of all the fixpoints of the
function Live (least fixpoint)

» The converse does not hold: the analysis can tell us that x is in the
computed set out[n], but this does not imply that x will be necessarily
live in n during some program execution

» In liveness analysis "conservative approximation” means that the analysis may
erroneously derive that a variable is live, while the analysis is not allowed to
erroneously derive that a variable is "dead” (i.e., not live).

%if x € in[n] then x could be live at program point n.
% if xin [n] then x is definitely dead at program point n.

for all n

in[n] :={} out[n]:={};
repeat
for all n (1 to 6)
in'[n] :=in[n]; out'[n]:=out[n];
in[n] := use[n] U (out[n] - def[n]);
out[n]:= U { in[m] | m € post[n]};
until (for all n: in'[n]=in[n] && out' [n]=out[n])

;|
a:= 0;
2
b:= a+l;
3
c:= c+b;
4
a:= b*2;
a<N;

6

Live! Live2 Live3

in out |In out [out
1 a a
2 a a bc |ac bec
3 bc bc b bc b
4 b b a b
5 a ac |ac ac
6 C C C

return c;

for all n

in[n] :=?; out[n]:=?;
repeat

for all n (1 to 6)

in'[n]:=in[n]; out'[n]:=out[n];

in[n] := use[n] U (out[n] - def[n]);
out[n]:= U { in[m]

| m € post[n]};

until (for all n: in'[n]=in[n] && out' [n]=out[n])

a:= 0;
2
b:= a+l;
3
c:= c+b;
4
a:= b*2;
a<N;

6

Live3 Live4 Lived

in out |In out [out
1 a ac |C ac
2 ac bc |lac bc |ac bec
3 bc b bc b bc b
4 b b ac |bc ac
5 ac ac |ac ac Jac ac
6 C C C

return c;

[T &~ o] — |

Lived Live6 Live?

In out |{In out |mn out
C ac |c ac |c ac
ac bc |lac bc Jac bc
bc b bc bc |bc bec
bc ac |bc ac |bc ac
ac ac |ac ac l|ac ac
C C C

The algorithm thus gives the following output:
out[1]={a,c}, out[2]={b,c}, out[3]={b.c}, out[4]={a,c},

out[5]={a,c}

In this case, the output of the analysis is precise

a:= 0;

2

b:= a+l;

3

c:= c+b;

4

a:= b¥*2;
a<N;

6

return c;

ImEr'ovemen’r

In this iterative computation, observe that we have to wait for the next
iteration in order to exploit the new information computed for in and out
on the nodes.

By a suitable reordering of the nodes and by first computing out[n] and
then in[n], we are able to converge to the fixpoint in just 3 iteration
steps.

for all n
in[n] :=7?; out[n]:=7;
repeat
for all n (6 to 1)
in'[n] :=in[n]; out'[n]:=out[n];
out[n]:= U { in[m] | m € post[n]};
in[n] := use[n] U (out[n] - def[n]);
until (for all n: in'[n]=in[n] && out'[n]=out[n])

for all n

in[n] :=?; out[n]:=7?;
repeat

for all n (6 to 1)

in'[n]:=in[n]; out'[n]:=out[n];
U { in[m]
use[n] U (out[n] - def[n]);

out[n]:=
in[n]:=
until (for all n:

| m € post[n]};

in'[n]=in[n] && out'[n]=out[n])

— DN | U N

Live? Live2 Live3

out In |out In |out in
C C C

C ac |lac ac |ac ac

ac bc |ac bc |ac bc

bc bc |bc bc |bec bec

bc ac |bc ac |bc ac

ac ¢ ac ¢ ac ¢

Backward Analxsis

As shown by the previous example, Live Variable

Analysis is a "backward" analysis. This means that
information propagates "backward” from terminal
nodes to initial nodes:

in[n] can be computed from out[n];

out[n] can be computed from in[m] for all the nodes m
that are successors of n.

Application:

i := 0;
t3 := 0; _
while i <= n do d€ad variable
/
j =05
t2 = t3;
while j <= m do
tl = t3 + j;
temp := Base(A) + t1;

Cont(temp) := Cont(Base(B) + t1)
+ Cont(Base(C) + t1);

j = j+1
od;
i = i+1;
t3 := t3 + (m+1)
od

i :=0;
t3 := 0;
while i <= n do
j = 0;
while j <= m do
tl := t3 + j;
temp := Base(A) + ti;
Cont (temp) := Cont(Base(B) + t1)
+ Cont(Base(C) + t1);
j o= 41
od;
i := i+1;
t3 := t3 + (m+1)
od

Reaching Definitions (Reaching Assignment) Analysis

One of the more useful data-flow analysis

dl : y := 3

d2 : x :

dl is a reaching definition for d2

dl : y := 3
d2 : y := 4
d3 : x :=y

dl is no longer a reaching definition for d3, because d2 kills its reach:
the value defined in d1 is no longer available and cannot reach d3

A definition d at point i reaches a point p if there is a path from the
point i to p such that d is not killed (redefined) along that path

Reaching definitions

This information is very useful
* The compiler can know whether x is a constant at point p

* The debugger can tell whether is possible that x is an undefined
variable at point p

Reaching definitions

Given a program point n, which definitions are actual - not
successively overwritten by a different assignment - when the
execution reaches n?

And when the execution leaves n?
A program point may clearly "generate” new definitions
A program point n may “kill" a definition:
if nis an assignment x:=exp then n kills all the assignments to the

variable x which are actual in input to n

We are thus interested in computing input and output reaching
definitions for any program point

The intuition: the factorial of n

‘ Which are the points that are reached by
= 1 ;| this definition of m?

Which is the actual 3 ‘

definition of n n>1; —4 ich are the points that are reached by
here? Can h be V m:= m*n; definition of m?
initialised? 5 hich are the actual
T efinition of nand m ? Can
n-= n or m be initialised?

output m;

Which is the actual
definition of m here?
Can m be initialised?

Formalization of the reaching definition property

The property can be represented by sets of pairs:

{(x,p) | xeVars, p is a program point}<7(Vars x Points)

where (x,p) means that the variable x is assighed at
program point p

For each program point, this dataflow analysis computes a

set of such pairs

The meaning of a pair (x,p) in the set for a program point g
is that the assignment of x at point p is actual at point g

? is a special symbol that we add to Points and we use to
represent the fact that a variable x is not initialized.

The set 1 = {(x,?) | x&Vars} therefore denotes that all the
program variables are not initialized.

The domain for Reaching Definitions Analxsis

Vars is the (finite) set of variables occuring in the program P.
Let N be the number of nodes of the CFG of P.
Let Points={?,1,..N}.

<(7D (Vars x PoinTs)xP(Var's x Points))N, C2N>

- Example Vars={a,b} e N=1

SEecifica’rion

{(x,q9) |q&Points and {x}=def[q]} if {x}=def[p]

e killy[p] = [
0 it () =deflp]
{(x.p)} if {x}=def[p]

° genglpl= [
D i () =deflp]

As usual, def[p] = {x} when the command in the point p is an assignment
X:=exp

Kill and Gen

»

>1

Vas

output m;

Specification

* Reaching definitions analysis is
specified by equations:

RDentry(p): <

RDexit(p) =
(RDentry(p) \ kl”

[{(x?) | x € VARS}
if p is initial

if p is not initial

olP]) U geny[p]

\U{RD,,;.(q) Iq cpre[pl}

output m;

8]

3

The solution of the previous system

Once again the solution for the equations in the previous system
are require the existence of a fix point

We can apply the Kleene theorem if we have

a) a continuous function on
b) a CPO with bottom

Point b

2N
<(7D (Vars x PoinTs)xP(Var's x Points))N, &>

is a CPO with bottom?

Yes!| Because it is finite

Point a: the map

The map Reach:

<(7D (Vars x Poin‘rs)xP(Vor‘s x Points))N-> <(7D (Vars x Poim‘s)xP(Vqrs X Points))N
defined by

(assuming 1 is the only initial node)

RBGCh(<RDen’rryl,RDexiTI,...,RDenTr'yN, >):
<{(x,2) | xin VARS}, (RD,,¢ry1 \Killzp[1]1) U gengy[1],
U{RD,..., Im in pre[2]} , (RD...,o\Killeo[2]1) U geng[2],
U{RD Im in pre[N7}, >

exitm

Point a

Reach(«RDentry, RDexit,,... RDentry,, >)=
<{(x?) | x in VARS}, (RD,, ., \Killon[1]) U geny[1],

URD,,.., Im in pre[2]}, (RD,,,,,, \kill,s[2]) U geny[2]
L.J”{.IIQDexitm |m in pre[NT}, (>
kill oo (1)={(a,2)}, gengs(1)={(a,1)}
- Example killo(2)={(b.?)}, genys(2)={(b,2)}
Reach(<{}.{3.0},0>)=<{(a,2)(b,2)} {(a,1)(b,?)} {(a,1)(b,2)}, > ’;3.=‘ 0.
Reach(«{(a,?)(b,?)}{(a,1)(b,?)}{(a,1)(b,?)}, >)= i ’
«{(a,2)(b,2)} {(a,1)(b,2)}{(a,1)(b,?)}, >
Note that Reach is monotone! b:= a+l;

|
Since it is monotone on a finite domain then it is continuous

Why a least fix point

RD analysis is possible,

if an assignment x:=a in some point q is really actual in entry
to some point p then

(X ,Q) < RDen‘rry(p)

The vice versa does not hold

All fixpoints of the above equation system is an over-approximation of
really reaching definitions.

Computing the least fixpoint gives a more precise over approximation

i en
First iteration: 2 ﬁ -

1
> [N

input n;

2 |

m:= 1; RD,.....(1)= {(n,?),(m,2)}
. | RD,....(1) = {(n,2),(m,2)}
n>1: P RD,,(2)= {(n,2),(m,?)}
_m:= RD,,..,(2)= £(n,2),(m,2)}
- RD,.....(3)={(n,2),(m,2)}
RD, . (3)=4(n,2),(m,2)}

6 n:=
RD,....,(4)= {(n,2),(m,2)}

output m; RD,,;.(4)={(n,?), (m,4)}

RD,,..,(5)= {(n,?),(m,4)}
RDemy(p) ={(x,2)| xin Vars}, if p is initial RD_...(5)={(n,5),(m,4)}
RD, v, (P) =U{RD,,;4(q) | q in pre[p]}, otherwise RD,..,(6)= {(n,?),(m,2)}

RD,,+(P) = (RD,ps (P) \ Killey[p]) U gengy[p] RD,1¢(6)= {(n,?),(M,2)}

Second iteration:

RD,, .. (D)= {(n,?),(m,?)}
RD,..(1) = {(n,?),(m,?)}

n>1; 4 D, ..., (2= {(N2)(m,2)}
N D, ...(2)= {(n2),(m,2)}

> D, (3)={(n,?),(M,2)}

6 n:= D....(3)={(n,?),(m,2)}

RD, ¢y (1= 1(n,?),(M,2)}
RD_,;(H)={(n,?), (M)}
RD .y (P) ={(x.2)| x in Vars}, if p is initial RD,.....(5)= {(n,?),(m,4)}
RD iy (P) =U{RD,,4(q) | q in pre[p]}, otherwise RD, ., (5)= {(n,5),(m,4)}

output m;

D,,1(P) = (RDp (P) \ Killps[p1) U gengy[p] RD,,..,(6)= {(n,?),(m,2)}
RD,,;.(6)={(n,?),(m,2)}

RD,, .. (D)= {(n,?),(m,?)}

RD,,..(1) = {(n,?),(m,?)}

RD,, .., (2)={(n,?),(m,?)}
RD,,;(2)={(n,?),(m,2)}

RD,, .., (3)={(n,?),(m,2),(n,5)(m,4)}
RD_,;(3)={(n,?),(m,2),(n,5)(m,4)}
RD,, .., (4)=1(n,?),(m,2),(n,5)(m,4)}
RD,,.. ()= {(n,?),(n,5)(m,4)}
RD,,..,(5)={(n,?),(n,5)(m,4)}
RD__..(5)={(n,5),(m,4)}

RD,, .., (6)={(n,?),(m,2),(n,5)(m,4)}
RD_,;(6)={(n,?),(m,2),(n,5)(m,4)}

fix point!

RD analxsis

* RD analysis is forward and possible,
i.e., if an assignment x:=a in some point q is really actual in entry
to some point p then
(X,.9)ERD,pyry(p) (While the vice versa does not hold).

How can we use this?

-If the analysis tells us that a variable is undefined then it is
-Loop invariant code motions

Application:

Consider a loop where:

1. mis the entry point

2. an inner point n contains an

assignment x:=exp

3. if for any variable y occurring

in exp (i.e. yevars(exp)) and for any program

point p, we have that

(Y'P)E RDentry(m) @ (y'p)E RDentry(n)

then, the assignment x:=exp can be correctly moved out as
preceding the entry point of the loop

AEEIica‘rion:

Loop-invariant code motion

y:=3; 2:=5;

for(int 1=0; 1i<9; i++) {
X =y + z;
a[i] = 2*1 + Xx;

}

1i=0; 1<9; i++) {

= 2*1 + X;

Available ExEr'essions Analxsis

Let p be a program point. For each execution path ending in p,
we want track the expressions that have already been
evaluated and then not modified.

These are called available expressions

Example

X.=a+b;
y:=a*b;
while y>a+b 1
do (a:=a+1;
x:=a+b;)

when the execution reaches 3, the expression a+b
is available, since it has been previously evaluated
(in point 1 for the first iteration of the while-loop
and in point 5 for the next iterations) and does
not need to be evaluated again in 3

- This analysis can be therefore used to avoid re-
evaluations of available expressions

The domain

Let E={ e | e is a sub-expressions/expression appearing in P}
Let N be the number of nodes of the CFG of P

P EexPE))y, <2s is a finite domain

Kill ;¢ and Gen ¢

An expression e in E is killed in a program point p (e is in kill ,c(p))
if a variable occurring in e is modified (i.e., it is defined by some assignment)
by the command in p.

kill ,e([x:=€'JP)= {e in E | x € vars(e)}

An expression e is generated in a program point p (e is in gen ,(p))
if e is evaluated in p and no variable occurring in e is modified in p.

gen ,e([x:=e]r) ={e} if x ¢ vars(e),
gen,([x:=eJP) = () if x cvars(e);
gen,:([el>e2]r) = expr({el, e2}) where expr(S) returns
the subset of S that are expressions

Example

x:=a+b; y:=a*b; while y>a+b do (a:za+l; x:=a+b)
E = {a+b, a*b, a+1}

n Killpg(n) genpe(n)
1 %, {a+b}

2 %) {a*b}

3 |D {a+b}

4 |{atb, a*b,a+1} |D

5 | {a+b}

Specification

* Auvailable expressions analysis is specified by the following

equations, for any program point p:
(
% if p is initial

<
AEenTry(p) =

. N{AE_.+(q) | q €pre[p]} otherwise

AEexif(p): (AEentry(p) \ k'”AE(p)) U genAE(p)

Point a and b to GEEIX Kleene Theorem

To find a solution to the previous equation system we need to apply
Kleene Theorem

b) (73 (E)xP(E))N, C*Y> is a finite domain therefore is a
CPO, moreover, it has a bottom element

a) Themap (P EXPE)N » (PEXPE)) defined by
(assuming 1 is the only initial node)
AE(<AEenTry11AEexi‘r1""fAEenTr'yN: >) =

<D, (AEpry1 \ Kill,e(1)) U gen,g(1),
NAEuitg | q in pre[2]}, (AE 2 \ Kill,g(2)) U gen,g(2),

N{AEuitq | q in pre[N]}, >

Point a
a) The map
AE(<AE ntry1, AE exit1 - AE entryn >) =
<D, (AE pry1 \ Kill (1)) U gen,g(1),
N{AEuitg | q in pre[2]}, (AE 2 \ Kill,g(2)) U gen,g(2),

N{AE irq | q in pre[N]}, >
IS monotone on the finite domain

P exPEy, <Vs

- Example

AE(x2,2,0,0,@,2>)=

<@ {a+b}, {}, {a*b}, {a*b}, >

AE(«a {a+b}, {}, {a*b}, {a*b}, >)=

<@ {a+b}, {a+b}, {a+b,a*b}, {a+b,a*b}, >

Which fix point?

AE is a definite analysis:
if e CAE, 4, (p) then e is really available in entry to p

the converse does not hold

* Any fixpoint of the above equation system is an under-approximation
of really available expressions.

Between all fix points, we are thus interested in computing
the greatest fixpoint (the more precise approximation)

Also, observe that this is a forward analysis.

The starting point, for all n
: : : AE b,a*b,a+1
Computing the greatest fix point A entry(1)=AE ()={a+b,07b a1}
x:za+b; y:=a*b; while y>a+b do (a:za+l; x:za+b)
E = {a+b, a*b, a+1} AE,....,(p)=2 if pis initial

entry(p)" rj{AEexit(q) | q ln pre[p]}
N |Killag(n) genae(n) AE.ie(p) = (AE. ...y (P) \ Kill4e(p)) U gen ,e(p)

2 {a+b} L

& {a*b}

a {a+b}

{a+b, a*b,a+1} |

N | S| W N | -

2 {a+b}

AE pery(1)= O ex1t(1)={a+b}
entry(2)={a+b} E..:(2) ={a+b,a*b}
(3)={a+b,a*b} AEem(3)_{a+b,a*b}
entry(4) ={a+ba*b} AE_; (4)={}

AE ey (9)={} AE,:(5)={a+b}

entry

Second iteration
AE,...,(p)=2 if pis initial
AB.nery(P)= M{AE,,;(@) | q in pre[p] }

AE_...(p) = (AE_...,(p) \ Kill,e(p)) U gen,e(p)

Previous iteration

N |AE.e(N) AE,,;.(n)

I {a+b}

2 |{atb} {a+b, a*b}

3 {a+b,a*b} {a+b,a*b}

4 {a+b,a*b} %)

s 1@ ta+b} N |AE,.,(N) AE_..(n)
AE,,.(1)= AE,,..,(1) U {a+b} 1|2 {a+b}
AE....(2)= AE,,..,(2) U {a*b} 2 |{atb} {a+b, a*b}
AE....(3)= AE,,..,(3) U {a+b} 3 |{atb} {a+b)
AE....(#)= AE,.._ (4) - {a+b, a*b, a+1} [4 |{8*D} Z
AE,...(5)= AE,,...(5) U {a+b} 519 {a+b}

Third iteration and Greatest Fixpoint

AE,...,(p)=0 if p is initial

AEentry(p): rW{AEexit(q) | q In pre[p] }

AE,,:.(p) = (AEentry(p) \ kill ,e(p)) U gen,e(p)

Previous iteration

N |AE .y (N) AE,,..(n)

1 %) {a+b)

2 {a+b} {a+b, a*b}

3 {a+b} {a+b}

4 |{atb} 2

5 (I {a+b}
AE..(1)= AE,.,(1) U {a+b}
AE....(2)= AE,..,(2) U {a*b;}
AE..e(3)= AE,.,(3) U {a+b}
AE..;(4)= AE () - 121D, @%b, a+1}
AE.e(3)= AE,...,(5) U {a+b}

N JAE (D) AE,,::(N)
1 %) {a+b)

2 {a+b} {a+b, a*b}
3 {a+b} {a+b}

4 |{a+b} %)

5 %) {a+b}

Result

x:=a+b; y:=a*b; while y>a+b do (a:za+l; x:=a+b)

n o |AE,.,(n) AE....(n)
1 |9 {a+b}

2 {a+b} {a+b, a*b}
3 {a+b} {a+b}

4 |{a+b} %)

5 |< {a+b}

1
X:= a+b;

2

Y-=

3

y>a+tb;

4

a:=
5
x=a+b;

Application:
o AL J=Bi +Cli.j]
whiJ}e.i gf n do first computation

while j <= m do

temp := Base(A) + i*(m+1) + js

Cont(temp) := Cont(Base(B) + i*(m+1) + j)
+ Cont (Base(C) t/i*(qfl) + 3);
j o= j+1
od; .
i ez i+l re-computations
od

tl :=1i *x (m+l) + j;
temp := Base(A) + ti;
Cont (temp) := Cont (Base(B)+t1)

+ Cont(Base(C)+tl);

A Dataflow Analxsis Framework

The above dataflow analyses (Reaching Definitions,
Available Expressions, Live Variables) reveal many
similarities.

One major advantage of a unifying framework of
dataflow analysis lies in the design of a generic
analysis algorithm that can be instantiated in order to
compute different dataflow analyses.

Ca‘ralogue of Dataflow Analxses

Possible Analysis

Semantics C Analysis

Definite Analysis

Analysisc Semantics

Forward

in[n] out[n] |Reaching definitions Available
pre post expressions
Backward

out[n] in[n] Live variables Very busy
post pre

expressions

Static Analyses

Summary of analyses and transformations

Analysis

Available expressions analysis
Reaching Definition

Live variables analysis
Detection of induction variables

Equivalent expression analysis

Transformation

Common subexpression elimination
Invariant code motion

Dead code elimination

Strength reduction

Copy propagation

The essence of program analxsis

Program analysis offers techniques for predicting statically
at compile-time

safe & efficient approximations
to the set of configurations or behaviours arising dynamically at run-
time

Safe: faithful to the semantics
Efficient: implementation with
- good time performance and

- low space consumption

Why approximations?

read(x); (if x>0 then y=1 else (y=2;5)); z=y
Assume S does not contain any assignment to y

Which values of y can reach the assignment z=y??
It depends if S diverges

Correct (Safe) approximations :
- {1,17} if S diverges

- {1,2,5, 27} otherwise

Best (Precise) approximations :
* {1} in the first case

- {1,2} otherwise

The nature of approximations

The exact world Over-approximation Under-approximation

universe

exact set of
configurations

or behaviours

e —
approximation uhder=
approximation

Trade precision for efficiency!

but approximation have to be on the right sidel

AEEroaches to Pr'ogram Analxsis

A family of techniques . .. that differs in their focus

data flow analysis » algorithmic methods

. : » semantic foundations
constraint based analysis

- language paradigms

fype and effect systems — imperative/procedural

abstract interpretation — object oriented
— logical
— functional

— concurrent/distributive

— mobile

Dataflow Analxsis

The ideas :

- Based on the CFG

- Constructs an equation system in terms of the
property at the entry and exit of a node in the CFG

- Looks for solution of the system of equations as a
fix point

- Compute either a least fixpont or a greatest fix point depending on
the direction of the approximation

An Example Reaching Definitions

[y := x]'; [z := 1]%;whilely > 1]%dolz = z xy]*; [y := y — 1]°0d; [y := 0]°

(y.?).(y. 1)(y.5)(y.6) (v.1)

An example : RD R 5
(z,2)(z,2)(z,4) (z,4)
(v.2).(y.1)(y.5)(y.6) (y.5)
(v.2).(y 1)(y.5)(y.6) (y.6)

Second iteration fix point!

RD,,..,(1)={(x,?)(v,?)(z,?)}

RD,,; (1) = {x,?)(v,1)(z,?)}
RD.,..,(2)= 1(x,2)(y,1)(z,?)}
RD,,;.(2)= {(x,?)(v,1)(z,2)}
RD,,...,(3)=1(x,2)(y,1)(z,2) (z,4)(y,3)}
RD,,;(3)={(x,?)(v,1)(z,2) (z,4)(y,5)}
RD,,.., (D)= {(x,?),(y,1)(z,2)(z4) (v,5)}

RD,,; (4= {(x,2),(y,1)(z,4) (v,5)}

RD,,...,(5)= {(x%,?),(,1)(z,4) (v,5)}
RDemy(p) ={(x,2)| xin Vars}, if p is initial RD_ . (5)={(x,2),(v,5)(z,4)}
RDntry(P) ZU{RD4(q) | q in pre[p]}, otherwise RD, ..y (6)= {(x,2),(,1)(z,2) (z,4)(,5)}

RD,y(P) = (RD, . (P) \ Killgs[p]) U gengy[p] RD,,;(6)= {(x,?),(v,6)(z,2) (z,4)}

Control Flow Analysis

- Constructs a constraint system
- Looks for a solution of the constraint system as a

fix point

Control Flow Analxsis

- An alternative to equational approach is the constraint based
approach.

* The idea is to extract a number of inclusions (equation or
constraints) out of the program

» Once again we consider the property at the entry and exit of a
hode

- We encode with constraints the information of the flow of the
CFG

Constraints for effects of elemen’rarx blocks

[y =1]" [z = 1J%; while [y > 1] do ([z = zx y|*; [y = vy — 1]°); [y = 0O]°

* We have constraints that express the effects for elementary

blocks

RDexit(l) B RD entry()/{(y,) such that | € Lab}
RDeyit(1) 2 {(y, 1)}

RDegm't(Q) 2 RDentry(Z)/{(z, l) such that [€ Lab}
RDeit(2) 2 {(2,2)}

RDexit (3) 2 RDentry(g)

RDea:it (4) 2 RDentry (4)/{(Z, l) such that [€ Lab}
RDepis(4) 2 {(2,4)}

RDerf;it(5) O RD entry()/{(y,) such that [€ Lab}
RDeit(5) 2 {(y,5)}

RD@ZCit(G) D RD entry()/{(y,) such that | € Lab}
RDeyit(6) 2 {(y,6)}

More constraints

- We have constraints that expression control may flow through the
rogram
PPO9TEM 1y = 1113 1 = 1% while [y > 1J° do ([z = 2 %3] [y = y — 15 [y = O

RDentry(2) 2 RDegip(1) [¥=%5

2
z:= 1

Summary of the constraints system

RDe:cz't(l) 2 RD entry()/{(y7)such'rha‘r [€ Lab}

RDexz’t(l)) {(ya 1)}

RDexz't(2> 2 RD entry()/{(Z l) such that [€ Lab}

RDem’t(Q)) {(Za 2)}

RDe:m't(g) 2 RDentry(g)

RDem't(ll) 2 RDentry (4)/{(Z, l) suchthat | € Lab}

RD.zit(4) 2 {(2,4)}

RDe:m’t(5) D) RD entry()/{(y,)such that [€ Lab}

RDem't(5) 2 {<y7 5)}

RDe1it(6) 2 RDentry(6)/{(y, 1) swnthatl € Lab}

RDercit(G) 2 {(%6)}
RDentry(2> 2 RDea:it(l)
RDentry(3> 2 RDea:it<2)
RDentry(3> 2 RDexit(5> 12 Se.‘-s
RDentry(5) 2 BDeait(4) 17 constraints
RDentry(6) 2 RDexz’t(S)
RDeniry(1) 2 {(2,7), (5.). (2,)} We look for ip

the solution is a prefix
«— <« pOinT
RDJ F(RD)

Remember..Fixpoints on Complete Lattices

Prefixpoints
{1€L | f(l) =1}

Fix() ={ I €L | f()=I} /

Ifp(f) =glb{IEL|fl) =<1}

The solution can be computed as a least fix point!

The same solutionl!

RD,, ., (1)= 1(2)(y,2)(z,2)}

RD,,; (1) = {(x,?)(y,1)(z?)}
RD,.c.y(2)= 1(x,2)(v,1)(z,?)}
RD,..(2)= {(x,?)(v,1)(z,2)}
RD,...,(3)=1(x,2)(y,1)(z,2) (z4)(y,3)}
RD_,;(3)={(x,?)(v,1)(z,2) (z4)(y,3)}
RD,,c.(H)= 1(x,?),(¥,1)(z,2)(z,4) (¥,3)}
RD_,;(4)= {(x,2),(y,1)(z4)(v,5)}
RD,,..,(5)= {(x,?),(y,1)(z,4)(v,3)}
RD,..(3)= {(x,?),(y,5)(z4)}
RD.,...,(8)= {(x,?),(¥,1)(z,2)(z,4)(Y,3)}
RD_,;.(6)= {(x,?),(v,6)(z,2) (z4)}

Constraint based analxsis

How to automate the analysis

extract compute the
constraints| least solution

from the to the

program constraints

Type and Effect Systems

idea:
-annotated base types
- annotated type constructors

* Types:
Y. is the type of states:;
all statements S have type > — X written - S: X — X

Annotated data types

type of initial state type of final state(s)
= S : > - X
Idea: RDi C RD.(init(S))
U
Analysis: Ve € final(S) :
RD.(¢) C RD2
S RD; — RD»
analysis information analysis information

for initial state for final state(s)

Annotated type system I

- [z:=a]®: RD, — (RD\ {(z,¢) | ¢ € Lab}) U {(z,0)}

before aftrer

~S1:RDy —RD> F S5 :RDs— RD3 assumptions
seq -S1,5>: RDy — RDs3 conclusion
before after

Implicit: the analysis information at the exit of Sy
equals the analysis information at the entry of S»

Annotated type system IT

l—SliRDl—>RD2 FSQIRD1—>RD2

t - if [b] then Sy else S, fi : RD; — RDs

Implicit: the two branches have the same analysis information
at their respective entry and exit points

- while [b]¢ do S od: RD — RD

Implicit: the occurrences of RD express an invariance
i.e. a fixed point property!

Annotated type system ITT

T he subsumption rule:

5 :RD} — RD)
if RD; C RD); and RD5 C RD
WS RD1—>RD2 T RPL = REy ah@ RV = RY2

The rule is essential for the rules for conditional and iteration to work

e RD; C RD’l: strengthen the analysis information for the initial state

° RD’2 C RD»>: weaken the analysis information for the final states

I

FSo: RD» |—> RD3

i \

S v_ L\.ﬁlﬂ\ﬁ\\% =
_TLJ IR p
T H
T

EEaame

Dn/_ .. | | 7
W N R I
1] 113 ST R o
— A 11| | X
N |L e A aé» _
= N] =
— o [B e = AJA ﬁ \M.,r\
=1 ml_\lu A/r [n N "o
[
e v (7L o
avl ™~ \)_) f’\
S A
5 L oW
D g —
: P
L~ & ua,.
[Vﬁ/
- |
— ® Lk
. AN -
>—
e N
— x\?-\.'
T A= - ~
O o &
m, I e
— Nt ' o SN
d ¥y R
~ I l{\
s\:lv/
O\e

(

L4
]
N

I 1]

[]
|

T=X

Sy RDl — RD» F S : RD» |—> RD3

We now need to prove that sed Gy 5 RDy - RDs
[z= 1 while]y-= 1P dole = 2 x Yyt [y =y = 1| o fgr=101""

1z, ?), (w, 1), (2, 7) = (2, 7), (,6), (2,2),(2,4)}

Fuhil 2177 do (22 2%93% §: = Y71 od B Lz A AN
€2, 60,691 519, 60)069 6403

G OiSkAly, D DS b el

F [o= ohilTy7dl do Dol Taisy 4T ods Tyssal®
20070 (9, D TR L B R
e

- S : RD} — RD},

Sy :RDy — RD» FSQ:RDQHRD3 S :RD; — RD>

FSq1;8>: RD;y — RD3

if RD; C RD} and RD, C RD,

- S : RD, — RD}

51 :RD; —RDy S :RDs|— RD3 sub-——- RD: = RD if RD; C RD? and RD, C RD>
seq - S1;52: RDy — RD3'
, FS:RD —RD
while

- while [b]¢ do S od: RD — RD
We are left to prove that
whilely := 1]°dolz = z x y|*; [y := y — 1]°0d :

RD — RD
AbbreViatiOn: RD — {(X7 ?)7 (Y7 1)7 (Y7 5)7 (27 2)7 (27 4)}

- [zi=zxy]*: RD — {(x,7), (y,1), (3, 5), (2, 4)}
- [zimzxyl®; [yisy-11% RD — {(x,7),(7,5), (. 4)}

- [z:=z*y]*; [y:=y-1]°: RD — RD sub
using {(x,7),(y,5),(z,4)} CRD

- while [y>1]° do [z:=z*y]*, [y:=y-1]> od: RD — RD while

How to automate the analys|s

Specification Implementation

annotated |

extract
type system

(axioms and constraints
rules) from the program

compute the
least solution
to the constraints

|

