
Global Register Allocation 
via Graph Coloring  

 

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Global Register Allocation

The Big Picture

At each point in the code
1 Determine which values will reside in registers
2 Select a register for each such value

For local allocation we saw
-the frequency-count allocator (top down)
-the allocator based on distance to the next use (bottom up)

Register
Allocator

m register
 code

k register
 code

Optimal global allocation
is NP-Complete, under
almost any assumptions.

What Makes Global Register Allocation Hard?

What’s harder across multiple blocks?
• Could replace a load with a move
• Good assignment would obviate the move
• Must build a control-flow graph to understand inter-block flow
• Can spend an inordinate amount of time adjusting the allocation

...
store r4 ⇒ x

load x ⇒ r1
...

This is an assignment problem,
not an allocation problem !
If x is kept in the right register
we could just repack store-load
with a move

What Makes Global Register Allocation Hard?

A more complex scenario
• Block with multiple predecessors in the control-flow graph
• Must get the “right” values in the “right” registers in each

predecessor
• In a loop, a block can be its own predecessor
This adds tremendous complications

...
store r4 ⇒ x

load x ⇒ r1
...

...
store r5 ⇒ x

What if one block has x in a
register, but not the other?

Global Register Allocation

Taking a global approach
• Abandon the distinction between local & global
• Make systematic use of registers or memory (SSA)
• Adopt a general scheme to approximate a good allocation

Difference between two different allocations for the same code lies

•the number of loads and stores

•the placement operations (different blocks execute different times
and this may vary at every run)

Global vs Local Register Allocation

• The structure of global live range can be more complex : a global
live range is a web of definitions and uses

• In a local live rage all reference execute once per execution of the
block . Thus the cost of spilling is uniform

• In a global allocator the cost of spilling depends on where the
spilling occurs

• Global allocators annotate each reference with an estimated
execution frequency derived by static analysis or from profile
data

1 Build an interference graph GI for the procedure
— Computing LIVE is harder than in the local case
— GI is not an interval graph as in the local case

2 (try to) construct a k-coloring
— Minimal coloring is NP-Complete
— Spill placement becomes a critical issue

3 Map colors onto physical registers

Graph colouring paradigm

Graph Coloring (A Background Digression)
The problem

A graph G is said to be k-colorable iff the nodes can be labeled with
integers 1 … k so that no edge in G connects two nodes with the same
label

Examples

Each color can be mapped to a distinct physical register

2-colorable 3-colorable

Building the Interference Graph
What is an “interference” ? (or conflict)
• Two values interfere if there exists an operation where both are

simultaneously live
• If x and y interfere, they cannot occupy the same register
To compute interferences, we must know where values are “live”

The interference graph, GI = (NI,EI)

• Nodes in GI represent values, or live ranges

• Edges in GI represent individual interferences
— For x, y ∈ NI, <x,y> ∈ EI iff x and y interfere

• A k-coloring of GI can be mapped into an allocation to k registers

Building the Interference Graph
To build the interference graph

1 Discover live ranges
> Construct the SSA form of the procedure
> At each φ-function, take the union of the arguments
> Rename to reflect these new “live ranges”

2 Compute LIVE sets over live ranges for each block
> Use an iterative data-flow solver
> Solve equations for LIVE over domain of live range names

3 Iterate over each block, bottom-up
> Track the current LIVE set
> At each operation, add appropriate edges & update LIVE

1 Discover live ranges
> Construct the SSA form of the procedure
> At each φ-function, take the union of the arguments
> Rename to reflect these new “live ranges”: arguments of the same

 phi functions has to be united together

Point 1

Live ranges {LRa=a0,LRb=b0,LRc=c0,
 LRd=d0 d1 d2 } [

<latexit sha1_base64="js5SxFrUfXV7qz/2Bc+64ehQc/o=">AAAB7XicbVDLSsNAFL2pr1pfVZduBlvBVUmq+NgV3bisYB/QhjKZTtqxk0yYmQgl9B/cuFDErf/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29thKxJLRFBBey62FFOQtpSzPNaTeSFAcepx1vcp36nQcqFRPhnZ5G1A3wKGQ+I1gbqV3tkziqDsoVu2ZnQIvEyUkFcjQH5Y/+UJA4oKEmHCvVc+xIuwmWmhFOZ6V+rGiEyQSPaM/QEAdUuUl27QwdGWWIfCFNhRpl6s+JBAdKTQPPdAZYj9VfLxX/83qx9i/chIVRrGlI5ov8mCMtUPo6GjJJieZTQzCRzNyKyBhLTLQJqJSFcJni7PvlRdKu15yT2ultvdK4yuMowgEcwjE4cA4NuIEmtIDAPTzCM7xYwnqyXq23eWvBymf24Res9y/v347Y</latexit>

[
<latexit sha1_base64="js5SxFrUfXV7qz/2Bc+64ehQc/o=">AAAB7XicbVDLSsNAFL2pr1pfVZduBlvBVUmq+NgV3bisYB/QhjKZTtqxk0yYmQgl9B/cuFDErf/jzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29thKxJLRFBBey62FFOQtpSzPNaTeSFAcepx1vcp36nQcqFRPhnZ5G1A3wKGQ+I1gbqV3tkziqDsoVu2ZnQIvEyUkFcjQH5Y/+UJA4oKEmHCvVc+xIuwmWmhFOZ6V+rGiEyQSPaM/QEAdUuUl27QwdGWWIfCFNhRpl6s+JBAdKTQPPdAZYj9VfLxX/83qx9i/chIVRrGlI5ov8mCMtUPo6GjJJieZTQzCRzNyKyBhLTLQJqJSFcJni7PvlRdKu15yT2ultvdK4yuMowgEcwjE4cA4NuIEmtIDAPTzCM7xYwnqyXq23eWvBymf24Res9y/v347Y</latexit>

Solve the equations using a fixed-point iterative scheme

A value is live between its definition and its uses
• Find definitions (x ← …) and uses (y ← … x ...)
• From definition to last use is its live range

— How does a second definition affect this?

• Can represent live range as an interval [i,j] (in block)

• LV•(l) = U {LVo(l’) | l’ in post(l)}

• LVo(l) = (LV•(l) \ def(B)) U use(B)

 def([x:=a]l) = {x} and Ø elsewhere
 use([x:=a]l) = FV(a)
 use([b]l) = FV(b) and Ø elsewhere

LVo(l) are the variables live

right before the block

 LV
•
(l) are the variables live

 at the exit of the block

 Point 2: Computing LIVE Sets

Point 3:constructing the Interference graph

• LRj interferences with LRi if one is live at a definition of the
other

• Once the allocator has built global variable ranges and annotate

each basic block with its LiveOut set (LV•(B)), it can construct

Interference graph with a linear pass over each block.

Inverse order!

LiveOut={LRa,LRd}

LiveOut={LRa}

LiveOut={LRa,LRd}

LRa LRd

LRc
LRb

LiveNow={LRa,LRc}LiveNow={LRa,LRb}

LiveNow={LRa,LRd}LiveNow={LRa,LRd}

LiveNow={LRa}LiveNow={LRa}

Building interference Graph!

Account for Execution Frequency

The compiler annotate each block with estimated execution counts

These informations can be derived from
• profile data or from heuristics
• fixed assumptions, for example, a loop executes 10 time,

 an unpredictable if-then-else divides by 2

To estimate the cost of spilling a single reference the allocator
adds the cost of the address and memory operation and multiply
by frequencies

For each live range it sum up the cost of individual references

Building an allocator

To build an allocator based on graph coloring on the interference
graph, the compiler writer needs two additional mechanisms:
• the allocator needs an efficient technique to discover a k-coloring

(remember finding is NP-complete)
• Register allocator uses fast approximations that are not

guaranteed to find a k-coloring
• The allocator needs a strategy that handles the case no color

remain for a specific live range
• The allocator chooses one or more live range to spill and

reconsider the problem.

Now the interference graph may be colorable!

Observation on Coloring for Register Allocation

• Suppose you have k registers (not all the physival ones: some
dedicated to keep, e.g. base addresses)—look for a k coloring

• Any vertex n that has fewer than k neighbors in the
interference graph (n° < k) can always be colored !
— Pick any color not used by its neighbors — there must be one

Top-down Coloring

The Big Picture
• Use high-level priorities to rank live ranges
• Allocate registers for them in priority order
• Use coloring to assign specific registers to live ranges

 19

1. Rank all live ranges with their estimated runtime saving,
(analogous of the spilling cost)

2. Separate constrained from unconstrained live ranges
> A live range is constrained if it has ≥ k neighbors in GI

 3. Constrained live ranges are coloured first in rank order

Improving the algorithm

2

3

1 4 5

k=3 k=4

Handling Spills

• When the top down allocator encounters a live range that cannot
be coloured it spills the live range to change the problem.

• Since the all previously coloured live ranges were ranked higher
than the uncoloured one, it spills the uncoloured one.

• It could think of uncolor some of the previous one but it must
exercise care to avoid the full cost of backtracking

• After the spilling the problem becomes easier and a new
interference graph can be constructed.

• Ideas behind Chaitin’s algorithm:
— Pick any vertex n such that n°< k and put it on the stack
— Remove that vertex and all edges incident from the interference graph

→ This may make additional nodes have fewer than k neighbors
— At the end, if some vertex n still has k or more neighbors, then spill

 the live range associated with n
— Otherwise successively pop vertices off the stack and color them in the

 lowest color not used by some neighbor

Bottom up global allocator

Chaitin’s Algorithm
1. While ∃ vertices with < k neighbors in GI

> Pick any vertex n such that n°< k and put it on the stack
> Remove that vertex and all edges incident to it from GI

2. If GI is non-empty (all vertices have k or more neighbors) then:
> Pick a vertex n (using some heuristic) and spill the live range associated

with n
> Remove vertex n from GI , along with all edges incident to it and put it on

the “spill list”
> If this causes some vertex in GI to have fewer than k neighbors, then go

to step 1; otherwise, repeat step 2

3. If the spill list is not empty, insert spill code, then rebuild the
interference graph and try to allocate, again

4. Otherwise, successively pop vertices off the stack and color them in
the lowest color not used by some neighbor

Lowers degree of
n’s neighbors

Chaitin’s Algorithm in Practice

2

3

1 4 5

3 Registers

Stack

1 is the only node with degree < 3

Chaitin’s Algorithm in Practice

2

3

4 5

3 Registers

Stack

1

Now, 2 & 3 have degree < 3

Chaitin’s Algorithm in Practice

3

4 5

3 Registers

Stack

1

2

Now all nodes have degree < 3

Chaitin’s Algorithm in Practice

3

5

3 Registers

Stack

1

2
4

Chaitin’s Algorithm in Practice

3 Registers

Stack

1

2
4
3

5

Colors:

1:

2:

3:

Chaitin’s Algorithm in Practice

5

3 Registers

Stack

1

2
4
3

Colors:

1:

2:

3:

Chaitin’s Algorithm in Practice

3

5

3 Registers

Stack

1

2
4

Colors:

1:

2:

3:

Chaitin’s Algorithm in Practice

3

4 5

3 Registers

Stack

1

2

Colors:

1:

2:

3:

Chaitin’s Algorithm in Practice

2

3

4 5

3 Registers

Stack

1

Colors:

1:

2:

3:

Chaitin’s Algorithm in Practice

2

3

1 4 5

3 Registers

Stack

Colors:

1:

2:

3:

Improvement in Coloring Scheme
Optimistic Coloring
• If Chaitin’s algorithm reaches a state where every node has k

or more neighbors, it chooses a node to spill.
• Briggs said, take that same node and push it on the stack

— When you pop it off, a color might be available for it!

2 Registers: Chaitin’s algorithm
immediately spills one
of these nodes

 34

—A node n might have k+2 neighbors, but those
 neighbors might only use 3 (<k) colors

→Degree is a loose upper bound on colorability

Improvement in Coloring Scheme

Briggs et al, PLDI 89 (Also, TOPLAS 1994)

degree(A) =5
A

coulor(A)=2

Improvement in Coloring Scheme
Optimistic Coloring
• If Chaitin’s algorithm reaches a state where every node has k

or more neighbors, it chooses a node to spill.
• Briggs said, take that same node and push it on the stack

— When you pop it off, a color might be available for it!

— For example, a node n might have k+2 neighbors, but those
neighbors might only use just one color (or any number < k)
→ Degree is a loose upper bound on colorability

2 Registers:

2-Colorable

Briggs algorithm finds
an available color

Chaitin-Briggs Algorithm
1. While ∃ vertices with < k neighbors in GI

> Pick any vertex n such that n°< k and put it on the stack
> Remove that vertex and all edges incident to it from GI

→ This action often creates vertices with fewer than k neighbors

2. If GI is non-empty (all vertices have k or more neighbors) then:
> Pick a vertex n (using some heuristic condition, spill metric as cost/

degree), push n on the stack and remove n from GI , along with all
edges incident to it

> If this causes some vertex in GI to have fewer than k neighbors,
then go to step 1; otherwise, repeat step 2

3. Successively pop vertices off the stack and color them in the
lowest color not used by some neighbor
> If some vertex cannot be colored, then pick an uncolored vertex to

spill, spill it, and restart at step 1

Chaitin-Briggs in Practice

4

2

1

3

2 Registers

Stack

No node has degree < 2
•Chaitin would spill a node
•Briggs picks the same node & stacks it

Chaitin-Briggs in Practice

4

2

1

3

2 Registers

Stack

Pick a node, say 1

Chaitin-Briggs in Practice

4

2

3

2 Registers

Stack

1

Pick a node, say 1

Chaitin-Briggs in Practice

4

2

3

2 Registers

Stack

1

Now, both 2 & 3 have degree < 2
Pick one, say 3

Chaitin-Briggs in Practice

4

2

2 Registers

Stack

1

3

Both 2 & 4 have degree < 2.
Take them in order 2, then 4.

Chaitin-Briggs in Practice

4

2 Registers

Stack

1

3
2

Chaitin-Briggs in Practice

2 Registers

Stack

1

3
2
4

Now, rebuild the graph

Chaitin-Briggs in Practice

4

2 Registers

Stack

1

3
2

Colors:

1:

2:

Chaitin-Briggs in Practice

4

2

2 Registers

Stack

1

3

Colors:

1:

2:

Chaitin-Briggs in Practice

4

2

3

2 Registers

Stack

1

Colors:

1:

2:

Chaitin-Briggs in Practice

4

2

1

3

2 Registers

Stack

Colors:

1:

2:

Comparing Top-Down and Bottom-Up approach

Spill

• Top-Down constrained nodes first
• Bottom-Up unconstrained nodes first and in this way some

constrained becomes uncostrained
• No clear way to compare the results

Advanced Topics in Global Allocation

Coalescing Copies I

• For reduce the degree the compiler writer can use the
interference graph to determine when two live ranges that are
connected by a copy can be coalescing or combined.

• If LR1 and LR2 do not otherwise interfere, the operation can be
eliminated and all references to LR2 can be rewritten to use LR1

Several advantages:
• It eliminates the copy operation
• It reduces the degree of any LR that interfered with both LR1

and LR2

i2i LR1) LR2
<latexit sha1_base64="kqapqZwipD2S8iXa30kqgtNiito=">AAACDXicbVC7TgJBFJ31ifhatbSZCCZWZBdjNKEh2lhYIJFHwhIyOwwwYXZnM3NXQzb8gI2/YmOhMbb2dv6NA2yh4ElucuacezP3Hj8SXIPjfFtLyyura+uZjezm1vbOrr23X9cyVpTVqBRSNX2imeAhqwEHwZqRYiTwBWv4w6uJ37hnSnMZ3sEoYu2A9EPe45SAkTp2Pp94AJgX+Rh7Ja90U+24XpX3B0CUkg/YvIv5jp1zCs4UeJG4KcmhFJWO/eV1JY0DFgIVROuW60TQTogCTgUbZ71Ys4jQIemzlqEhCZhuJ9NrxvjYKF3ck8pUCHiq/p5ISKD1KPBNZ0BgoOe9ifif14qhd9FOeBjFwEI6+6gXCwwST6LBXa4YBTEyhFDFza6YDogiFEyAWROCO3/yIqkXC+5p4ey2mCtfpnFk0CE6QifIReeojK5RBdUQRY/oGb2iN+vJerHerY9Z65KVzhygP7A+fwCz7JoQ</latexit>

Copy from register to register

Coalescing Copies II

• Even if LRa overlaps both LRb and LRc, it interferes with neither
of them because the source and destination of a copy do not
interfere

Both copy operations
 are candidate for coalescing!

LRa

LRc
LRb

LRab

LRc

Coalescing two live ranges
cannot increase the degrees
of any of their neighbours

Coalescing Copies III

but the resulting graph can be harder to color,
the degree of LRab can grow!!

Safe Coalescing

• To perform coalescing, the allocator walks each block and
examines each copy operation in the block

• When it finds with LR1 and LR2 that do
not interfere the allocator combines them, eliminates the copy and
update the Interference graph

• Coalascing two live range can prevent new coalescing: the order of
coalescing matters

i2i LR1) LR2
<latexit sha1_base64="kqapqZwipD2S8iXa30kqgtNiito=">AAACDXicbVC7TgJBFJ31ifhatbSZCCZWZBdjNKEh2lhYIJFHwhIyOwwwYXZnM3NXQzb8gI2/YmOhMbb2dv6NA2yh4ElucuacezP3Hj8SXIPjfFtLyyura+uZjezm1vbOrr23X9cyVpTVqBRSNX2imeAhqwEHwZqRYiTwBWv4w6uJ37hnSnMZ3sEoYu2A9EPe45SAkTp2Pp94AJgX+Rh7Ja90U+24XpX3B0CUkg/YvIv5jp1zCs4UeJG4KcmhFJWO/eV1JY0DFgIVROuW60TQTogCTgUbZ71Ys4jQIemzlqEhCZhuJ9NrxvjYKF3ck8pUCHiq/p5ISKD1KPBNZ0BgoOe9ifif14qhd9FOeBjFwEI6+6gXCwwST6LBXa4YBTEyhFDFza6YDogiFEyAWROCO3/yIqkXC+5p4ey2mCtfpnFk0CE6QifIReeojK5RBdUQRY/oGb2iN+vJerHerY9Z65KVzhygP7A+fwCz7JoQ</latexit>

Chaitin-Briggs Allocator (Bottom-up Coloring)

renumber

build

coalesce

spill costs

simplify

select

spill

Build SSA, build live ranges, rename

Build the interference graph

Fold unneeded copies

LRx→ LRy, and <LRx,LRy> ∉ GI ⇒ combine LRx & LRy

Remove nodes from the graph

Spill uncolored definitions & uses

While stack is non-empty
 pop n, insert n into GI, & try to color it

Estimate cost for spilling
 each live range

Briggs’ algorithm (1989)

while N is non-empty
 if ∃ n with n°< k then
 push n onto stack
 else pick n to spill
 push n onto stack
 remove n from GI

Chaitin’s Allocator (Bottom-up Coloring)

renumber

build

coalesce

spill costs

simplify

select

spill

Build SSA, build live ranges, rename

Build the interference graph

Fold unneeded copies

LRx→ LRy, and <LRx,LRy> ∉ GI ⇒ combine LRx & LRy

Remove nodes from the graph

Spill uncolored definitions & uses

While stack is non-empty
 pop n, insert n into GI, & try to color it

Estimate cost for spilling
 each live range

Chaitin’s
algorithm For contrast, Chaitin’s algorithm (1981)

Quick Aside …

while N is non-empty
 if ∃ n with n°< k then
 push n onto stack
 else pick n to spill
 mark n for spill pass
 remove n from GI

Chaitin-Briggs Allocator (Bottom-up Global)

Strengths & Weaknesses
↑ Precise interference graph
↑ Strong coalescing mechanism
↑ Handles register assignment well
↑ Runs fairly quickly

↓ Known to overspill in tight cases
↓ Interference graph has no geography
↓ Spills a live range everywhere

Is improvement still possible ?
 ⇒ yes, but the returns are getting rather small

Linear Scan Allocation

Coloring allocators are often viewed as too expensive for use in
JIT environments, where compile time occurs at runtime

Linear scan allocators use an approximate interference graph
and a version of the bottom-up local algorithm

Sun’s HotSpot server compiler uses a complete Chaitin-Briggs allocator.

Approximate Global Allocation

Live Interval

Live Ranges in
LS

Linear Scan Allocation

Building the Interval Graph
• Consider the procedure as a linear list of operations
• A live range for some name is an interval (x,y)

• Intervals overestimates live ranges and therefore
interference

The Algorithm
• Use bottom-up local algorithm
• Distance to next use is well defined
• Algorithm is fast & produces reasonable allocations

Variations have been proposed that build on this scheme

The linear scan algorithm

The code

Live ranges Allocation

Linear Scan example

c is spilled

Global Coloring from SSA Form
•Chaitin-Briggs works from live ranges that are a coalesced version of SSA
names

Observation: The interference graph of a program in SSA form is a chordal
graph.

A chordal graph is a graph in which all cycles >3 has a cord
(an edge that is not part of the cycle
but connects two vertices of the cycle)

Observation: Chordal graphs can be colored
in O(N) time. Chordal Graph

Every cycle of length >
3 has a chord

https://en.wikipedia.org/wiki/Cycle_(graph_theory)
https://en.wikipedia.org/wiki/Edge_(graph_theory)

These two facts suggest allocation using an
interference graph built from SSA Form

•SSA allocators use raw SSA names as live ranges

A-based allocation has created a lot of excitement in the last couple of
years

Global Coloring from SSA Form

Global Coloring from SSA Form

Coloring from SSA Names has its advantages
• If graph is k-colorable, it finds the coloring

— (Opinion) An SSA-based allocator will find more k-colorable
graphs than a live-range based allocator because SSA names are
shorter and, thus, have fewer interferences.

• Allocator should be faster than a live-range allocator
— Cost of live analysis folded into SSA construction, where it is

amortized over other passes
— Biggest expense in Chaitin-Briggs is the Build-Coalesce phase,

which SSA allocator avoids, as it destroys the chordal graph

Global Coloring from SSA Form

Coloring from SSA Names has its disadvantages
• Coloring is rarely the problem

— Most non-trivial codes spill; on trivial codes, both SSA allocator
and classic Chaitin-Briggs are overkill. (Try linear scan?)

• SSA form provides no obvious help on spilling

• After allocation, code is still in SSA form
— Need out-of-SSA translation
— Introduce copies after allocation
— Must run a post-allocation coalescing phase

→ Algorithms exist that do not use an interference graph
→ They are not as powerful as the Chaitin-Briggs coalescing phase

Hybrid Approach ?
How can the compiler attain both speed and precision?

Observation: lots of procedures are small & do not spill
Observation: some procedures are hard to allocate

Possible solution:
• Try different algorithms
• First, try linear scan

— It is cheap and it may work

• If linear scan fails, try heavyweight allocator of choice
— Might be Chaitin-Briggs, SSA, or some other algorithm
— Use expensive allocator only when cheap one spills

This approach would not help with the speed of a complex
compilation, but it might compensate on simple compilations

