Bottom-up Parsing

Recap of Top-down Parsing

e Top-down parsers build syntax tree from root to leaves

Left-recursion causes non-termination in fop-down parsers
— Transformation to eliminate left recursion

— Transformation to eliminate common prefixes in right recursion

FIRST, FIRST+, & FOLLOW sets + LL(1) condition

— LL(1) uses left-to-right scan of the input, leftmost derivation of the
sentence, and 1 word lookahead

— LL(1) condition means grammar works for predictive parsing

Given an LL(1) grammar, we can
— Build a recursive descent parser

— Build a table-driven LL(1) parser

LL(1) parser doesn't explicitly build the parse tree
— Keeps lower fringe of partially complete tree on the stack

Parsing Techniques

Top-down parsers (LL(1), recursive descent)

e Start at the root of the parse tree and grow toward leaves
e Pick a production & try to match the input

* Bad "pick” = may need to backtrack

* Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), operator precedence)

* Start at the leaves and grow toward root

* As input is consumed, encode possibilities in an internal state
e Start in a state valid for legal first tokens

e Bottom-up parsers handle a large class of grammars

Bo’r‘rom-uE parser handle a larger class of grammars

4 I

\

/

LR(1)
LL(1)
 — %
Context-Free
Grammars

o 9%

Bottom-up Parsing (recap of definitions)

The point of parsing is to construct a derivation

A derivation consists of a series of rewrite steps

S=v =V =7V, =.. =Y,4=7,= Sentence

e Eachy, is a sentential form

— If y contains only tferminal symbols, v is a sentence in L(6)
— If y contains 1 or more non-terminals, y is a sentential form

* Togety fromy,,, expand some NT A €., by using A —f
— Replace the occurrence of A €y, with p to get vy,
— Inaleftmost derivation, it would be the first NT A ey,

A left-sentential form occurs in a leftmost derivation
A right-sentential form occurs in a rightmost derivation

Bottom-up parsers build a rightmost derivation in reverse

Bottom-up Parsing

A bottom-up parser builds a derivation by working from
the input sentence back toward the start symbol S

S=v =V =Y, = .. =Y.1=7,= Sentence

< bottom-up

To reduce y; to y_; match some rhs f against vy, then replace 3

with its corresponding lhs, A. (assuming the production A—p)

Bottom-up Parsing

In terms of the parse tree, it works from leaves to root
* Nodes with no parent in a partial tree form its upper fringe (border)

Consider the grammar
The input string abbcde

O Goal —~ aABe

1 A ~ Abc

) | b Goal
3 B — d

° Since each replacement of § with A shrinks
the upper fringe, we call it a reduction.

(remember we are constructing a rightmost A b ¢
derivation)

While the process of finding the next reduction appears to be almost oracular, it
can be automated in an efficient way for a large class of grammars

Finding Reductions

Sentential Reduction
. Form Prod'n Pos'n
O Godl aABe
s abbcde 2 2
1 A Abc
a A bcde 1 4
2 | b
. aAde 3 3
3 B d
aABe 0 4
The input string abbcde Goal — —

The trick is scanning the input and finding the next reduction

The mechanism for doing this must be efficient
"Position"” specifies where the right end of
B occurs in the current sentential form.

Leftmost reductions for r'igh’rmos’r derivations

O Goal — aABe Rightmost
1 A 7 Abc derivation
2 | b Goal
3 B — d aABe
a Ade
a A bcde
abbcde
v

To reconstruct a Rightmost derivation bottom up we have to look for the
leftmost substring that matches a right handside of a derivation!

Finding Reductions (Handles)

The parser must find a substring p of the tree's frontier that
matches some production A — 3 that occurs as one step
in the rightmost derivation. We call this substring 3 an handle

An handle of a right-sentential form vy is a pair <A—f k> where
A—p € P and k is the position iny of p's rightmost symbol.
If <A—p k> is a handle, then replacing p at k with A produces the right

sentential form from which y is derived in the rightmost derivation.

handles A->p

abbcde 2
a A bcde 1
a Ade 3
aABe 0

)

o

=
|

H W b DN X

Handles

Because v is a right-sentential form, the substring to the right of a handle
contains only terminal symbols

handles A->B k
abbcde 2 2
a A bcde 1 4
a Ade 3 3
aABe 0] 4

Goal —

Example

0 Goadl

N OO0 OO A W N -

Expr

Term

Factor

Expr
Expr + Term
Expr - Term
Term

Term * Factor
Term / Factor

Factor

~ number

id
(Expr)

Bottom up parsers handle
either left-recursive or
right-recursive grammars.

A simple left-recursive form of
the classic expression grammar

Example

0 Goadl

N OO0 OO A W N -

Expr

Term

Factor

derivation
—

Expr
Expr + Term
Expr - Term
Term

Term * Factor
Term / Factor

Factor

~ number

id
(Expr)

A simple left-recursive form of
the classic expression grammar

Prod'n Sentential Form

o o0 W N o0 0o~ NN O

Goal

Expr

Expr - Term

Expr - Term * Factor
Expr - Term * <id,y>
Expr - Factor * <id,y>
Expr - <num,2> * <id,y>
Term - <num,2> * <id,y>
Factor - <num,2> * <idy>

<id, x> - <num,2> * <id,y>

Rightmost derivation of x-2*y

Example

Prod'n Sentential Form Handle

0 Godl — Expr — Godl —
1 Expr — Expr +Term 0 Expr 01
2 | Expr - Term 2 Expr- Term 2,3
3 | Term 4 Expr - Term * Factor 45
4 Term ~— Term * Factor 8 Expr - Term * <id,y> 85
5 | Term / Factor 6 Expr - Factor * <id,y> 6,3
6 | Factor 7 Expr - <num,2> * <idy> 7.3
7 Factor — number 3 Term - <num,2> * <id,y> 3.1

| id 6 Factor - <num,2> * <idy> 6,1
9 | (Expr) 8 <idx> - <num,2> * <id,y> 8,1 parse

Handles for rightmost derivationof x-2*vy

Bottom-up Parsing (Abstract View)

A bottom-up parser repeatedly finds a handle A—p in the
current right-sentential form and replaces 3 with A.

To construct a rightmost derivation

S:yo =V =V = e SV = V=W

Apply the following conceptual algorithm

for i e@'ﬁby -1 of course, n is unknown
Find the handle <A, —p,, k.> iny, until the derivation is built

Replace B, with A, fo generate v,

This takes 2n steps

More on Handles

Bottom-up reduce parsers find a rightmost derivation in reverse
order

— Rightmost derivation = rightmost NT expanded at each step in

the derivation

— Processed in reverse = parser proceeds left to right

These statements are somewhat counter-intuitive

Handles Are Unique

Theorem:
If G is unambiguous, then every right-sentential form has a
unique handle.

Sketch of Proof:
1 G is unambiguous = rightmost derivation is unique

2 = aunique production A — 3 applied to derive y, from vy,

3 = aunique position k at which A—p is applied

4 = aunique handle <A—f k>

This all follows from the definitions

If we can find the handles, we can build a derivation!

Shift-reduce Parsing

To implement a bottom-up parser, we adopt the shift-reduce paradigm

A shift-reduce parser is a stack automaton with four actions
* Shift — next word is shifted onto the stack (push)

e Reduce — right end of handle is at top of stack
Locate left end of handle within the stack
Pop handle off stack & push appropriate lhs

* Accept — stop parsing & report success
* Error — call an error reporting/recovery routine
Reduce consists in |rhs| pops & 1 push

But how does the parser know when to shift and when fo reduce?
It shifts until it has a handle at the top of the stack.

It uses a stack where we memorize terminal and nonterminal

Bottom-up Parser What happens on an error?

A simple shift-reduce parser:
® It fails to find a handle

push $ ® Thus, it keeps shifting
token <— next_token()
repeat until (top of stack = Goal and token = EOF)
if the top of the stack is a handle A—f
then //reducepto A
pop |B| symbols of f the stack
push A onto the stack

* Eventually, it consumes
all input

This parser reads all input
before reporting an error,
not a desirable property.

else if (token = EOF) Error localization is an issue
then // shift in the handle-finding
push token process that affects the

practicality of shift-reduce

token < next_token()
parsers...

else // need to shift, but out of input
report an error We will fix this issue later.

Backtox-2*y
Stack Input Handle Action
$ id - num * id none shift
$id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 31 reduce 4
$ Expr - hum * id

Expr is not a handle at this point because it does not occur in
this point in a rightmost derivation of
id - num * id

While that statement sounds like oracular mysticism, we will
see that the decision can be automated efficiently.

1. Shift until the top of the
stack is the right end of
a handle

2. Find the left end of the
handle and reduce

0 Godl ~ Expr

1 Expr ~ Expr+ Term

2 | Expr - Term

3 | Term

4 Term ~ Term * Factor
5 | Term / Factor
6 | Factor

7 Factor ~ number

8 | id

9 | (Expr)

Stack Input Handle Action
$ id - num * id none shift
$id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 31 reduce 3
$ Expr -num *id none shift
$ Expr - num * id none shift
$ Expr - num id 7,3 reduce 7
$ Expr - Factor id 6,3 reduce 6
$ Expr - Term id none shift
$ Expr - Term * id none shift
$ Expr - Term * id 8,5 reduce 8
$ Expr - Term * Factor 45 reduce 4
$ Expr - Term 2,3 reduce 2
$ Expr 0,1 reduce O
$ Goal none accept

1. Shift until the top of the stack
the right end of a handle

2. Find the left end of the handle

and reduce
0 Godl ~ Expr
1 Expr ~ Expr+ Term
2 | Expr- Term
3 | Term
4 Term — Term * Factor
5 | Term / Factor
6 | Factor
7 Factor ~ number
8 | id
9 | (Expr)
5 shifts +

9 reduces + 1
accept

Backtox-2*y

Stack Input Action

$ id-num*id shift @

$id -num * id reduce 8

$ Factor -num * id reduce 6 @

$ Term -num *id reduce 3 | \\

$ Expr -num *id shift @ — \

$ Expr - num*id shift @ @ .
$ Expr - num *id reduce?7 : l

$ Expr - Factor *id reduce 6 @ @ <id,y>
$ Expr - Term * id shift | !

$ Expr - Term * id shift de <num,2>

$ Expr - Term ™ id reduce 8 Corresponding Parse Tree
$ Expr - Term * Factor reduce 4

$ Expr - Term reduce 2

$ Expr reduce O

$ Goal accept

An Important Lesson about Handles

An handle must be a substring of a sentential form y such that :
— It must match the right hand side § of some rule A —§; and
— There must be some rightmost derivation from the goal symbol

that produces the sentential form y with A — 3 as the last
production applied

* Simply looking for right hand sides that match strings is not
good enough

Critical Question: How can we know when we have found an
handle without generating lots of different derivations?
Answer: We use left context encoded in a "parser state” and a

lookahead at the next word in the input. (Formally, 1 word beyond
the handle.)

LR(1) Parsers

* LR(1) parsers use states to encode information on the left context

and also use 1 word beyond the handle.
The additional left context is precisely the reason that LR(1) grammars express
a superset of the languages that can be expressed as LL(1) grammars

- Such information is encoded ina GOTO and ACTION tables

The actions are driven by the state and the lookhaed

LR(1) Parsers

* LR(1) parsers are table-driven, shift-reduce parsers that
use a limited right context (1 token) for handle recognition

* The class of grammars that these parsers recognize is called the
set of LR(1) grammars

A grammar is LR(1) if, given a rightmost derivation
S=v =V =Y, = .. =Y, =Y, = Sentence
We can

1. isolate the handle of each right-sentential form vy, and
2. determine the production by which to reduce,

going at most 1 symbol beyond the right end of the handle of y,

LR(1) means left-to-right scan of the input, rightmost derivation (in reverse),
and 1 word of lookahead.

LR(1) Parsers

A table-driven LR(1) parser looks like

Table-driven
Parser

source
- Scanner
code
grammar Parser
Generator

Tables can be built by hand

ACTION &
GOTO
Tables

However, this is a perfect task to automate

IR

LR(1) Parsers

A table-driven LR(1) parser looks like

Table-driven
Parser

source
E— Scanner
code
L]

regular | Scanner

expression Generator
grammar Parser

Generator

Tables can be built by hand

ACTION &
GOTO
Tables

However, this is a perfect task to automate

Just like automating construction of scanners ...

IR

It uses a stack where we memorize
pairs of the form (state, T U NT)

LR(1) Skeleton Parser

stack.push($);
stack.push(s,):;
token = scanner.next_token();
loop forever {
s = stack.top();
if (ACTION[s,token] == "reduce A—p") then {
stack.popnum(2*|B|). // pop 2*|B| symbols
s = stack.top();
stack.push(A); // push A
stack.push(60TO[s,A]); // push next state

// initial state

}
else if (ACTION[s,token] == "shift s.") then {
stack.push(token); stack.push(s,):
token < scanner.next_token();
}
else if (ACTION[s,token] == "accept”
& token == EOF)
then break;
else throw a syntax error;

}

report success:;

The skeleton parser
* relies on a stack & a scanner

* uses two tables, called
ACTION & GOTO

ACTION: state x word — action
GOTO: state x NT — state

* detects errors by failure of
the other three cases

LR(1) Parsers (parse tables)

To make a parser for L(6), need a set of tables

The grammar

1 Goal " SheepNoise
2 SheepNoise ~— SheepNoise baa
3 | baa
For now assume we have the tables
ACTION Table GOTO Table
State EOF baa State SheepNoise
0 — shift 2 0 1

1 accept shift 3 1 0
2 reduce 3 reduce 3 2 0
3 3

reduce 2 reduce 2

Example Parse 1

The string baa

Stack Input Action 1 Godl — SheepNoise
$ s, baa EOF 2 SheepNoise — SheepNoise baa
3 | baa
ACTION Table GOTO Table
State EOF baa State SheepNoise
0 — shift 2 0 1

accept shift 3 0

1 1
2 reduce 3 reduce 3 2 0
3 3

reduce 2 reduce 2

Example Parse 1

The string baa

Stack Input Action
$ s, baa EOF shift 2
$ s, baa s, EOF
ACTION Table
State EOF baa
0 — shift 2

1
2
3

accept shift 3
reduce 3 reduce 3

reduce 2 reduce 2

3

1 Godl — SheepNoise
2 SheepNoise — SheepNoise baa
| baa
GOTO Table
State SheepNoise

o) 1

1 0]

2 0]

3 0]

Example Parse 1

The string baa

Stack Input Action
$ so baa EOF shift 2
$ s, baa s, EOF reduce 3
$ s, SN's, EOF
ACTION Table
State EOF baa
0 — shift 2

1
2
3

accept shift 3
reduce 3 reduce 3

reduce 2 reduce 2

3

1 Godl — SheepNoise
2 SheepNoise — SheepNoise baa
| baa
GOTO Table
State SheepNoise

o) 1

1 0]

2 0]

3 0]

Example Parse 1

The string baa

Stack Input Action
$ s baa EOF shift 2
$ s, baa s, EOF reduce 3
$ s, SN s, EOF accept
ACTION Table
State EOF baa
0 — shift 2

1
2
3

accept shift 3
reduce 3 reduce 3

reduce 2 reduce 2

3

1 Godl — SheepNoise
2 SheepNoise — SheepNoise baa
| baa
GOTO Table
State SheepNoise

o) 1

1 0]

2 0]

3 0]

Example Parse 2

The string baa baa

Stack Input Action 1 Godl — SheepNoise
$ s, baa baa EOF 2 SheepNoise ~— SheepNoise baa
3 | baa
ACTION Table GOTO Table
State EOF baa State SheepNoise
0 — shift 2 0 1
accept shift 3 0

1 1
2 reduce 3 reduce 3 2 0
3 3

reduce 2 reduce 2

Example Parse 2

The string baa baa

Stack Input Action 1 6odl ~ SheepNoise

$ s, baa baa EOF shift 2 2 SheepNoise ~~ SheepNoise baa
3 | baa
$ s, baa s, baa EOF
ACTION Table GOTO Table
State EOF baa State SheepNoise

0 — shift 2 0 1

1 accept shift 3 1 0

2 reduce 3 reduce 3 2 0

3 reduce 2 reduce 2 3 o)

Example Parse 2

The string baa baa

Stack Input Action 1 Godl ~ SheepNoise
$ s baa baa EOF shift 2 2 SheepNoise ~— SheepNoise baa
0 - 3 | baa
$ s, baa s, baa EOF reduce 3

Last example, we faced EOF and we

$ s, 5'\@, OF accepted. With bag, we shift ...

ACTION Table GOTO Table
State EOF baa State SheepNoise
0) — shift 2 0) 1

accept shift 3 0

1 1
2 reduce 3 reduce 3 2 0
3 3

reduce 2 reduce 2

Example Parse 2

The string baa baa

Goal — SheepNoise
SheepNoise —~ SheepNoise baa

| baa

GOTO Table

State SheepNoise

Stack Input Action 1
$ s, baa baa EOF shift2 °
$ s, baa s, baa EOF reduce 3 3
$ s, SN s, baa EOF shift 3
$ s, SN s, baa s, EOF

ACTION Table
State EOF baa

0 — shift 2 0

1 accept shift 3 1

2 reduce 3 reduce 3 2

3 reduce 2 reduce 2 3

1

o)
0

Example Parse 2

The string baa baa

Stack Input Action 1 Godl — SheepNoise
$ s baa baa EOF shift 2 2 SheepNoise ~— SheepNoise baa
0 - 3 | baa
$ s, baa s, baa EOF reduce 3
$ s, SN s, baa EOF shift 3

$ s, SN s, baa s, EOF reduce 2

$ s, SN@‘

Now, we accept

ACTION Table GOTO Table
State EOF baa State SheepNoise
0 - shift 2 0 1
1 i 1 o)
accept shift 3
2 reduce 3 reduce 3 2 0
3 reduce 2 reduce 2 3 0

Example Parse 2

The string baa baa

1 Godl " SheepNoise
Stack Input Action 2 SheepNoise ~ SheepNoise baa
$ s, baa baa EOF shift 2 3 | baa
$ s, baa s, baa EOF reduce 3
$ s, SN's, baa EOF shift 3
$ s, SN s, baa s, EOF reduce 2
$ s, SN s, EOF accept £0TO Table
ACTION Table State SheepNoise
State EOF baa 0 1
o) — shift 2 1 0
1 accept shift 3 2 0
2 reduce 3 reduce 3 3 0
3 reduce 2 reduce 2

