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Global Register Allocation

The Big Picture 

At each point in the code 
1 Determine which values will reside in registers 
2 Select a register for each such value 

For local allocation we saw   
-the frequency-count allocator (top down) 
-the allocator based on distance to the next use (bottom up)

Register 
Allocator

m register 
 code

k register 
 code

Optimal global allocation 
is NP-Complete, under 
almost any assumptions.



What Makes Global Register Allocation Hard?

What’s harder across multiple blocks? 
• Could replace a load with a move 
• Good assignment would obviate the move 
• Must build a control-flow graph to understand inter-block flow 
• Can spend an inordinate amount of time adjusting the allocation

... 
store r4 ⇒ x

load x ⇒ r1 
...

This is an assignment problem, 
not an allocation problem ! 
If x is kept in the right register 
we could just repack store-load 
with a move



What Makes Global Register Allocation Hard?

A more complex scenario 
• Block with multiple predecessors in the control-flow graph 
• Must get the “right” values in the “right” registers in each 

predecessor 
• In a loop, a block can be its own predecessor 
This adds tremendous complications

... 
store r4 ⇒ x

load x ⇒ r1 
...

... 
store r5 ⇒ x

What if one block has x in a  
register, but not the other?



Global Register Allocation

Taking a global approach 
• Abandon the distinction between local & global  
• Make systematic use of registers or memory (SSA ) 
• Adopt a general scheme to approximate a good allocation 

Difference between two different allocations for the same code lies    

•the number of loads and stores 

•the placement operations (different blocks execute different times 
and this may vary at every run) 

 



Global vs Local Register Allocation

• The structure of global live range can be more complex : a global 
live range is a web of definitions and uses 

• In a local live rage all reference execute once per execution of the 
block . Thus the cost of spilling is uniform 

• In a global allocator the cost of spilling depends on where the 
spilling  occurs 

• Global allocators annotate each reference with an estimated 
execution frequency derived by static analysis or from profile 
data 



1 Build an interference graph GI for the procedure 
— Computing LIVE is harder than in the local case 
— GI is not an interval graph as in the local case  

2 (try to) construct a k-coloring 
— Minimal coloring is NP-Complete 
— Spill placement becomes a critical issue 

3 Map colors onto physical registers

Graph colouring paradigm



Graph Coloring              (A Background Digression)
The problem 

A graph G  is said to be k-colorable iff the nodes can be labeled with 
integers 1 … k so that no edge in G connects two nodes with the same 
label  

Examples 

Each color can be mapped to a distinct physical register

2-colorable 3-colorable



Building the Interference Graph
What is an “interference” ? (or conflict) 
• Two values interfere if there exists an operation where both are 

simultaneously live 
• If x and y interfere, they cannot occupy the same register 
To compute interferences, we must know where values are “live” 

The interference graph, GI = (NI,EI) 

• Nodes in GI represent values, or live ranges 

• Edges in GI represent individual interferences 
— For x, y ∈ NI, <x,y> ∈ EI iff  x and y interfere 

• A k-coloring of GI can be mapped into an allocation to k registers



Building the Interference Graph
To build the interference graph 

1 Discover live ranges 
> Construct the SSA form of the procedure 
> At each φ-function, take the union of the arguments 
> Rename to reflect these new “live ranges” 

2 Compute LIVE sets over live ranges for each block 
> Use an iterative data-flow solver 
> Solve equations for LIVE over domain of live range names 

3 Iterate over each block, bottom-up 
> Track the current LIVE set 
> At each operation, add appropriate edges & update LIVE



1   Discover live ranges 
> Construct the SSA form of the procedure 
> At each φ-function, take the union of the arguments 
> Rename to reflect these new “live ranges”: arguments of the same  

        phi functions has to be united together 

Point 1

Live ranges {LRa=a0,LRb=b0,LRc=c0,  
                    LRd=d0    d1   d2 } [
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Solve the equations using a fixed-point iterative scheme

A value is live between its definition and its uses 
• Find definitions (x ← …) and uses (y ← … x ...) 
• From definition to last use is its live range 

— How does a second definition affect this? 

• Can represent live range as an interval [i,j]   (in block) 

• LV•(l) = U {LVo(l’) | l’ in post(l)}    

• LVo(l) = ( LV•(l) \ def(B) ) U use(B)  

 def([x:=a]l) = {x}           and   Ø elsewhere 
 use([x:=a]l) = FV(a)        
 use([b]l) = FV(b)          and   Ø elsewhere

LVo(l)  are the variables live  

right before the block

 LV
•
(l) are the variables live  

 at the  exit of the block

 Point 2: Computing LIVE Sets



Point 3:constructing the Interference graph 

• LRj interferences with LRi if one is live at a definition of the 
other 

• Once the allocator has built global variable ranges and annotate 

each basic block with its LiveOut  set (LV•(B)), it can construct  

Interference graph with a linear pass over each block.

Inverse order!



LiveOut={LRa,LRd}

LiveOut={LRa}

LiveOut={LRa,LRd}

LRa LRd

LRc
LRb

LiveNow={LRa,LRc}LiveNow={LRa,LRb}

LiveNow={LRa,LRd}LiveNow={LRa,LRd}

LiveNow={LRa}LiveNow={LRa}

Building interference Graph!



Account for Execution Frequency

The compiler annotate each block with estimated execution counts 

These informations can be derived from 
• profile data or from heuristics 
• fixed assumptions, for example, a loop executes 10 time,  

                              an unpredictable if-then-else divides by 2 

To estimate the cost of spilling a single reference the allocator 
adds the cost of the address and memory operation and multiply 
by frequencies 

For each live range it sum up the cost of individual references



Building an allocator

To build an allocator based on graph coloring  on the interference 
graph, the compiler writer needs two additional mechanisms: 
• the allocator needs an efficient technique to discover a k-coloring 

(remember finding is NP-complete) 
• Register allocator uses fast approximations that are not 

guaranteed to find a k-coloring 
• The allocator needs a strategy that handles the case no color 

remain for a specific live range 
• The allocator chooses one or more live range to spill and 

reconsider the problem. 

Now the interference graph may be colorable! 



Observation on Coloring for Register Allocation

• Suppose you have k registers (not all the physival ones: some 
dedicated to keep, e.g. base addresses)—look for a k coloring 

• Any vertex n that has fewer than k neighbors in the 
interference graph (n° < k) can always be colored ! 
— Pick any color not used by its neighbors — there must be one



Top-down Coloring

The Big Picture 
• Use high-level priorities to rank live ranges 
• Allocate registers for them in priority order 
• Use coloring to assign specific registers to live ranges 
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1. Rank all live ranges with  their estimated runtime saving, 
(analogous of the spilling cost) 

2. Separate constrained from unconstrained live ranges 
> A live range is constrained if it has ≥ k neighbors in GI 

 3. Constrained live ranges  are coloured first in rank order 

Improving  the algorithm

2

3

1 4 5

k=3 k=4 



Handling Spills

• When the top down allocator encounters a live range that cannot 
be coloured it spills the live range to change the problem.  

• Since the all previously coloured live ranges were ranked higher 
than the uncoloured one, it spills the uncoloured one. 

• It could think of uncolor some of the previous one but it must 
exercise care to avoid the full cost of backtracking  

• After the spilling the problem becomes easier and a new 
interference graph can be constructed.



• Ideas behind Chaitin’s algorithm: 
— Pick any vertex n such that n°< k and put it on the stack 
— Remove that vertex and all edges incident from the interference graph 

→ This may make additional nodes have fewer than k neighbors 
— At the end, if some vertex n still has k or more neighbors, then spill  

       the live range associated with n 
— Otherwise successively pop vertices off the stack and color them in the  

      lowest color not used by some neighbor 

Bottom up global allocator



Chaitin’s Algorithm
1. While ∃ vertices with < k neighbors in GI  

> Pick any vertex n such that n°< k and put it on the stack 
> Remove that vertex and all edges incident to it from GI 

2. If GI is non-empty  (all vertices have k or more neighbors) then: 
> Pick a vertex n (using some heuristic) and spill the live range associated 

with n 
> Remove vertex n from GI , along with all edges incident to it and put it on 

the “spill list” 
>  If this causes some vertex in GI to have fewer than k neighbors, then go 

to step 1; otherwise, repeat step 2 

3. If the spill list is not empty, insert spill code, then rebuild the 
interference graph and try to allocate, again  

4. Otherwise, successively pop vertices off the stack and color them in 
the lowest color not used by some neighbor

Lowers degree of 
n’s neighbors



Chaitin’s Algorithm in Practice

2

3

1 4 5

3 Registers

Stack

1 is the only node with degree < 3



Chaitin’s Algorithm in Practice

2

3

4 5

3 Registers

Stack

1

Now, 2 & 3 have degree < 3



Chaitin’s Algorithm in Practice

3

4 5

3 Registers

Stack

1

2

Now all nodes have degree < 3



Chaitin’s Algorithm in Practice
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Chaitin’s Algorithm in Practice
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Chaitin’s Algorithm in Practice
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Chaitin’s Algorithm in Practice
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Chaitin’s Algorithm in Practice
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Chaitin’s Algorithm in Practice
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Chaitin’s Algorithm in Practice
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Improvement in Coloring Scheme
Optimistic Coloring      
• If Chaitin’s algorithm reaches a state where every node has k 

or more neighbors, it chooses a node to spill. 
• Briggs said, take that same node and push it on the stack  

— When you pop it off, a color might be available for it! 

2 Registers: Chaitin’s algorithm 
immediately spills one 
of these nodes 



 34

—A node n might have k+2 neighbors, but those  
      neighbors might only use 3 (<k) colors 

→Degree is a loose upper bound on colorability

Improvement in Coloring Scheme

Briggs et al, PLDI 89 (Also, TOPLAS 1994)

degree(A) =5 
A

coulor(A)=2



Improvement in Coloring Scheme
Optimistic Coloring 
• If Chaitin’s algorithm reaches a state where every node has k 

or more neighbors, it chooses a node to spill. 
• Briggs said, take that same node and push it on the stack  

— When you pop it off, a color might be available for it! 

— For example, a node n might have k+2 neighbors, but those 
neighbors might only use just one color (or any number < k ) 
→ Degree is a loose upper bound on colorability

2 Registers:

2-Colorable

Briggs algorithm finds 
an available color  



Chaitin-Briggs Algorithm
1. While ∃ vertices with < k neighbors in GI  

> Pick any vertex n such that n°< k and put it on the stack 
> Remove that vertex and all edges incident to it from GI 

→ This action often creates vertices with fewer than k neighbors 

2. If GI  is non-empty (all vertices have k or more neighbors) then: 
> Pick a vertex n (using some heuristic condition, spill metric as cost/

degree), push n on the stack and remove n from GI , along with all 
edges incident to it 

> If this causes some vertex in GI to have fewer than k neighbors, 
then go to step 1; otherwise, repeat step 2 

3. Successively pop vertices off the stack and color them in the 
lowest color not used by some neighbor 
> If some vertex cannot be colored, then pick an uncolored vertex to 

spill, spill it, and restart at step 1



Chaitin-Briggs in Practice

4

2

1

3

2 Registers

Stack

No node has degree < 2 
•Chaitin would spill a node 
•Briggs picks the same node & stacks it



Chaitin-Briggs in Practice
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Pick a node, say 1



Chaitin-Briggs in Practice
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Pick a node, say 1



Chaitin-Briggs in Practice
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1

Now, both 2 & 3 have degree < 2 
Pick one, say 3



Chaitin-Briggs in Practice

4
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3

Both 2 & 4 have degree < 2. 
Take them in order 2, then 4.



Chaitin-Briggs in Practice
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Chaitin-Briggs in Practice

2 Registers

Stack

1

3
2
4

Now, rebuild the graph



Chaitin-Briggs in Practice
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Chaitin-Briggs in Practice
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Chaitin-Briggs in Practice
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Chaitin-Briggs in Practice
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Comparing Top-Down and Bottom-Up approach

Spill

• Top-Down  constrained nodes first 
• Bottom-Up unconstrained nodes first and in this way some 

constrained becomes uncostrained   
• No clear way to compare the results



Advanced Topics in Global Allocation



Coalescing Copies I

• For reduce the degree the compiler writer can use the 
interference graph to determine when two live ranges that are 
connected by a copy can be coalescing or combined. 

• If LR1 and LR2 do not otherwise interfere, the operation can be 
eliminated and all references to LR2 can be rewritten to use LR1 

Several advantages: 
• It eliminates the copy operation  
• It reduces the degree of any LR that interfered with both LR1 

and LR2 

i2i LR1 ) LR2
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Copy from register to register



Coalescing Copies II

• Even if LRa overlaps both LRb and LRc, it interferes with neither 
of them because the source and destination of a copy do not 
interfere

Both copy operations 
 are candidate for coalescing!



LRa

LRc
LRb

LRab

LRc

Coalescing two live ranges  
cannot increase the degrees  
of any of their neighbours  

Coalescing Copies III

but the resulting graph can be harder to color, 
the degree of LRab can grow!!



Safe Coalescing 

• To perform coalescing, the allocator walks each block and 
examines each copy operation in the block 

• When it finds                                       with LR1 and LR2 that do  
not interfere the allocator combines them, eliminates the copy and 
update the Interference graph  

• Coalascing two live range can prevent new coalescing: the order of 
coalescing matters 

i2i LR1 ) LR2
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Chaitin-Briggs Allocator (Bottom-up Coloring)

renumber

build

coalesce

spill costs

simplify

select

spill

Build SSA, build live ranges, rename 

Build the interference graph

Fold unneeded copies  

LRx→ LRy, and <LRx,LRy>  ∉ GI ⇒ combine LRx & LRy

Remove nodes from the graph

Spill uncolored definitions & uses

While stack is non-empty 
    pop n, insert n into GI, & try to color it

Estimate cost for spilling  
     each live range

Briggs’ algorithm  (1989)

while N is non-empty 
    if ∃ n with n°< k then 
         push n onto stack 
    else pick n to spill 
         push n onto stack 
    remove n  from GI



Chaitin’s Allocator (Bottom-up Coloring)

renumber

build

coalesce

spill costs

simplify

select

spill

Build SSA, build live ranges, rename 

Build the interference graph

Fold unneeded copies  

LRx→ LRy, and <LRx,LRy>  ∉ GI ⇒ combine LRx & LRy

Remove nodes from the graph

Spill uncolored definitions & uses

While stack is non-empty 
    pop n, insert n into GI, & try to color it

Estimate cost for spilling  
     each live range

Chaitin’s 
algorithm For contrast, Chaitin’s algorithm (1981)

Quick Aside …

while N is non-empty 
    if ∃ n with n°< k then 
         push n onto stack 
    else pick n to spill 
         mark n for spill pass 
    remove n  from GI



Chaitin-Briggs Allocator         (Bottom-up Global)

Strengths & Weaknesses 
↑ Precise interference graph 
↑ Strong coalescing mechanism 
↑ Handles register assignment well 
↑ Runs fairly quickly 

↓ Known to overspill in tight cases 
↓ Interference graph has no geography 
↓ Spills a live range everywhere 

Is improvement still possible ? 
 ⇒ yes, but the returns are getting rather small



Linear Scan Allocation

Coloring allocators are often viewed as too expensive for use in 
JIT environments, where compile time occurs at runtime 

Linear scan allocators use an approximate interference graph 
and a version of the bottom-up local algorithm 

Sun’s HotSpot server compiler uses a complete Chaitin-Briggs allocator.

Approximate Global Allocation



Live Interval

Live Ranges in 
LS 



Linear Scan Allocation

Building the Interval Graph 
• Consider the procedure as a linear list of operations 
• A live range for some name is an interval (x,y) 

• Intervals overestimates live ranges and therefore 
interference 

The Algorithm 
• Use bottom-up local algorithm 
• Distance to next use is well defined 
• Algorithm is fast & produces reasonable allocations 

Variations have been proposed that build on this scheme



The linear scan algorithm



The code



Live ranges Allocation

Linear Scan example

c is spilled



Global Coloring from SSA Form
•Chaitin-Briggs works from live ranges that are a coalesced version of SSA 
names 

Observation: The interference graph of a program in SSA form is a chordal 
graph. 

A chordal graph is a graph in which all cycles >3 has a cord 
(an edge that is not part of the cycle  
but connects two vertices of the cycle) 

Observation: Chordal graphs can be colored  
in O(N ) time. Chordal Graph 

Every cycle of length > 
3 has a chord

https://en.wikipedia.org/wiki/Cycle_(graph_theory)
https://en.wikipedia.org/wiki/Edge_(graph_theory)


These two facts suggest allocation using an  
interference graph built from SSA Form 

•SSA allocators use raw SSA names as live ranges 

A-based allocation has created a lot of excitement in the last couple of 
years

Global Coloring from SSA Form



Global Coloring from SSA Form

Coloring from SSA Names has its advantages 
• If graph is k-colorable, it finds the coloring 

— (Opinion ) An SSA-based allocator will find more k-colorable 
graphs than a live-range based allocator because SSA names are 
shorter and, thus, have fewer interferences. 

• Allocator should be faster than a live-range allocator 
— Cost of live analysis folded into SSA construction, where it is 

amortized over other passes 
— Biggest expense in Chaitin-Briggs is the Build-Coalesce phase, 

which SSA allocator avoids, as it destroys the chordal graph



Global Coloring from SSA Form

Coloring from SSA Names has its disadvantages 
• Coloring is rarely the problem 

— Most non-trivial codes spill; on trivial codes, both SSA allocator 
and classic Chaitin-Briggs are overkill.  (Try linear scan?) 

• SSA form provides no obvious help on spilling 

• After allocation, code is still in SSA form 
— Need out-of-SSA translation 
— Introduce copies after allocation 
— Must run a post-allocation coalescing phase 

→ Algorithms exist that do not use an interference graph 
→ They are not as powerful as the Chaitin-Briggs coalescing phase



Hybrid Approach ?
How can the compiler attain both speed and precision? 

Observation: lots of procedures are small & do not spill 
Observation: some procedures are hard to allocate 

Possible solution: 
• Try different algorithms 
• First, try linear scan 

— It is cheap and it may work 

• If linear scan fails, try heavyweight allocator of choice 
— Might be Chaitin-Briggs, SSA, or some other algorithm 
— Use expensive allocator only when cheap one spills 

This approach would not help with the speed of a complex 
compilation, but it might compensate on simple compilations


